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Abstract
In this paper, we examine and explore the boundedness, periodicity, and global stability of the positive solutions of the

rational difference equation

yn+1 =
α0yn +α1yn−p +α2yn−q +α3yn−r +α4yn−s

β0yn +β1yn−p +β2yn−q +β3yn−r +β4yn−s
,

where the coefficients αi,βi ∈ (0,∞), i = 0, 1, 2, 3, 4, and p,q, r, and s are positive integers. The initial conditions y−s,. . . ,y−r,. . . ,
y−q,. . . , y−p,. . . ,y−1,y0 are arbitrary positive real numbers such that p < q < r < s. Some numerical examples will be given to
illustrate our result.
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1. Introduction

Difference equations occur as mathematical models in various real world applications such as problems
in physiology, engineering, ecology, and many more. In this direction, many such problems are nonlinear
in nature and thus the research focus is on nonlinear difference equations. One such class of equations
which have attracted attentions of researchers is the rational difference equations.

This paper is inspired and extends the work on rational difference equation in [23]. Specifically, the
core of our work here is to study qualitative properties such as the local and global stability, boundedness,
periodicity of the positive solutions of the rational difference equation

yn+1 =
α0yn +α1yn−p +α2yn−q +α3yn−r +α4yn−s

β0yn +β1yn−p +β2yn−q +β3yn−r +β4yn−s
, (1.1)

where the coefficients αi,βi ∈ (0,∞), i = 0, 1, 2, 3, 4, and p,q, r and s are positive integers. The initial
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conditions y−s,. . . ,y−r,. . . ,y−q,. . . , y−p,. . . ,y−1,y0 are arbitrary positive real numbers such that p < q <
r < s. We illustrate our findings by considering numerical examples which represent different types of
solutions of equation (1.1). In the special case when any of the coefficients αi,βi for i = 0, . . . , 4 are allowed
to be zero, equation (1.1) reduces to the distinct cases which have been studied by many authors. In
particular, apart from [23], equation (1.1) can be considered as a generalization of that studied in [2, 10, 17].
Other related works on rational difference equation can be found in Refs. [1, 3, 4, 6–9, 11–15, 18]. See also
[16, 19–22, 24].

We first recall some basic properties and definitions associated with difference equations.

Definition 1.1. A difference equation of order (s+ 1) is of the form

yn+1 = H(yn,yn−1, . . . ,yn−p, . . . ,yn−q, . . . ,yn−r, . . . . . . ,yn−s), n = 0, 1, 2, . . . (1.2)

with p < q < r < s where H is a continuous function. An equilibrium point ỹ of this difference equation is
a point that satisfies the condition ỹ = H(ỹ,ỹ,. . . ,ỹ). That is the constant sequence {yn}

∞
n=−s with yn = ỹ

for all n > −s is a solution of that equation.

Definition 1.2. Let ỹ ∈ (0,∞) be an equilibrium point of equation (1.2). Then, we have

1. An equilibrium point ỹ of equation (1.2) is called locally stable if for every ε > 0 there exists
δ > 0 such that, if y−s,y−r,y−r+1, . . . ,y−1,y0 ∈ (0,∞) with |y−s − ỹ|+ |y−r − ỹ|+ |y−r+1 − ỹ|+ · · ·+
|y−1 − ỹ|+ |y0 − ỹ| < δ, then |yn − ỹ| < ε for all n > −s.

2. An equilibrium point ỹ of equation (1.2) is called locally asymptotically stable if it is locally stable
and there exists γ > 0 such that, if y−s,y−r,y−r+1, . . . ,y−1,y0 ∈ (0,∞) with |y−s − ỹ|+ |y−r − ỹ|+
|y−r+1 − ỹ|+ · · ·+ |y−1 − ỹ|+ |y0 − ỹ| < γ, then

lim
n→∞yn = ỹ.

3. An equilibrium point ỹ of equation (1.2) is called a global attractor if for every y−s, . . . ,y−1,y0 ∈
(0,∞) we have

lim
n→∞yn = ỹ.

4. An equilibrium point ỹ of equation (1.2) is called globally asymptotically stable if it is locally stable
and a global attractor.

5. An equilibrium point ỹ of equation (1.2) is called unstable if it is not locally stable.

Definition 1.3. A solution {yn}
∞
n=−s of equation (1.2) is said to be periodic with period r if

yn+r = yn for all n > −s.

Moreover, if r is the smallest positive integer having this property, then this periodic solution is said to
have prime period r.

Theorem 1.4 ([5]). Let H : [a,b]s+1 → [a,b] be a continuous function, where s is a positive integer, and where
[a,b] is an interval of real numbers. Consider the difference equation (1.2). Suppose that H satisfies the following
conditions.

1. For each integer i with 1 6 i 6 s+ 1, the function H(z1, z2, . . . , zs+1) is weakly monotonic in zi for fixed
z1, z2, . . . , zi−1, zi+1, . . . , zs+1.

2. If (m,M) is a solution of the system

M = H(M1,M2, . . . ,Ms+1) and m = H(m1,m2, . . . ,ms+1),
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then M = m, where for each i = 1, 2, . . . , s+ 1, we set

Mi =

{
M, if H is non-decreasing in zi,
m, if H is non-increasing in zi,

and

mi =

{
m, if H is non-decreasing in zi,
M, if H is non-increasing in zi.

