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Abstract

In this paper, by means of replacing the Lebesgue integrability of support functions with its Henstock integrability, the
definitions of the Henstock-Pettis integral of n-dimensional fuzzy-number-valued functions are defined. In addition, the con-
trolled convergence theorems for such integrals are considered. As the applications of these integrals, we provide some existence
theorems of generalized weak solutions to initial value problems for the discontinuous fuzzy differential equations under the
strong GH-differentiability. c©2017 All rights reserved.
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1. Introduction

It is well-known that the Henstock integral includes the Riemann, improper Riemann, Lebesgue and
Newton integrals [21, 25]. The Henstock integral is more powerful and simpler than the Lebesgue integral.
It is also equal to the Denjoy and Perron integrals [26]. In the theory of integrals, there are some integrals
based on the Banach space-valued functions such as Pettis and Bochner integrals [13, 14, 26, 29]. The
integrals of fuzzy-number-valued functions, as a natural generalization of set-valued functions, have been
discussed by Puri and Ralescu [27], Kaleva [22], and other authors [36, 37, 40]. Recently, Wu and Gong [15,
18, 19] have combined the fuzzy set theory and nonabsolute integration theory, and discussed the fuzzy
Henstock integrals of fuzzy-number-valued functions which extended Kaleva [22] integration. In order
to complete the theory of fuzzy calculus and to meet the solving need of transferring a fuzzy differential
equation into a fuzzy integral equation, we [15, 17] has defined the strong fuzzy Henstock integrals and
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discussed some of their properties and the controlled convergence theorem. However, for a fuzzy-valued
function in the n-dimensional fuzzy number space En, the integral and its characteristic theorems have
not been defined or discussed. In this paper, by means of replacing the Lebesgue integrability of support
functions with its Henstock integrability, we discuss the Henstock-Pettis integral of n-dimensional fuzzy-
number-valued functions and its controlled convergence theorems.

Differential equations are used for modeling various physics. Unfortunately, many problems are
too dynamical and complicated and an accurate differential equation model for such problems requires
complex and time consuming algorithms hardly implementable in practice. Thus, a usage of fuzzy math-
ematics seems to be appropriate. The Cauchy problems for fuzzy differential equations have been studied
by several authors [2, 4–8, 16, 22, 27, 30] on the metric space (En,D) of normal fuzzy convex set with the
distance D given by the maximum of the Hausdorff distance between the corresponding level sets. In
2002, Xue and Fu [39] established solutions to fuzzy differential equations with right-hand side functions
satisfying Caratheodory conditions on a class of Lipschitz fuzzy sets. However, there are discontinuous
systems in which the right-hand side functions f : [a,b]× En → En are not integrable in the sense of
Kaleva [22] on certain intervals and their solutions are not absolute continuous functions. So, in [31–35],
we used the strong fuzzy Henstock integral [17], and dealt with the Cauchy problem of discontinuous
fuzzy systems. In this paper, according to the idea of [9] and using the concept of generalized differentia-
bility [3], we will deal with the Cauchy problem of discontinuous fuzzy systems and the right side-hand
functions are fuzzy Henstock-Pettis integrable.

The rest of the paper is organized as follows. In Section 2, we give some basic concepts and preliminary
results and the definition of the Henstock-Pettis integral for fuzzy-number-valued functions. In Section 3,
we prove a controlled convergence theorem for the fuzzy Henstock-Pettis integrals. As the applications
of these integrals, we deal with the Cauchy problem of discontinuous fuzzy systems. And in Section 4,
we present some concluding remarks.

2. Preliminaries

Let T be the closed interval on the real line R, i.e., T = [a,b] (a,b ∈ R). |T | denotes the length of T . If

there exist Ti ⊆ T , ξi ∈ Ti (i = 1, 2, · · · ,k), such that
k⋃
i=1

Ti = T (where T1, T2, · · · , Tk are nonoverlapping

subintervals of T ), then a collection
{
(ξ1, T1), (ξ2, T2), · · · , (ξk, Tk)

}
is called a devision of T and write

Π =
{
(ξ1, T1), (ξ2, T2), · · · , (ξk, Tk)

}
.

For brevity, we write Π = {ξ, [u, v]}, where [u, v] denotes a typical interval in Π and ξ is the associated
point of [u, v].

