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Abstract
In this paper, we classify several integral transforms into two categories according to the types of their kernel functions and

two novel definitions of general integral transforms are suggested. Based on the general integral transforms, some of their basic
properties are proved. In addition, the dualities between those two kinds of integral transforms are deducted and discussed in
detail. The interesting coupling relations in symmetric form is illustrated graphically. The analysis shows that the classifications
are reasonable and the dualities are significant. c©2017 All rights reserved.
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1. Introduction

Integral transforms (ITs) are known as the useful mathematical tools in solving the partial differential
equations (PDEs) [2, 3, 17, 27]. Specially, the diffusion equations and wave equations, as fundamental
equations in applied mathematics and engineering, have been widely studied [7, 13, 24, 25]. According
to the research shown in literatures [6, 9, 16, 21–23], several different ITs, such as Laplace transform (LT),
Sumudu transform (ST), ELzaki transform (ET), Laplace-Carson transform (LCT), as well as two new
integral transforms (NIT1 and NIT2), were equivalent in obtaining the analytic solutions of the diffusion
or wave equations. However, because of the small differences in selection of the kernel functions, they
differ in practical applications. For instance, Kang et al. [11] discovered that the using of LCT was more
convenient to analyze the problem of American strangle options than LT and the numerical inversion of
the LCT was more dominant than other ITs [6, 15]. As well as, the ST has advantages in analyzing the
non-constant coefficients wave equations [7, 13]. In addition, LT and ST play the important roles in solving
the fractional PDEs analytically or numerically [1, 10, 14, 26]. Abdeljawad and Baleanu [1] discovered that
LT may be applied to discuss the fractional derivatives with exponential kernel well and Kumar et al. [14]
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showed us the great advantages of the local fractional ST methods in obtaining the numerical solutions of
the Klein-Gordon equations. See [18, 19] for more extensive examples.

In fact, we find that these ITs are similar in form. It indicates that there may be a close connection
between them. Presently, the research on the dualities of different ITs has been discussed, but it is mainly
focused on the relations between LT and ST [4, 8, 12]. In particular, an interesting result discovered by
Eltayeb and Kiliçman [4, 8, 12] was that LT and ST interchange the image of sin(x) and cos(x). In addition,
Liang et al. [16] graphically illustrated the duality relations of several ITs.

Recently, when we compare the kernel functions selected by these ITs, it seems that they can be
classified. For example, LT, LCT, and NIT1 may belong to the same category and ST, ET, and NIT2 belong
to the other same category. The details will be presented in the following sections. Meanwhile, based
on the above ideas, a uniform, general or standardized definition is essential to integrate these ITs into
the concise forms. In addition, what we have to mention is that the uniform, general or standardized ITs
definitions may simplify and integrate the analysis of their basic properties and dualities.

In view of the above points, the purposes of this paper are to classify several similar ITs, give the
general or standardized definitions, and explore their properties, especially the duality relations.

The structure of this paper is arranged as follows. Section 2 classifies several ITs into two types based
on the commonalities and minor distinctions of their original definitions and proposes the more general
or normalized definitions of these ITs. Meanwhile, some basic properties of the new general definitions
are also discusses. Section 3 analyzes the duality relations between the two new general ITs in detail and
emphasizes the functions of dualities. Section 4 summarizes the results.

2. The classifications and general definitions of several integral transforms

Note that the study in this paper is mainly focused on six similar ITs. For these ITs, the definition
forms are similar, and the minor differences lie in the choice of the kernel functions. Before we classify
these ITs, let us review their original definitions firstly.

2.1. Original definitions of several integral transforms
Definition 2.1. If φ (λ) , λ > 0 is a real function, its NIT1 is described as follows [23]:

Ω (ξ) = NI [φ (λ)] =
1
ξ

∫∞
0
φ (λ) e−ξλdλ, ξ > 0,

where NI is the NIT1 operator and ξ−1e−ξλ is the kernel function of NIT1.

Definition 2.2. If φ (λ) , λ > 0 is a real function, its LT is defined as follows [5]:

F (ξ) = L [φ (λ)] =

∫∞
0
φ (λ) e−ξλdλ, ξ > 0,

where L is the LT operator and e−ξλ is the kernel function of LT.

Definition 2.3. If φ (λ) , λ > 0 is a real function, its LCT is given as follows [6]:

Lc (ξ) = C [φ (λ)] = ξ

∫∞
0
φ (λ) e−ξλdλ, ξ > 0,

where C is the LCT operator and ξe−ξλ is the kernel function of LCT.