Then there exists exactly one equilibrium ỹ of equation (1.2), and every solution of equation (1.2) converges to ỹ.

This paper is structured as follows. The local stability of the solutions of the difference equation (1.1) is
introduced in Section 2. The boundedness character of the positive solution of equation (1.1) is addressed
in Section 3. The periodicity of the positive solutions of equation (1.1) is investigated in Section 4. In
Section 5 the global stability of the positive solution of equation (1.1) is studied. Section 6 deals with
numerical experiments on the main results. Finally, we end with the conclusion in Section 7.

2. Local stability of the equilibrium solution

The local stability of the solutions of equation (1.1) is examined in this section. Assume that c̃ =
∑4
i=0 αi

and d̃ =
∑4
i=0 βi. Then, one can easily check that

ỹ =
c̃

d̃

is the positive equilibrium point ỹ of equation (1.1). Now, let

H : (0,∞)5 −→ (0,∞)

be a continuous function defined by

H(u0, . . . ,u4) =
α0u0 +α1u1 +α2u2 +α3u3 +α4u4

β0u0 +β1u1 +β2u2 +β3u3 +β4u4
.

By taking partial derivatives of H, then the linearized equation about the positive equilibrium point ỹ
takes the form

yn+1 + a4yn + a3yn−p + a2yn−q + a1yn−r + a0yn−s = 0,

where

a4 = −
(α0β1 −α1β0) + (α0β2 −α2β0) + (α0β3 −α3β0) + (α0β4 −α4β0)

c̃d̃
,

a3 = −
(α1β0 −α0β1) + (α1β2 −α2β1) + (α1β3 −α3β1) + (α1β4 −α4β1)

c̃d̃
,

a2 = −
(α2β0 −α0β2) + (α2β1 −α1β2) + (α2β3 −α3β2) + (α2β4 −α4β2)

c̃d̃
,

a1 = −
(α3β0 −α0β3) + (α3β1 −α1β3) + (α3β2 −α2β3) + (α3β4 −α4β3)

c̃d̃
,

a0 = −
(α4β0 −α0β4) + (α4β1 −α1β4) + (α4β2 −α2β4) + (α4β3 −α3β4)

c̃d̃
.

(2.1)

Theorem 2.1 ([5]). Assume that ei ∈ R, i = 1, 2, . . . , k. Then,
k∑
i=1

|ei| < 1

is a sufficient condition for the asymptotic stability of the difference equation

yn+k + e1yn+k−1 + · · ·+ ekyn = 0, n = 0, 1, 2, . . . .
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Theorem 2.2. Assume that

|(α0β1 −α1β0) + (α0β2 −α2β0) + (α0β3 −α3β0) + (α0β4 −α4β0)|

+ |(α1β0 −α0β1) + (α1β2 −α2β1) + (α1β3 −α3β1) + (α1β4 −α4β1)|

+ |(α2β0 −α0β2) + (α2β1 −α1β2) + (α2β3 −α3β2) + (α2β4 −α4β2)|

+ |(α3β0 −α0β3) + (α3β1 −α1β3) + (α3β2 −α2β3) + (α3β4 −α4β3)|

+ |(α4β0 −α0β4) + (α4β1 −α1β4) + (α4β2 −α2β4) + (α4β3 −α3β4)| < c̃d̃.

Therefore the positive equilibrium point ỹ of equation (1.1) is locally asymptotically stable.

Proof. From (2.1) and the assumption of this theorem, it is obvious that

4∑
i=0

|ai| < 1.

Thus, by Theorem 2.1, equation (1.1) is asymptotically stable.

3. Boundedness of the solutions

In this section, the boundedness character of the positive solution of equation (1.1) is being studied.
First recall that a sequence {yn}

∞
n=−s is bounded if there exists positive constants m and M such that for

all n > −s
m 6 yn 6M.

Theorem 3.1. Every solution of equation (1.1) is bounded.

Proof. Let 
m0 = min αi, i = 0, . . . , 4,
M0 = max αi, i = 0, . . . , 4,
l = min βi, i = 0, . . . , 4,
L = max βi, i = 0, . . . , 4.

We have

m0 (yn + yn−p + yn−q + yn−r + yn−s)

L (yn + yn−p + yn−q + yn−r + yn−s)
6 yn+1 6

M0 (yn + yn−p + yn−q + yn−r + yn−s)

l (yn + yn−p + yn−q + yn−r + yn−s)

m0

L
6 yn+1 6

M0

l
,

which implies that every solution of equation (1.1) is bounded.

4. The periodicity of the solutions

In this section, we analyze the periodic character of the positive solution of equation (1.1).

Theorem 4.1. If one of the following conditions holds, then equation (1.1) has no positive solutions of prime period
two.