Definition 2.1 ([26]). Let δ(x) > 0 be a function on T . A division Π of T is said to be δ-fine, if ξi ∈ Ti ⊂(
ξi − δ(ξi), ξi + δ(ξi)

)
(i = 1, 2, · · · ,k).

Definition 2.2 ([26]). A function F : T → Rn is said to be Henstock integrable on T if for A ∈ Rn and every
ε > 0, there is a function δ(x) > 0, such that for any δ-fine devision Π = {ξ, [u, v]} we have

‖
∑
(Π)

F(ξ)(v− u) −A‖ < ε.

As usual, we write (H)
∫
T F(t)dt = A. Here ‖ · ‖ stands for the norm on the Rn.

Throughout this paper, we use Pk(Rn) to denote the family of all nonempty compact convex subsets
of Rn. For A,B ∈ Pk(Rn),k ∈ R, the addition and scalar multiplication are defined by the equations as
follows respectively:

A+B =
{
x+ y | x ∈ A,y ∈ B

}
, aA =

{
ax | x ∈ A

}
.
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In addition, for A,B ∈ Pk(Rn), the Hausdorff metric between them defined by

d(A,B) = max
{

sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖b− a‖

}
.

Definition 2.3. For A ∈ Pk(Rn), x ∈ Sn−1, the support function of A is defined by

σ(x,A) = sup
y∈A
〈y, x〉,

where Sn−1 denotes the unit sphere of Rn, 〈·, ·〉 is the inner product in Rn.

It is clear that for A,B ∈ Pk(Rn), x ∈ Sn−1, we have

(1) σ(x,kA) = kσ(x,A)(k > 0);

(2) σ(x,A+B) = σ(x,A) + σ(x,B).

Theorem 2.4 ([12]). Let A,B ∈ Pk(Rn). Then d(A,B) = sup
x∈Sn−1

∣∣σ(x,A) − σ(x,B)
∣∣.

Definition 2.5 ([12, 38]). Let En =
{
u|u : Rn → [0, 1]}. For any u ∈ En, u is said to be an n-dimensional

fuzzy number if the following conditions are satisfied:

(1) u is a normal fuzzy set, i.e., there exists an x0 ∈ Rn, such that u(x0) = 1;

(2) u is a convex fuzzy set, i.e., u
(
tx+ (1 − t)y

)
> min

{
u(x),u(y)

}
for any x,y ∈ Rn, t ∈ [0, 1];

(3) u is upper semi-continuous;

(4) suppu = {x ∈ Rn | u(x) > 0} is compact, here A denotes the closure of A.

We define D : En × En → [0,∞) by the equation

D(u, v) = sup
r∈[0,1]

d([u]r, [v]r), u, v ∈ En,

then the metric space (En,D) has a linear structure, it can be imbedded isomorphically as a convex cone
with vertex θ into the Banach space of functions u∗ : I× Sn−1 −→ R, where Sn−1 is the unit sphere in Rn,
with an imbedding function u∗ = j(u) defined by

u∗(r, x) = sup
α∈[u]α

< α, x >

for all < r, x >∈ I× Sn−1.

Theorem 2.6 ([38]). There exists a real Banach space X such that En can be imbedding as a convex cone C with
vertex θ into X. Furthermore the following conditions hold true:

(1) the imbedding j is isometric;

(2) addition in X induces addition in En;

(3) multiplication by nonnegative real number in X induces the corresponding operation in En;

(4) C−C is dense in X;

(5) C is closed.
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A fuzzy-number-valued function F̃ : [a,b]→ En is said to satisfy the condition (H) on [a,b], if for any
x1 < x2 ∈ [a,b] there exists u ∈ En such that f(x2) = f(x1) + u. We call u is the H-difference of F̃(x2) and
F̃(x1), denoted F̃(x2) −H F̃(x1) ([22]).

For brevity, we always assume that the condition (H) is satisfied when dealing with the operation of
subtraction of fuzzy numbers throughout this paper.