Definition 2.4. If φ (λ) , λ > 0 is a real function, its ST is given as follows [16]:

ψ (ξ) = S [φ (λ)] =
1
ξ

∫∞
0
φ (λ) e−

λ
ξdλ, ξ > 0,

where S is the LCT operator and ξ−1e−
λ
ξ is the kernel function of ST.
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Definition 2.5. If φ (λ) , λ > 0 is a real function, its NIT2 is defined as follows [22]:

Φ (ξ) = Y [φ (λ)] =

∫∞
0
φ (λ) e−

λ
ξdλ, ξ > 0,

where Y is the NIT2 operator and e−
λ
ξ is the kernel function of NIT2.

Definition 2.6. If φ (λ) , λ > 0 is a real function, its ET is described as follows [9]:

T (ξ) = E [φ (λ)] = ξ

∫∞
0
φ (λ) e−

λ
ξdλ, ξ > 0,

where E is the ET operator and ξe−
λ
ξ is the kernel function of ET.

Table 1: The kernel functions of different ITs.
Type 1 Type 2
ξ−1e−ξλ ξ−1e−

λ
ξ

e−ξλ e−
λ
ξ

ξe−ξλ ξe−
λ
ξ

According to the above definitions of different ITs, their kernel functions are summarized in Table
1. It is obvious that the kernel functions can be classified into two types clearly. In form, they are the
products of power functions with different orders and exponential functions. Thus, we can describe them
as ξme−ξλ and ξne−λξ

−1
, wherem,n are the integers. Accordingly, two generalized definitions as general

Laplace transform (GLT) and general Sumudu transform (GST) can be suggested as follows.

Definition 2.7.
FM (ξ) = LM [φ (λ)] =

∫∞
0
φ (λ)ξme−ξλdλ, ξ > 0, (2.1)

where LM is the GLT operator and ξme−ξλ is the kernel function of GLT.

Definition 2.8.
ψN (ξ) = SN [φ (λ)] =

∫∞
0
φ (λ)ξne−

λ
ξdλ, ξ > 0, (2.2)

where SN is the GST operator and ξne−
λ
ξ is the kernel function of GST.

Clearly, when m,n is -1, 0 or 1, the corresponding ITs are NIT1, LT, LCT, ST, NIT2 and ET, respectively.
Thus, these ITs are integrated into two unified forms. Further, based on the above general definitions,
we can analyze and discuss their properties systematically. In particular, they show an advantage in
analyzing the dualities. The details will be presented in next section.

2.2. Basic properties of GLT and GST
In previous literatures [6, 9, 16, 21–23, 25], the research on the properties of ITs was mainly focused

on their linear property, differential property and convolution property, etc.. An important reason is that
these properties play the key roles in solving differential equations. For example, in solving the PDEs,
we usually transform them into the ordinary differential equations by using the ITs. In this process,
the applications of linear property and differential property of ITs can simplify the solving process. In
addition, Eltayeb and Kılıçman in literature [7], had emphasized the importance of convolution properties
of ITs in solving the non-homogeneous wave with non-constant coefficients in detail. In this section, we
will derive and prove these properties from the point of view of GLT and GST. Thus, the general form of
these properties can be obtained.
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2.2.1. The properties of GLT
(T1) Linear property: If FM1 (ξ) = LM [φ1 (λ)] , ξ > 0, λ > 0 and FM2 (ξ) = LM [φ2 (λ)] , ξ > 0, λ > 0,

then the linear property of GLT is given as:

LM [aφ1 (λ) + bφ2 (λ)] = aFM1 (ξ) + bFM2 (ξ) , ξ > 0, λ > 0,

where a and b are the real constants.
(T2) Differential property: If FM (ξ) = LM [φ (λ)] , ξ > 0, λ > 0, the GLT of k-order derivatives of φ (λ) is

given as:

LM

[
φ(k) (λ)

]
= ξkLM [φ (λ)] − ξm+k−1φ (0)

− ξm+k−2φ(1) (0) − · · ·− ξm+1φ(k−2) (0) − ξmφ(k−1) (0) ,
(2.3)

where φ(k) (λ) is k-order derivative of φ (λ).
(T3) Convolution property as defined in Definition 2.9.

Definition 2.9. Considering the real functions φ1 (λ) , λ > 0, and φ2 (λ) , λ > 0, their convolution is
defined as [7, 16]:

φ1 (λ) ∗φ2 (λ) =

∫λ
0
φ1 (τ)φ2 (λ− τ)dτ. (2.4)

Thus, if FM1 (ξ) = LM [φ1 (λ)] , ξ > 0, λ > 0 and FM2 (ξ) = LM [φ2 (λ)] , ξ > 0, λ > 0, we have the GLT of
the convolution as:

LM [φ1 (λ) ∗φ2 (λ)] = ξ
−mFM1 (ξ) FM2 (ξ) .