1. The positive integers p,q, r, and s are even.
2. The positive integers p,q are even and the positive integers r and s are odd provided α0 +α1 +α2 > α3 +α4.
3. The positive integers p,q are odd and the positive integers r, s are even provided α1 +α2 > α0 +α3 +α4.
4. The positive integers p, r are even and the positive integers q, s are odd provided α0 +α1 +α3 > α2 +α4.
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5. The positive integers q, r are even and the positive integers p, s are odd provided α0 +α2 +α3 > α1 +α4.
6. The positive integers q, r are odd and the positive integers p, s are even provided α0 +α1 +α4 > α2 +α3.
7. The positive integers p, r are even and the positive integers q, s are odd provided α0 +α2 +α4 > α1 +α3.
8. The positive integers p,q, r and s are odd, (α1 +α2 +α3 +α4) > α0 and β1 +β2 +β3 +β4 > β0.

Proof. Suppose that there exist positive distinctive solutions of prime period two . . . ,A,B,A,B, . . . of
equation (1.1). Then the following cases are discussed.

Case 1. p,q, r, and s are even positive integers. In this case yn = yn−p = yn−q = yn−r = yn−s. Then
there exist a positive period two solution {yn} such that

y2a = A,a = −1, 0, 1, . . . , y2a+1 = B,a = −1, 0, 1, . . . ,

where A 6= B. From equation (1.1) we have

A = B =
c̃

d̃
.

Thus, there is an inconsistency.

Case 2. p,q are even and the positive integers r and s are odd. In this case yn = yn−p = yn−q and
yn+1 = yn−r = yn−s. From equation (1.1) we have

A =
(α0 +α1 +α2)B+ (α3 +α4)A

(β0 +β1 +β2)B+ (β3 +β4)A
, B =

(α0 +α1 +α2)A+ (α3 +α4)B

(β0 +β1 +β2)A+ (β3 +β4)B
.

As a result, it is obtained that

(α0 +α1 +α2)B+ (α3 +α4)A = (β0 +β1 +β2)AB+ (β3 +β4)A
2

and
(α0 +α1 +α2)A+ (α3 +α4)B = (β0 +β1 +β2)AB+ (β3 +β4)B

2.

By subtracting, we acquire

A+B = −
[(α0 +α1 +α2) − (α3 +α4)]

β3 +β4
,

since α0 +α1 +α2 > α3 +α4 , we have A+B 6 0. Thus, it leads to a contradiction.

Case 3. p,q are positive odd and the positive integers r, s are even. In this case yn+1 = yn−p = yn−q and
yn = yn−r = yn−s. From equation (1.1) we have

A =
(α1 +α2)A+ (α0 +α3 +α4)B

(β1 +β2)A+ (β0 +β3 +β4)B
, B =

(α1 +α2)B+ (α0 +α3 +α4)A

(β1 +β2)B+ (β0 +β3 +β4)A
.

Thus, we realize

(α1 +α2)A+ (α0 +α3 +α4)B = (β1 +β2)A
2 + (β0 +β3 +β4)AB

and
(α1 +α2)B+ (α0 +α3 +α4)A = (β1 +β2)B

2 + (β0 +β3 +β4)AB.

By subtracting we have

A+B = −
[(α1 +α2) − (α0 +α3 +α4)]

β1 +β2
,

since α1 +α2 > α0 +α3 +α4, we have A+B 6 0. Thus we again have a contradiction.
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Case 4. p, r are positive even integers and the positive integers q, s are odd. In this case yn = yn−p = yn−r
and yn+1 = yn−q = yn−s. From equation (1.1) we have

A =
(α0 +α1 +α3)B+ (α2 +α4)A

(β0 +β1 +β3)B+ (β2 +β4)A
, B =

(α0 +α1 +α3)A+ (α2 +α4)B

(β0 +β1 +β3)A+ (β2 +β4)B
.

Therefore, it is found that

(α0 +α1 +α3)B+ (α2 +α4)A = (β0 +β1 +β3)AB+ (β2 +β4)A
2

and
(α0 +α1 +α3)A+ (α2 +α4)B = (β0 +β1 +β3)AB+ (β2 +β4)B

2.

By subtracting we sustain

A+B = −
[(α0 +α1 +α3) − (α2 +α4)]

β2 +β4
,

since α0 +α1 +α3 > α2 +α4, we have A+B 6 0. Thus we have a contradiction.

Case 5. q, r are positive even integers and the positive integers p, s are odd. In this case yn = yn−q = yn−r
and yn+1 = yn−p = yn−s. From equation (1.1) we have

A =
(α0 +α2 +α3)B+ (α1 +α4)A

(β0 +β2 +β3)B+ (β1 +β4)A
, B =

(α0 +α2 +α3)A+ (α1 +α4)B

(β0 +β2 +β3)A+ (β1 +β4)B
.

Consequently, we obtain

(α0 +α2 +α3)B+ (α1 +α4)A = (β0 +β2 +β3)AB+ (β1 +β4)A
2

and
(α0 +α2 +α3)A+ (α1 +α4)B = (β0 +β2 +β3)AB+ (β1 +β4)B

2.

By subtracting, we have

A+B = −
[(α0 +α2 +α3) − (α1 +α4)]

β1 +β4
,

since α0 +α2 +α3 > α1 +α4, we have A+B 6 0. Thus, there is also another contradiction.