Definition 2.7 ([3]). Let F̃ : (a,b)→ En and x0 ∈ (a,b). We say that F̃ is differentiable at x0, if there exists
an element F̃′(t0) ∈ En, such that

(1) for all h > 0 sufficiently small, there exist F̃(x0 + h) −H F̃(x0), F̃(x0) −H F̃(x0 − h) and the limits (in
the metric D)

lim
h→0

F̃(x0 + h) −H F̃(x0)

h
= lim
h→0

F̃(x0) −H F̃(x0 − h)

h
= F̃′(x0),

or;

(2) for all h > 0 sufficiently small, there exist F̃(x0) −H F̃(x0 + h), F̃(x0 − h) −H F̃(x0) and the limits

lim
h→0

F̃(x0) −H F̃(x0 + h)

−h
= lim
h→0

F̃(x0 − h) −H F̃(x0)

−h
= F̃′(x0),

(h and −h at denominators mean 1
h · and − 1

h ·, respectively).

Theorem 2.8 ([12, 38]). If u, v ∈ En, x,y ∈ Sn−1, r ∈ [0, 1], then

(1) σ(x+ y, [u]r) 6 σ(x, [u]r) + σ(y, [u]r);

(2) σ(kx, [u]r) = kσ(x, [u]r) whenever k > 0;

(3) σ(x, [u]r) is bounded uniformly on Sn−1 × I, and σ(x, [u]r) 6 supa∈[u]0 ‖a‖;

(4) σ(x, [u]r) is nonincreasing left continuous for any x ∈ Sn−1 with respect to r, especially it is right continuous
at r = 0;

(5) σ(x, [u]r) is Lipschitz continuous uniformly for any r ∈ [0, 1] with respect to x, and

|σ(x, [u]r) − σ(y, [u]r)| 6
(

sup
a∈[u]r

‖a‖
)
‖x− y‖;

(6) d([u]r, [v]r) = |σ(x, [u]r) − σ(x, [v]r)|.

In the following, we give the definition of Henstock-Pettis integral of fuzzy-number-valued functions
and its representation theorems.

Definition 2.9 ([36, 37]). A fuzzy-number-valued function F̃ : T → En is said to be fuzzy Henstock
integrable on T if there exists a fuzzy number Ã ∈ En such that for every ε > 0 there is a function δ(x) > 0
such that for any δ-fine division Π = {ξi, [xi−1, xi]} of T , we have

D(Ã,
∑
i

F̃(ξi)(xi − xi−1)) < ε.

We write (FH)
∫
T F̃(x)dx = Ã.

Definition 2.10. A fuzzy-number-valued function F̃ : T → En is said to be Henstock-Pettis integrable on
T if [F(t)]r is Henstock-Pettis integrable on T for every r ∈ [0, 1], and there exists a fuzzy number Ã ∈ En
such that for any x ∈ Sn−1 we have

(σ(x, [A]r) = (H)

∫
T

σ(x, [F(t)]r)dt).

We write Ã = (FHP)
∫
T F̃(t)dt.
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Remark 2.11. In particular, if F̃ is degenerated into F : T → Rn and Ã is degenerated into A ∈ Rn, then

σ(x, [A]r) =< x,A > .

Remark 2.12. When n = 1, if the fuzzy-number-valued function F̃ : T → E1 is Kaleva integrable on T (refer
to [36]), then F̃ is also Pettis integrable.

Similar to the methods of [36, 37], we easily obtain the following results.

Theorem 2.13. Suppose F̃, G̃ : T → En are fuzzy-number-valued functions on T .

(1) If F̃, G̃ are fuzzy Henstock-Pettis integrable on T , then αF̃+ βG̃ (α,β ∈ R) is also fuzzy Henstock-Pettis
integrable on T , and

(FHP)

∫
T

(
αF̃(t) +βG̃(t)

)
dt = α(FHP)

∫
T

F̃(t)dt+β(FHP)
∫
T

G̃(t)dt.

(2) If F̃ is fuzzy Henstock-Pettis integrable on T , then F̃ is fuzzy Henstock-Pettis integrable on every subset of T ,
and for nonoverlapping T1, T2, · · · , Tm we have

(FHP)

∫
T

F̃(t)dt =
m∑
i=1

(FHP)

∫
Ti

F̃(t)dt,

where T =
m⋃
i=1

Ti.

(3) If F̃ is fuzzy Henstock-Pettis integrable on T and F̃ = G̃ almost everywhere on T , then G̃ is also fuzzy
Henstock-Pettis integrable on T and

(FHP)

∫
T

F̃(t)dt = (FHP)

∫
T

G̃(t)dt.