Proof.

(T1)

LM [aφ1 (λ) + bφ2 (λ)] =

∫∞
0

[aφ1 (λ) + bφ2 (λ)]ξ
me−ξλdλ

=

∫∞
0
aφ1 (λ)ξ

me−ξλdλ+

∫∞
0
bφ2 (λ)ξ

me−ξλdλ = aFM1 (ξ) + bFM2 (ξ) .

(T2)

LM

[
φ(k) (λ)

]
=

∫∞
0
φ(k) (λ)ξme−ξλdλ =

[
φ(k−1) (λ) ξme−ξλ

]∣∣∣∞
0
+ ξLM

[
φ(k−1) (λ)

]
= −ξmφ(k−1) (0) + ξLM

[
φ(k−1) (λ)

]
.

Noting the recurrence relation between LM
[
φ(k) (λ)

]
and LM

[
φ(k−1) (λ)

]
, we can obtain the following

result:

LM

[
φ(k) (λ)

]
= ξkLM [φ (λ)] − ξm+k−1φ (0)

− ξm+k−2φ(1) (0) − · · ·− ξm+1φ(k−2) (0) − ξmφ(k−1) (0) .

(T3)

LM [φ1 (λ) ∗φ2 (λ)] =

∫∞
0

[φ1 (λ) ∗φ2 (λ)]ξ
me−ξλdλ

=

∫∞
0

[∫λ
0
φ1 (τ)φ2 (λ− τ)dτ

]
ξme−ξλdλ

= ξm
∫∞

0
φ1 (τ)

[∫∞
τ
φ2 (λ− τ) e

−ξλdλ

]
dτ.

(2.5)
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Let u = λ− τ. Then, we have∫∞
τ

φ2 (λ− τ) e
−ξλdλ =

∫∞
0
φ2 (u) e

−ξ(u+τ)du = ξ−me−ξτFM2 (ξ) . (2.6)

Substituting the Eq. (2.6) into Eq. (2.5), we can easily obtain that

LM [φ1 (λ) ∗φ2 (λ)] = ξ
−mFM1 (ξ) FM2 (ξ) .

2.2.2. The properties of GST
(T1) Linear property: If ψN1 (ξ) = SN [φ1 (λ)] , ξ > 0, λ > 0 and ψN2 (ξ) = SN [φ2 (λ)] , ξ > 0, λ > 0,

then the linear property of GST is given as:

SN [aφ1 (λ) + bφ2 (λ)] = aψN1 (ξ) + bψN2 (ξ) , ξ > 0, λ > 0,

where a and b are the real constants.
(T2) Differential property: If ψN (ξ) = SN [φ (λ)] , ξ > 0, λ > 0, the GST of k-order derivatives of φ (λ) is

given as:

SN

[
φ(k) (λ)

]
= ξ−kSN [φ (λ)] − ξn−(k−1)φ (0)

− ξn−(k−2)φ(1) (0) − · · ·− ξn−1φ(k−2) (0) − ξnφ(k−1) (0) ,
(2.7)

where φ(k) (λ) is k-order derivative of φ (λ).
(T3) Convolution property: According to the definition of convolution in Eq. (2.4), ifψN1 (ξ)=SN [φ1 (λ)] ,

ξ > 0, λ > 0 and ψN2 (ξ) = SN [φ2 (λ)] , ξ > 0, λ > 0, we have the GST of the convolution as:

ψN [φ1 (λ) ∗φ2 (λ)] = ξ
−nψN1 (ξ)ψN2 (ξ) .

Proof.

(T1)

SN [aφ1 (λ) + bφ2 (λ)] =

∫∞
0

[aφ1 (λ) + bφ2 (λ)]ξ
ne−

λ
ξdλ

=

∫∞
0
aφ1 (λ)ξ

ne−
λ
ξdλ+

∫∞
0
bφ2 (λ)ξ

ne−
λ
ξdλ = aψN1 (ξ) + bψN2 (ξ) .

(T2)

SN

[
φ(k) (λ)

]
=

∫∞
0
φ(k) (λ)ξne−

λ
ξdλ =

[
φ(k−1) (λ) ξne−

λ
ξ

]∣∣∣∞
0
+ ξ−1SN

[
φ(k−1) (λ)

]
= −ξnφ(k−1) (0) + ξ−1SN

[
φ(k−1) (λ)

]
.