Case 6. q, r are positive odd integers and the positive integers p, s are even. In this case yn+1 = yn−q =
yn−r and yn = yn−p = yn−s. From equation (1.1) we have

A =
(α0 +α1 +α4)B+ (α2 +α3)A

(β0 +β1 +β4)B+ (β2 +β3)A
, B =

(α0 +α1 +α4)A+ (α2 +α3)B

(β0 +β1 +β4)A+ (β2 +β3)B
.

As a result, it is found that

(α0 +α1 +α4)B+ (α2 +α3)A = (β0 +β1 +β4)AB+ (β2 +β3)A
2

and

(α0 +α1 +α4)A+ (α2 +α3)B = (β0 +β1 +β4)AB+ (β2 +β3)B
2.

By subtracting, we have

A+B = −
[(α0 +α1 +α4) − (α2 +α3)]

β2 +β3
,

since α0 +α1 +α4 > α2 +α3, we have A+B 6 0. Thus we have another contradiction.
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Case 7. p, r are positive odd integers and the positive integers q, s are even. In this case yn+1 = yn−p =
yn−r and yn = yn−q = yn−s. From equation (1.1) we have

A =
(α0 +α2 +α4)B+ (α1 +α3)A

(β0 +β2 +β4)B+ (β1 +β3)A
, B =

(α0 +α2 +α4)A+ (α1 +α3)B

(β0 +β2 +β4)A+ (β1 +β3)B
.

Accordingly, it is acquired

(α0 +α2 +α4)B+ (α1 +α3)A = (β0 +β2 +β4)AB+ (β1 +β3)A
2

and
(α0 +α2 +α4)A+ (α1 +α3)B = (β0 +β2 +β4)AB+ (β1 +β3)B

2.

By subtracting, we sustain

A+B = −
[(α0 +α2 +α4) − (α1 +α3)]

β1 +β3
,

since α0 +α2 +α4 > α1 +α3, we have A+B 6 0. Thus we have a contradiction.

Case 8. p,q, r and the positive integer s is odd. In this case yn+1 = yn−p = yn−q = yn−r = yn−s. From
equation (1.1) we have

A =
(α0)B+ (α1 +α2 +α3 +α4)A

(β0)B+ (β1 +β2 +β3 +β4)A
, B =

(α0)A+ (α1 +α2 +α3 +α4)B

(β0)A+ (β1 +β2 +β3 +β4)B
.

Thus, we obtain

(α0)B+ (α1 +α2 +α3 +α4)A = (β0)AB+ (β1 +β2 +β3 +β4)A
2

and
(α0)A+ (α1 +α2 +α3 +α4)B = (β0)AB+ (β1 +β2 +β3 +β4)B

2.

By subtracting, we possess

A+B =
[(α1 +α2 +α3 +α4) −α0]

β1 +β2 +β3 +β4
.

By adding we obtain

AB =
α0[(α1 +α2 +α3 +α4) −α0]

(β1 +β2 +β3 +β4) [(β1 +β2 +β3 +β4) −β0]
,

since (α1 + α2 + α3 + α4) > α0 and (β1 + β2 + β3 + β4) > β0, we have AB < 0. Thus, we have a
contradiction.

Theorem 4.2. Suppose p,q, r, and s are odd, α1 +α2 +α3 +α4 > α0 and β1 +β2 +β3 +β4 < β0. Then equation
(1.1) shall have positive solutions of prime period two if and only if

4α0 (β1 +β2 +β3 +β4) < [(α1 +α2 +α3 +α4) −α0][β0 − (β1 +β2 +β3 +β4)]. (4.1)

Proof. Suppose that there exist positive distinctive solutions of prime period two

. . . ,A,B,A,B, . . . .

of equation (1.1). Since p,q, r, and s are odd, we have yn+1 = yn−p = yn−q = yn−r = yn−s. From
equation (1.1) we have

A =
(α0)B+ (α1 +α2 +α3 +α4)A

(β0)B+ (β1 +β2 +β3 +β4)A
, B =

(α0)A+ (α1 +α2 +α3 +α4)B

(β0)A+ (β1 +β2 +β3 +β4)B
,
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subsequently, we obtain

(α0)B+ (α1 +α2 +α3 +α4)A = (β0)AB+ (β1 +β2 +β3 +β4)AA
2

and
(α0)A+ (α1 +α2 +α3 +α4)B = (β0)AB+ (β1 +β2 +β3 +β4)AB

2.

By subtracting, it is sustained

A+B =
[(α1 +α2 +α3 +α4) −α0]

β1 +β2 +β3 +β4
.

By adding up, we acquire

AB =
α0[(α1 +α2 +α3 +α4) −α0]

(β1 +β2 +β3 +β4) [β0 − (β1 +β2 +β3 +β4)]
,

where (α1 + α2 + α3 + α4) > α0 and β0 > (β1 + β2 + β3 + β4). Assume that A and B are two positive
distinct real roots of the quadratic equation

t2 − (A+B) t+AB = 0. (4.2)

Then, we deduce that(
[(α1 +α2 +α3 +α4) −α0]

(β1 +β2 +β3 +β4)

)2

>
4α0[(α1 +α2 +α3 +α4) −α0]

(β1 +β2 +β3 +β4) [β0 − (β1 +β2 +β3 +β4)]
. (4.3)

From equation (4.3), it is obtained

4α0 (β1 +β2 +β3 +β4) < [(α1 +α2 +α3 +α4) −α0][β0 − (qβ1 +β2 +β3 +β4)].