Theorem 2.14. A fuzzy-number-valued function F̃ : T → En is fuzzy Henstock-Pettis integrable on T if and only
if for every r ∈ [0, 1], real-valued function σ

(
x, [F(t)]r

)
is Henstock integrable uniformly on T for any x ∈ Sn−1,

and
σ
(
x, (H)

∫
T

[F(t)]rdt
)
= (H)

∫
T

σ
(
x, [F(t)]r

)
dt.

Theorem 2.15. If fuzzy-number-valued function G̃ : T → En is Pettis integrable on T and the null function
is a selection of [G(t)]r, r ∈ [0, 1], then for every A,B ⊂ T such that A ⊆ B we have wA 6 wB, where
wA = (FP)

∫
A G̃(t)dt, wB = (FP)

∫
B G̃(t)dt.

Proof. Since A,B ⊂ T , A ⊆ B and [G(t)]r : T → Pk(R
n) is Pettis integrable for any r ∈ [0, 1], we have

[wA]
r ⊂ [wB]

r, i.e., wA 6 wB, where

[wA]
r = (P)

∫
A

[G(t)]rdt, [wB]
r = (P)

∫
B

[G(t)]rdt.

Example 2.16. We present an example of function which is fuzzy Henstock-Pettis integrable and neither
strong fuzzy Henstock integrable nor Keleva integrable.

Let f̃ : [0, 1]→ En and let f̃(t) = χ{F̃′(t)} + Ã(s) · F̃′(t), where

F̃(t) =

{
t2 sin t−2, t 6= 0,
0, t = 0,
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and

Ã(s) =


s, 0 6 s 6 1,
2 − s, 1 < s 6 2,
0, others.

Put f̃1(t) = χ{F̃′(t)} and f̃2 = Ã(s) · F̃′(t). We can prove that a function f̃ = f̃1 + f̃2 is integrable in the sense
of fuzzy Henstock-Pettis. In fact, σ(x, [f(t)]r) is Henstock integrable on [0, 1]. In addition, the function f̃ is
not Keleva integrable because j ◦ f̃2 is not Lebesgue integrable. Moreover, f̃1 is not strong measurable, so
this function is not strong fuzzy Henstock integrable.

3. The existence of generalized weak solutions to discontinuous fuzzy differential equations

Convergence theorems for a given integration theory are important for estimating the power of the
theory. For real and Banach-valued Henstock integrable functions, there are a few convergence theorems
(see [26, 29] for instance). In order to generalize certain results on continuous dependence of solutions of
ordinary differential equations with respect to parameters, Kurzweil introduced, in 1957, what he called
generalized ordinary differential equations for Euclidean and Banach space-valued functions (see [25]).
The theory of generalized ordinary differential equations is extensively described in [28]. In [10] and
[11], the authors extended the controlled convergence theorems and proved the existence theorems for
the Cauchy problem for Banach space-valued functions under Henstock-Pettis integrability assumptions,
respectively. In this section, we present a controlled convergence theorem for fuzzy Henstock-Pettis
integral. At last, we also give an existence theorem for a Cauchy problem using the fuzzy Henstock-Pettis
integral and its properties. The requirements on the right hands function f̃ are not too restrictive.

Definition 3.1. Let X ⊂ [a,b]. An n-dimensional fuzzy-number-valued function F̃ defined on X is said to
be AC(X) if for every ε > 0 such that for every finite sequence of non-overlapping intervals {[ai,bi]}, with
Σni=1|bi − ai| < η, we have ∑

D(F̃(bi), F̃(ai)) < ε,

where the endpoints ai,bi ∈ X for all i.

Definition 3.2. An n-dimensional fuzzy-number-valued function F̃ defined on X ⊂ [a,b] is said to be
uniformly AC∗(X) if for every ε > 0 there exists η > 0 such that for every finite sequence of non-
overlapping intervals {[ai,bi]}, satisfying Σni=1|bi − ai| < η where ai,bi ∈ X for all i, we have∑

ω(F̃, [ai,bi]) < ε,

where ω denotes the oscillation of F̃ over [ai,bi], i.e.,

ω(F̃, [ai,bi]) = sup{D(F̃(y), F̃(x)) : x,y ∈ [ai,bi]}.

Definition 3.3. An n-dimensional fuzzy-number-valued function F̃ is said to be ACG∗ on X, if X is the
union of a sequence of closed sets {Xi} such that on each Xi, F̃ is AC∗(Xi).