Noting the recurrence relation between SN
[
φ(k) (λ)

]
and SN

[
φ(k−1) (λ)

]
, we can easily obtain the result

as follows

SN

[
φ(k) (λ)

]
= ξ−kSN [φ (λ)] − ξn−(k−1)φ (0)

− ξn−(k−2)φ(1) (0) − · · ·− ξn−1φ(k−2) (0) − ξnφ(k−1) (0) .

(T3)

ψN [φ1 (λ) ∗φ2 (λ)] =

∫∞
0

[φ1 (λ) ∗φ2 (λ)]ξ
ne−

λ
ξdλ

=

∫∞
0

[∫λ
0
φ1 (τ)φ2 (λ− τ)dτ

]
ξne−

λ
ξdλ

= ξn
∫∞

0
φ1 (τ)

[∫∞
τ
φ2 (λ− τ) e

− λ
ξdλ

]
dτ.

(2.8)
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Let u = λ− τ. Then, we have∫∞
τ

φ2 (λ− τ) e
− λ
ξdλ =

∫∞
0
φ2 (u) e

−u+τ
ξ du = ξ−ne−

τ
ξψN2 (ξ) . (2.9)

Substituting the Eq. (2.9) into Eq. (2.8), we can easily obtain that

ψN [φ1 (λ) ∗φ2 (λ)] = ξ
−nψN1 (ξ)ψN2 (ξ) .

Clearly, when the values of m or n are given, we can conveniently obtain the basic properties for
a particular IT. For example, when m = −1 or n = 1, correspondingly, the NIT1 or ET of one-order
differential of the function φ (λ) (k = 1 for Eq. (2.3) and Eq. (2.7)) can be obtained as:

LM
[
φ ′ (λ)

]
= ξLM [φ (λ)] −

φ (0)
ξ

(2.10)

and

SN
[
φ ′ (λ)

]
=
SN [φ (λ)]

ξ
− ξφ (0) . (2.11)

Eqs. (2.10) and (2.11), by contrast, are same to the result presented in [9, 16]. Similarly, it remains easy
to obtain other properties mentioned above for other ITs, when m and n take other values. Therefore,
the GLT and GST are significant to integrate the ITs. Meanwhile, they are also convenient to study the
properties of ITs.

3. Duality relations between GLT and GST

3.1. Proof and analysis of the duality relations
As presented in many literatures [4, 8, 12, 16, 20], there is a deep connection between different ITs.

However, rigorous proof of the dualities is lacking due to the forms of ITs are various. The classification
and general definitions for different ITs in this paper seem to provide the effective means to study the
dualities. In this section, we will prove the dualities and obtain an interesting conclusion.

From the definitions of GLT and GST, we can easily have:

FM (ξ) = LM [φ (λ)] =

∫∞
0
φ (λ)ξme−ξλdλ = ξm+n

∫∞
0
φ (λ)

(
ξ−1)n e− λ

ξ−1 dλ = ξm+nψN
(
ξ−1) . (3.1)

If we make ξ take its negative first power ξ−1, Eq. (3.1) becomes that

FM
(
ξ−1) = ξ−(m+n)ψN (ξ)

or
ψN (ξ) = ξm+nFM

(
ξ−1) . (3.2)

Figure 1: The dualities graph between GLT and GST.
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Contrasting Eqs. (3.1) and (3.2), we discover that the forms of the dualities between GLT and GST are
completely symmetric. Correspondingly, we illustrate them in Fig. 1. Thus, if we make m and n take
different values, the dualities between different ITs can be obtained. For example, if m = 0,n = −1 or
m = −1,n = −1, the dualities between LT and ST, as well as NIT1 and ST, can be shown as:

F (ξ) = ξ−1ψ
(
ξ−1)

and
Ω (ξ) = ξ−2ψ

(
ξ−1) .

The results are in agreement with previous reports in [16]. Similarly, it remains easy to obtain the dualities
for other ITs when m and n take other values. Note that we do not discuss the dualities of ITs belonging
only to GLT or GST here. One reason is that there is no complete symmetry for their dualities, and
on the other hand, there is only a power coefficient difference in their coupling relations. For a clearer
understanding, ITs of the trigonometric function mentioned in [8, 13] provide the intuitional example.
Specifically, according to the illustrations by Eltayeb and Kiliçman [8], the strong duality relations between
LT and ST of sin(λ) and cos(λ) can be presented as:

L [sin(λ)] = S [cos(λ)]

and
L [cos(λ)] = S [sin(λ)] .