Hence, the condition (4.1) is valid. Contrariwise, presume that the condition (4.1) is valid where (α1 +α2 +
α3 +α4) > α0 and β0 > (β1 +β2 +β3 +β4). Then, it is immediately deduced from (4.1) that the inequality
(4.3) holds. There exist two positive distinctive real numbers A and B demonstrating two positive roots of
equation (4.2) such that

A =
[(α1 +α2 +α3 +α4) −α0] + δ

2(β1 +β2 +β3 +β4)
, (4.4)

and

B =
[(α1 +α2 +α3 +α4) −α0] − δ

2(β1 +β2 +β3 +β4)
, (4.5)

where

δ2 = [(α1 +α2 +α3 +α4) −α0]
2 −

4α0(β1 +β2 +β3 +β4)[(α1 +α2 +α3 +α4) −α0]

[β0 − (β1 +β2 +β3 +β4)]
.

A and B are to be proven as positive solutions of prime period two of equation (1.1). To this end, it can
be assumed that y−s = B, . . . ,y−r = B, . . . ,y−q = B, . . . ,y−p = B, . . . ,y−1 = B and y0 = A. Now, we are
going to show that y1 = B and y2 = A. From equation (1.1) we deduce that

y1 =
α0y0 +α1y−p +α2y−q +α3y−r +α4y−s

β0y0 +β1y−p +β2y−q +β3y−r +β4y−s
=
α0A+ (α1 +α2 +α3 +α4)B

β0A+ (β1 +β2 +β3 +β4)B
. (4.6)

Substituting (4.4) and (4.5) into (4.6) we deduce that

y1 −B =
α0A+ (α1 +α2 +α3 +α4)B

β0A+ (β1 +β2 +β3 +β4)B
−
β0AB+ (β1 +β2 +β3 +β4)B

2

β0A+ (β1 +β2 +β3 +β4)B
=
E− F

G
, (4.7)
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where,

E =
α0 ([(α1 +α2 +α3 +α4) −α0] + δ)

2(β1 +β2 +β3 +β4)
+

(α1 +α2 +α3 +α4) ([(α1 +α2 +α3 +α4) −α0] − δ)

2(β1 +β2 +β3 +β4)
,

F =

(
α0β0[(α1 +α2 +α3 +α4) −α0]

(β1 +β2 +β3 +β4) [β0 − (β1 +β2 +β3 +β4)]

)
+ (β1 +β2 +β3 +β4)

(
[(α1 +α2 +α3 +α4) −α0] − δ

2(β1 +β2 +β3 +β4)

)2

,

G =
β0 ([(α1 +α2 +α3 +α4) −α0] + δ)

2(β1 +β2 +β3 +β4)
+

(β1 +β2 +β3 +β4) ([(α1 +α2 +α3 +α4) −α0] − δ)

2(β1 +β2 +β3 +β4)
.

Multiplying the denominator and numerator of (4.7) by 4(β1 +β2 +β3 +β4)
2 we get

y1 −B =
2α0(β1 +β2 +β3 +β4) ([(α1 +α2 +α3 +α4) −α0] + δ)

G1
,

+
2 (α1 +α2 +α3 +α4) (β1 +β2 +β3 +β4) ([(α1 +α2 +α3 +α4) −α0] − δ)

G1

−

(
4α0β0(β1+β2+β3+β4)[(α1+α2+α3+α4)−α0]

[β0−(β1+β2+β3+β4)]

)
G1

−
(β1 +β2 +β3 +β4) ([(α1 +α2 +α3 +α4) −α0] − δ)

2

G1
,

y1 −B =
2α0(β1 +β2 +β3 +β4)[(α1 +α2 +α3 +α4) −α0]

G1

+
2 (α1 +α2 +α3 +α4) (β1 +β2 +β3 +β4)[(α1 +α2 +α3 +α4) −α0]

G1

−
(β1 +β2 +β3 +β4) [(α1 +α2 +α3 +α4) −α0]

2 + (β1 +β2 +β3 +β4) δ
2

G1

−

(
4α0β0(β1+β2+β3+β4)[(α1+α2+α3+α4)−α0]

[β0−(β1+β2+β3+β4)]

)
G1

+
2α0(β1 +β2 +β3 +β4)δ− 2α0 (β1 +β2 +β3 +β4) δ

G1

+
2(α1 +α2 +α3 +α4) (β1 +β2 +β3 +β4) δ− 2 (α1 +α2 +α3 +α4) (β1 +β2 +β3 +β4)δ

G1
= 0,

where

G1 = 2β0(β1 +β2 +β3 +β4) ([(α1 +α2 +α3 +α4) −α0] + δ)

+ 2 (β1 +β2 +β3 +β4)
2 ([(α1 +α2 +α3 +α4) −α0] − δ) .