An n-dimensional fuzzy-number-valued function F̃ is said to be uniformly ACG∗ on X, if X is the
union of a sequence of closed sets {Xi} such that on each Xi, F̃ is uniformly AC∗(Xi).

Theorem 3.4 (Controlled Convergence Theorem). Let ˜fn, f̃ : T → En be (FHP)-integrable functions on T .
Assume that

(1) σ(x, [fn(t)]r) −→ σ(x, [f(t)]r), a.e. on T ;

(2) the family G = {σ(x, [Fn(t)]r),n = 1, 2, · · · } is uniformly ACG∗ and equicontinuous on T .



Y.-B. Shao, Z.-T. Gong, Z.-Z. Chen, J. Nonlinear Sci. Appl., 10 (2017), 6274–6287 6280

Then f̃ is (FHP)-integrable and

lim
n→∞(FHP)

∫t
0

˜fn(s)ds = (FHP)

∫t
0
f̃(s)ds.

Proof.

(i) Since ˜fn is (FHP)-integrable, the function σ(x, [fn(t)]r) is (H)-integrable. So,

(a) σ(x, [fn(t)]r) −→ σ(x, [f(t)]r), a.e. on T ;

(b) G is uniformly ACG∗;

(c) the sequence σ(x, [Fn(t)]r) is uniformly convergent on T .

By using the convergence theorem for Henstock integral [26], we have

(H)

∫t
0
σ(x, [fn(s)]r)ds −→ (H)

∫t
0
σ(x, [f(s)]r)ds.

(ii) Fix an arbitrary t ∈ T , and let g̃n ⊂ ˜fn. For every ε > 0 there exists σ∗ such that

σ∗(x, [gn(s)]r) ⊂ σ(x, [fn(s)]r),

with following conditions:

lim
n→∞(H)

∫t
0
σ∗(x, [gn(s)]r)ds = (H)

∫t
0
σ(x, [f(s)]r)ds. (3.1)

Consider the set {σ∗(x, [fn(t)]r) | n = 1, 2, · · · }, there exists a subsequence σ∗(x, [gn(s)]r) ⊂ σ(x, [fn(s)]r)
such that the limit lim

k→∞σ∗k(x, [f(t)]r) exists almost everywhere and

lim
k→∞σ∗k(x, [f(t)]r) = σ∗0(x, [f(t)]r). (3.2)

Since σ(x, [fm(s)]r) is uniformly (H)-integrable, that is, for all ε > 0, there exists a δ-fine partition on T
such that

|

k∑
j=1

σ(x, [fm(tj)]
r · (xi − xj−1)) − (H)

∫b
a

σ(x, [fm(s)]r)ds| < ε.

By (3.1) and (3.2), we have

|

k∑
j=1

σ∗k(x, [fm(tj)]
r · (xi − xj−1)) − (H)

∫b
a

σ∗k(x, [f(s)]r)ds|

6 |

k∑
j=1

σ∗k(x, [fm(tj)]
r · (xi − xj−1)) −

k∑
j=1

σ∗k(x, [gm(tj)]
r · (xi − xj−1))|

+ |

k∑
j=1

σ∗k(x, [gm(tj)]
r · (xi − xj−1)) − (H)

∫b
a

σ∗k(x, [f(s)]r)ds|

+ |(H)

∫b
a

σ∗k(x, [f(s)]r)ds− (H)

∫b
a

σ∗k(x, [f(s)]r)ds|.

(3.3)

By condition (1), there exists m0 ∈N such that m > m0 and we have

|

k∑
j=1

σ∗k(x, [fm(tj)]
r · (xi − xj−1)) −

k∑
j=1

σ∗k(x, [gm(tj)]
r · (xi − xj−1))| <

ε

3
.



Y.-B. Shao, Z.-T. Gong, Z.-Z. Chen, J. Nonlinear Sci. Appl., 10 (2017), 6274–6287 6281

According the uniform (H)-integrability of σ∗(x, [fm(s)]r), we have

|

k∑
j=1

σ∗k(x, [gm(tj)]
r · (xi − xj−1)) − (H)

∫b
a

σ∗k(x, [f(s)]r)ds| <
ε

3
.

By (i),

|(H)

∫b
a

σ∗k(x, [f(s)]r)ds− (H)

∫b
a

σ∗k(x, [f(s)]r)ds| <
ε

3
.