Inspired by this, here, in view of Eqs. (2.1) and (2.2), we derive GLT and GST of sin(λ) and cos(λ) as:

LM [sin(λ)] = LM

[
1
2j
(
ejλ − e−jλ

)]
=
ξm

2j

[
1

ξ− j
−

1
ξ+ j

]
=

ξm

ξ2 + 1
,

LM [cos(λ)] = LM

[
1
2
(
ejλ + e−jλ

)]
=
ξm

2

[
1

ξ− j
+

1
ξ+ j

]
=
ξm+1

ξ2 + 1
,

ψN [sin(λ)] = SN

[
1
2j
(
ejλ − e−jλ

)]
=
ξn+1

2j

[
1

1 − jξ
−

1
1 + jξ

]
=
ξn+2

1 + ξ2 ,

ψN [cos(λ)] = SN

[
1
2
(
ejλ + e−jλ

)]
=
ξn+1

2

[
1

1 − jξ
+

1
1 + jξ

]
=
ξn+1

1 + ξ2 .

Then, if LM [sin(λ)] = ψN [cos(λ)] and LM [cos (λ)] = ψN [sin(λ)], we can obtain an interesting result as:{
m = n+ 1,
m+ 1 = n+ 2, ⇒ m−n = 1. (3.3)

However, for the only GLT or GST, when m or n take different values, we cannot achieve the above
symmetry relations. For example, when m = 1 and 0, we have

C [sin(λ)] = L [cos (λ)] ,

but,
C [cos(λ)] 6= L [sin (λ)] . (3.4)

Therefore, it also indicates that the classification in this paper is reasonable. In addition, noticing the
result of Eq. (3.3), we discover that the LCT (m = 1) and ET (n = 0) have also the symmetry coupling
relations.

3.2. The functions of duality relations
The symmetry of duality relations between GLT and GST indicates that these two kinds of ITs may

transform each other. In practice, for different problems, it is important to choose the proper ITs. When
we know the property of a kind of ITs, the dualities may serve as the convenient means to obtain the
property of another ITs [4]. In order to verify the feasibility of the above ideas, based on the differential
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properties of GLT, an example of obtaining the differential properties of GST is presented below.
Firstly, let

LM

[
φ(k) (λ)

]
= FMK (ξ) , LM [φ (λ)] = FM (ξ) ,

SN

[
φ(k) (λ)

]
= ψNK (ξ) , SN [φ (λ)] = ψN (ξ) ,

(3.5)

and

FMK (ξ) = ξm+nψNK
(
ξ−1) , ψNK (ξ) = ξm+nFMK

(
ξ−1) ,

FM (ξ) = ξm+nψN
(
ξ−1) , ψN (ξ) = ξm+nFM

(
ξ−1) .

Making ξ take its negative first power ξ−1 and substituting Eq. (2.3) into Eqs. (3.4) and (3.5), we have

SN

[
φ(k) (λ)

]
= ψNK (ξ)

= ξm+n

[
ξ−kFM

(
ξ−1

)
− ξ−m−(k−1)φ (0)

−ξ−m−(k−2)φ(1) (0) − · · ·− ξ−m−1φ(k−2) (0) − ξ−mφ(k−1) (0)

]
= ξm+n

[
ξ−kξ−(m+n)ψN (ξ) − ξ−m−(k−1)φ (0)
−ξ−m−(k−2)φ(1) (0) − · · ·− ξ−m−1φ(k−2) (0) − ξ−mφ(k−1) (0)

]
= ξ−kSN [φ (λ)] − ξn−(k−1)φ (0)

− ξn−(k−2)φ(1) (0) − · · ·− ξn−1φ(k−2) (0) − ξnφ(k−1) (0) .

(3.6)

Eq. (3.6), by contrast, is same to Eq. (2.7). On the contrary, we can also obtain the differential properties of
GLT from GST by using their dualities. Obviously, the applications of dualities simplify the proof process.
Certainly, other properties of ITs can be derived via the dualities. Therefore, the research on dualities is
important.

4. Conclusions

In this paper, several ITs based on the similarity and distinction of their kernel functions are classified
into two categories. Meanwhile, these kernel functions were integrated and two general ITs definitions,
called GLT and GST, were suggested. It was convenient to uniformly or systematically study the basic
properties of different ITs by applying GLT and GST. In addition, the dualities between GLT and GST are
prove and the interesting symmetric coupling forms are illustrated graphically. The example illustrating
the relations between GLT and GST of trigonometric functions indicates that there are only the symmetric
dualities for these two kinds of ITs, but there are not any for ITs belonging only to GLT or GST. Thus, the
symmetric dualities existing only between these two kinds of ITs also reflected the validity of classification
in this article. Finally, the dualities are proved to be important and convenient to convert or derive the
properties of GLT and GST each other.
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