Similarly, we can show that

y2 =
α0y1 +α1y−p+1 +α2y−q+1 +α3y−r+1 +α4y−s+1

β0y1 +β1y−p+1 +β2y−q+1 +β3y−r+1 +β4y−s+1
=
α0B+ (α1 +α2 +α3 +α4)A

β0B+ (β1 +β2 +β3 +β4)A
= A.

By using the mathematical induction, we have yn = B and yn+1 = A, n > −s.

5. Global stability

In this section, the global asymptotic stability of the positive solutions of equation (1.1) is analyzed.
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Theorem 5.1. For αi,βi ∈ (0,∞), i = 0, 1, 2, 3, 4, the positive equilibrium point ỹ of equation (1.1) is a global
attractor if the conditions

α0β1 > α1β0, α0β2 > α2β0, α0β3 > α3β0, α0β4 > α4β0, α1β2 > α2β1, α1β3 > α3β1,
α1β4 > α4β1,α2β3 > α3β2, α3β4 > α4β2, α3β4 > α4β3, and α4 > (α0 +α1 +α2 +α3)

hold.

Proof. Let {yn}
∞
n=−s be a positive solution of equation (1.1) and let H : (0,∞)5 → (0,∞) be a continuous

function defined by

H(u0, . . . ,u4) =
α0u0 +α1u1 +α2u2 +α3u3 +α4u4

β0u0 +β1u1 +β2u2 +β3u3 +β4u4
.

By differentiating the function H (u0, . . . ,u4) , it can be realized that

Hu0 =
(α0β1 −α1β0)u1 + (α0β2 −α2β0)u2 + (α0β3 −α3β0)u3 + L1u4

(β0u0 +β1u1 +β2u2 +β3u3 +β4u4)
2 ,

where L1 = (α0β4 −α4β0) and

Hu1 =
−(α0β1 −α1β0)u0 + (α1β2 −α2β1)u2 + (α1β3 −α3β1)u3 + L2u4

(β0u0 +β1u1 +β2u2 +β3u3 +β4u4)
2 ,

where L2 = (α1β4 −α4β1) and

Hu2 =
−(α0β2 −α2β0)u0 − (α1β2 −α2β1)u1 + (α2β3 −α3β2)u3 + L3u4

(β0u0 +β1u1 +β2u2 +β3u3 +β4u4)
2 ,

where L3 = (α3β4 −α4β2) and

Hu3 =
−(α0β3 −α3β0)u0 − (α1β3 −α3β1)u1 − (α2β3 −α3β2)u2 + L4u4

(β0u0 +β1u1 +β2u2 +β3u3 +β4u4)
2 ,

where L4 = (α3β4 −α4β3) and

Hu4 =
−(α0β4 −α4β0)u0 − (α1β4 −α4β1)u1 − (α2β4 −α4β2)u2 − L5u4

(β0u0 +β1u1 +β2u2 +β3u3 +β4u4)
2 ,

where L5 = (α3β4 −α4β3).
It is observed that the function H (u0,u1,u2,u3,u4) is non-decreasing in u0 and non-increasing in u4.

Now, we consider four cases.

Case (1). Let the function H(u0, . . . ,u4) be non-decreasing in u0,u1,u2,u3 and non-increasing in u4. Sup-
pose that (m,M) is a solution of the system

M = H(M,M,M,M,m) and m = H(m,m,m,m,M).

Then from equation (1.1), we get that

M =
α0M+α1M+α2M+α3M+α4m

β0M+β1M+β2M+β3M+β4m
and m =

α0m+α1m+α2m+α3m+α4M

β0m+β1m+β2m+β3m+β4M
.

Thus

M =
(α0 +α1 +α2 +α3)M+α4m

(β0 +β1 +β2 +β3)M+β4m
and m =

(α0 +α1 +α2 +α3)m+α4M

(β0 +β1 +β2 +β3)m+β4M
.
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From which we have

(α0 +α1 +α2 +α3)M+α4m− (β0 +β1 +β2 +β3)M
2 = β4Mm (5.1)

and
(α0 +α1 +α2 +α3)m+α4M− (β0 +β1 +β2 +β3)m

2 = β4Mm. (5.2)

By subtracting (5.1) and (5.2), we obtain

(M−m) {[(α0 +α1 +α2 +α3) −α4] − (β0 +β1 +β2 +β3) (M+m)} = 0. (5.3)

Since α4 > (α0 +α1 +α2 +α3), we deduce from (5.3) that

M = m.

It follows by Theorem 1.4, that ỹ is a global attractor of equation (1.1).

Case (2). Let the function H(u0, . . . ,u4) be non-decreasing in u0,u1 and non-increasing in u2,u3,u4. Sup-
pose that (M,m) is a solution of the system

M = H(M,M,m,m,m) and m = H(m,m,M,M,M).

Then from equation (1.1), we get that

M =
α0M+α1M+α2m+α3m+α4m

β0M+β1M+β2m+β3m+β4m
and m =

α0m+α1m+α2M+α3M+α4M

β0m+β1m+β2M+β3M+β4M
.

Thus

M =
(α0 +α1)M+ (α2 +α3 +α4)m

(β0 +β1)M+ (β2 +β3 +β4)m
and m =

(α0 +α1)m+ (α2 +α3 +α4)M

(β0 +β1)m+ (β2 +β3 +β4)M
.