So the set {σ∗(x, [fn(t)]r) | n = 1, 2, · · · } is uniformly integrable.
Now we are able to use the Vitali convergence theorem for real-valued Henstock integrable functions

[26] and see that

lim
k→∞(H)

∫t
0
σ∗k(x, [f(t)]r)ds = (H)

∫t
0
σ∗0(x, [f(s)]r)ds. (3.4)

From (3.2), we get that

lim
k→∞(H)

∫t
0
σ∗k(x, [gn(s)]r)ds = (H)

∫t
0
σ∗0(x, [f(s)]r)ds.

Thus, for all n > k, we have

(H)

∫t
0
σ∗k(x, [gn(s)]r)ds > ε,

and

(H)

∫t
0
σ∗k(x, [f(s)]r)ds > ε

for all k = 1, 2, · · · . Passing to the limit with k→∞,

(H)

∫t
0
σ∗0(x, [f(s)]r)ds > ε.

Since σ∗α(x, [gn(s)]r) is uniformly convergent to σ∗α(x, [g(s)]r) for n, we have

lim
α

(H)

∫t
0
σ∗α(x, [gn(s)]r)ds = lim

α
σ(x, [(FHP)

∫t
0
g̃n(s)ds]r).

Denote z̃n(t) = (FHP)
∫t

0 g̃n(s)ds. In this case, we see that

lim
α

∫t
0
σ∗α(x, [gn(s)]r)ds = lim

α
σ(x, [zn(t)]r)

= σ∗0(x, [(FHP)
∫t

0
g̃n(s)ds]r)

= (H)

∫t
0
σ∗0(x, [gn(s)]r)ds.

From (3.3), we have
∫t

0 σ
∗
0(x, [f(s)]r)ds = 0 which contradicts (3.4). Since

(H)

∫t
0
σ(x, [fn(s)]r)ds −→ (H)

∫t
0
σ(x, [f(s)]r)ds,

and according to (i), a sequence {(FHP)
∫t

0
˜fn(s)ds} is Cauchy, so

lim
n→∞(FHP)

∫t
0

˜fn(s)ds = (FHP)

∫t
0
f̃(s)ds.
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Since the convergence theorems are really applicable (fuzzy differential equations, for instance), we
shall present a few particular case of Theorem 3.4.

Corollary 3.5. If condition (2) is replaced by condition:

(3) for each i,k ∈N there exists real-valued Henstock integrable function g : T −→ R, such that

|σ(x, [fi(t)]r) − σ(x, [fk(t)]r)| 6 g.

Then the conclusion of Theorem 3.4 also holds.

Corollary 3.6. If condition (2) is replaced by condition:

(4) for each n ∈N there exist real-valued Henstock integrable functions g,h : T −→ R, such that

g 6 σ(x, [fn(t)]r) 6 h;

then the conclusion of Theorem 3.4 also holds.

Next, we will deal with the Cauchy problem:{
x′(t) = f̃(t, x(t)), t ∈ [0,α] = Iα,
x(0) = x0, (3.5)

where f̃ is fuzzy Henstock-Pettis integrable function. In fact, our existence theorem is based on an idea of
Kurzweil from [25].

Definition 3.7. Let F̃ : T → En be fuzzy-number-valued function and let A ⊂ T . The function f : A → En

is the weak derivative of F on A, if the Banach-valued function j ◦ F̃ is differentiable almost everywhere
on A and (j ◦ F̃)′ = j ◦ f̃, a.e. .

Definition 3.8. A fuzzy-number-valued function f̃ : Iα −→ En is weak continuous if j ◦ f̃ is continuous on
Iα.

Theorem 3.9. Let f̃ : [a,b] −→ En be (FHP)-integrable on [a,b] and let F̃(x) =
∫x
a f̃(s)ds. Then

(1) σ(x, [f(s)]r) is Henstock integrable on [a,b] and (H)
∫x
a σ(x, [f(s)]r)ds = σ(x, [F(x)]r);

(2) the function F̃ is weak continuous on [a,b] and f̃ is a weak derivative of F̃ on [a,b].

Proof.

(1) See Definition 2.10.