From which we have

(α0 +α1)M+ (α2 +α3 +α4)m− (β0 +β1)M
2 = (β2 +β3 +β4)Mm (5.4)

and
(α0 +α1)m+ (α2 +α3 +α4)M− (β0 +β1)m

2 = (β2 +β3 +β4)Mm. (5.5)

From (5.4) and (5.5), we obtain

(M−m) {[(α0 +α1) − (α2 +α3 +α4)] − (β0 +β1) (M+m)} = 0. (5.6)

Since (α2 +α3 +α4) > (α0 +α1), we deduce from (5.6) that

M = m.

It follows by Theorem 1.4 that ỹ is a global attractor of equation (1.1).

Case (3). Let the function H(u0, . . . ,u4) be non-decreasing in u0,u1,u2 and non-increasing in u3,u4. Sup-
pose that (M,m) is a solution of the system

M = H(M,M,M,m,m) and m = H(m,m,m,M,M).

Then from equation (1.1), we get that

M =
α0M+α1M+α2M+α3m+α4m

β0M+β1M+β2M+β3m+β4m
and m =

α0m+α1m+α2m+α3M+α4M

β0m+β1m+β2m+β3M+β4M
.
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Thus

M =
(α0 +α1 +α2)M+ (α3 +α4)m

(β0 +β1 +β2)M+ (β3 +β4)m
and m =

(α0 +α1 +α2)m+ (α3 +α4)M

(β0 +β1 +β2)m+ (β3 +β4)M
.

From which we have

(α0 +α1 +α2)M+ (α3 +α4)m− (β0 +β1 +β2)M
2 = (β3 +β4)Mm (5.7)

and
(α0 +α1 +α2)m+ (α3 +α4)M− (β0 +β1 +β2)m

2 = (β3 +β4)Mm. (5.8)

From (5.7) and (5.8), we obtain

(M−m) {[(α0 +α1 +α2) − (α3 +α4)] − (β0 +β1 +β2) (M+m)} = 0. (5.9)

Since (α3 +α4) > (α0 +α1 +α2), we deduce from (5.9) that

M = m.

It follows by Theorem 1.4, that ỹ is a global attractor of equation (1.1).

Case (4). Let the function H(u0, . . . ,u4) be non-decreasing in u0,u1,u3 and non-increasing in u2,u4. Sup-
pose that (M,m) is a solution of the system

M = H(M,M,m,M,m) and m = H(m,m,M,m,M).

Then from equation (1.1), we get that

M =
α0M+α1M+α2m+α3M+α4m

β0M+β1M+β2m+β3M+β4m
and m =

α0m+α1m+α2M+α3m+α4M

β0m+β1m+β2M+β3m+β4M
.

Thus

M =
(α0 +α1 +α3)M+ (α2 +α4)m

(β0 +β1 +β3)M+ (β2 +β4)m
and m =

(α0 +α1 +α3)m+ (α2 +α4+)M

(β0 +β1 +β3)m+ (β2 +β4)M
.

From which we have

(α0 +α1 +α3)M+ (α2 +α4)m− (β0 +β1 +β3)M
2 = (β2 +β4)Mm (5.10)

and
(α0 +α1 +α3)m+ (α2 +α4)M− (β0 +β1 +β3)m

2 = (β2 +β4)Mm. (5.11)

From (5.10) and (5.11), we obtain

(M−m) {[(α0 +α1 +α3) − (α2 +α4)] − (β0 +β1 +β3) (M+m)} = 0. (5.12)

Since (α2 +α4) > (α0 +α1 +α3), we deduce from (5.12) that

M = m.

It follows by Theorem 1.4, that ỹ is a global attractor of equation (1.1) and then the proof is completed.

6. Numerical examples on the main results

Several interesting numerical examples shall be considered in an attempt to exhibit the results of the
previous sections and to support the theoretical discussions in this section. Various types of qualitative
behavior of solutions to the nonlinear difference equation (1.1) are presented in these examples.
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Example 6.1 (Theorem 4.1 (Case 1)). Figure 1 shows that equation (1.1) has no prime period two solution
if p,q, r, s are even. Choose p = 2, q = 4, r = 6, s = 8, y−8 = 1, y−7 = 2, y−6 = 3, y−5 = 4, y−4 = 5,
y−3 = 6, y−2 = 7, y−1 = 8, y0 = 9, α0 = 2, α1 = 10, α2 = 20, α3 = 15, α4 = 25, β0 = 30, β1 = 3, β2 =
4, β3 = 5, β4 = 6.
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Example 6.2 (Theorem 4.1 (Case 2)). Figure 2 shows that equation (1.1) has no prime period two solution
if p,q are even and r, s are odd. Choose p = 2, q = 4, r = 5, s = 7, y−7 = 1, y−6 = 2, y−5 = 3, y−4 =
4, y−3 = 5, y−2 = 6, y−1 = 7, y0 = 8, α0 = 2, α1 = 10, α2 = 20, α3 = 5, α4 = 4, β0 = 30, β1 = 3, β2 =
4, β3 = 5, β4 = 6.
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Example 6.3 (Theorem 4.1 (Case 3)). Figure 3 shows that equation (1.1) has no prime period two solution
if p,q are odd and r, s are even. Choose p = 1, q = 3, r = 4, s = 6, y−6 = 1, y−5 = 2, y−4 = 3, y−3 =
4, y−2 = 5, y−1 = 6, y0 = 7, α0 = 2, α1 = 100, α2 = 200, α3 = 5, α4 = 40, β0 = 30, β1 = 3, β2 = 4, β3 =
5, β4 = 6.
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Example 6.4 (Theorem 4.1 (Case 4)). Figure 4 shows that equation (1.1) has no prime period two solution
if p, r are even and q, s are odd. Choose p = 2, q = 3, r = 4, s = 5, y−5 = 1, y−4 = 2, y−3 = 3, y−2 =
4, y−1 = 5, y0 = 6, α0 = 2, α1 = 100, α2 = 20, α3 = 500, α4 = 4, β0 = 30, β1 = 3, β2 = 4, β3 = 5, β4 = 6.
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Example 6.5 (Theorem 4.1 (Case 5)). Figure 5 shows that equation (1.1) has no prime period two solution
if q, r are even and p, s are odd. Choose p = 1, q = 2, r = 4, s = 5, y−5 = 1, y−4 = 2, y−3 = 3, y−2 =
4, y−1 = 5, y0 = 6, α0 = 100, α1 = 10, α2 = 20, α3 = 15, α4 = 4, β0 = 30, β1 = 3, β2 = 4, β3 = 5, β4 = 6.
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Example 6.6 (Theorem 4.1 (Case 6)). Figure 6 shows that equation (1.1) has no prime period two solution
if q, r are odd and p, s are even. Choose p = 2, q = 3, r = 5, s = 6, y−6 = 1, y−5 = 2, y−4 = 3, y−3 =
4, y−2 = 5, y−1 = 6, y0 = 7, α0 = 2, α1 = 10, α2 = 20, α3 = 5, α4 = 400, β0 = 30, β1 = 3, β2 = 4, β3 =
5, β4 = 6.
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Example 6.7 (Theorem 4.1 (Case 7)). Figure 7 shows that equation (1.1) has no prime period two solution
if p, r are odd and q, s are even. Choose p = 1, q = 2, r = 3, s = 4, y−4 = 1, y−3 = 2, y−2 = 3,
y−1 = 4, y0 = 5, α0 = 100, α1 = 10, α2 = 200, α3 = 5, α4 = 400, β0 = 30, β1 = 3, β2 = 4, β3 = 5, β4 = 6.



A. M. Alotaibi, M. A. El-Moneam, M. S. M. Noorani, J. Nonlinear Sci. Appl., 11 (2018), 80–97 95

0 50 100 150 200
0

2

4

6

8

10

12

14

16

n−iteration

so
lu

tio
n 

of
 y

(n
+

1)

plot of y(n+1)

Figure 7

Example 6.8 (Theorem 4.1 (Case 8)). Figure 8 shows that (1.1) has no prime period two solution if p,q, r, s
are odd. Choose p = 1, q = 3, r = 5, s = 7, y−7 = 1, y−6 = 2, y−5 = 3, y−4 = 4, y−3 = 5, y−2 = 6,
y−1 = 7, y0 = 8, α0 = 2, α1 = 10, α2 = 20, α3 = 15, α4 = 25, β0 = 2, β1 = 3, β2 = 4, β3 = 5, β4 = 6.
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Example 6.9. Figure 9 shows that equation (1.1) has prime period two solution and p < q < r < s. Choose
p = 1, q = 3, r = 5, s = 7, p = max{p,q, r, s} = 7, y−7 = y−5 = y−3 = y−1 = y1 ' 0.46, y−6 = y−4 =
y−2 = y0 = y2 ' 0.031, α0 = 10, α1 = 3, α2 = 30, α3 = 8, α4 = 45, β0 = 500, β1 = 5, β2 = 40, β3 =
9, β4 = 100.
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Example 6.10. Figure 10 shows that the solution of equation (1.1) has global stability and p < q < r < s.
Choose p = 2, q = 4, r = 6, s = 8, y−8 = 1, y−7 = 2, y−6 = 3, y−5 = 4, y−4 = 5, y−3 = 6, y−2 = 7, y−1 =
8, y0 = 9, α0 = 0.5, α1 = 0.25, α2 = 1, α3 = 2, α4 = 0.1, β0 = 3, β1 = 2, β2 = 10, β3 = 25, β4 = 3.
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7. Conclusion

It has been discussed that certain properties of the nonlinear rational deference equation (1.1), particu-
larly the periodicity, the boundedness and the global stability of the positive solutions for this equation.
Some figures were given to illustrate the behavior of these solutions. The result shown can be considered
as a more generalization than the results retrieved in Refs. [2, 10, 17, 23]. As indicated, Examples 6.1-6.8
verify Theorem 4.1 that illustrated equation (1.1) has no prime period two solution, while Example 6.9
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verifies Theorem 4.2 which shows that equation (1.1) has prime period two solution. Whereas Example
6.10 verifies Theorems 2.2 and 5.1, which shows that the solution of equation (1.1) is globally asymptotic
stable.
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