(2) Since the function σ(x, [f(s)]r) is a real-valued and (H)-integrable, and

(H)

∫x
a

σ(x, [f(s)]r)ds = σ(x, [F(x)]r),

then G(x) =
∫x
a f̃(s)ds is continuous, that is F̃ is weak continuous. By conclusion (a), there exists a set

A ⊂ [a,b], such that G′(x) = σ(x, [f(s)]r), but G′(x) = σ(x, [F(x)]r)′(x).

Definition 3.10. A function x : Iα −→ En is said to be a weak solution of Cauchy problem (3.5) if it
satisfies the following conditions:

(1) x(·) is ACG∗;

(2) x(0) = x0;
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(3) there exists a set A, with Lebesgue measure zero, such that for each t /∈ A

j ◦ (x′(t)) = j ◦ (f̃(t, x(t))),

where “′” denotes the weak derivative.

Theorem 3.11. If the function f̃ : Iα −→ En is (FHP)-integrable, then∫
I

f̃(t)dt ∈ |I| · convf̃(I),

where I ⊂ Iα and |I| is the lenght of I.

Proof. Since σ(x, [f(t)]r) is (H)-integrable, by the mean value theorem for H integral we have

(H)

∫
I

σ(x, [f(t)]r)dt ∈ |I| · convσ(x, [f(I)]r) = σ(x, |I| · conv[f(I)]r).

However, by the definition of fuzzy Henstock-Pettis integral, there exists

(H)

∫
I

σ(x, [f(t)]r)dt = σ(x, [
∫
I

f̃(t)dt]r).

Therefore, σ(x, [
∫
I f̃(t)dt]

r) ∈ σ(x, |I| · conv[f(I)]r). Since |I| · convf̃(I) is a closed convex set, we have∫
I

f̃(t)dt ∈ |I| · convf̃(I).

Theorem 3.12 ([24]). Let D be a closed convex subset of a Banach space X, and let F be a weakly sequentially
continuous map of D into itself. If for some x ∈ D the implication

V = conv({x}∪ F(V)) =⇒ V is relatively weakly compact, (3.6)

holds for every subset V of D, then F has a fixed point.

For any bounded subset A of Banach space X we denote µ(A) the measure of weak non-compactness
of A, i.e.,

µ(A) = inf{t > 0 : there exists C ∈ K such that A ⊂ C+ tB0},

where K is the set of weakly compact subsets of X and B0 is the norm unit ball in X. For the properties of
the weak non-compactness µ(·), we refer to [1] for example.

Lemma 3.13 ([1]). LetH⊂C(Iα,X) be a family of strong equicontinuous functions. Then µ(H(Iα))=supµ(H(t))
and the function t→ µ(H(t)) is continuous.

Let a closed and convex C(x0,α) = {x ∈ C(Iα,En)|x(0) = x0,D(x, 0̃) 6 D(x0, 0̃) + b} and let the
sequence of functions G = {F̃x|x ∈ C(x0,α)}. Define the operator F̃x by the following:

F̃x(t) = x0 +

∫t
0
f̃(s, x(s))ds or F̃x(t) = x0 + (−1) ·

∫t
0
f̃(s, x(s))ds

for t ∈ Iα, x ∈ C(x0,α).

Theorem 3.14. Suppose that a function x : Iα −→ En is ACG∗. f̃(·, x(·)) is (FHP)-integrable and f̃(t, ·) is weak
continuous about first variable t and

µ(σ(x, [f̃(I×X)]r)) 6 c · µ(σ(x,X)), 0 6 c ·α < 1 (3.7)

for each bounded subset X ⊂ En and for each subinterval I of Iα. Assume that the set G = {F̃x|x ∈ C(x0,α)} is
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strong equicontinuous and weak uniformly ACG∗ on Iα. Then there exists at least one weak solution of problem
(3.5) on Iβ, for some number 0 < β 6 α.

Proof. We will prove, in fact, the existence of a solution for the following problem:

x(t) = x0 +

∫t
0
f̃(s, x(s))ds, t ∈ Iα. (3.8)

By Theorem 3.9 each solution of problem (3.8) is a solution of problem (3.5). Fix an arbitrary b > 0.
By the equicontinuity of G, there exists a number β, 0 < β 6 α, such that

D(

∫t
0
f̃(s, x(s))ds, 0̃) 6 b

for all t ∈ Iα and x ∈ C(x0,α).
Next, we prove F̃ is sequentially continuous. In fact, for every t ∈ Iβ, there exist a sequence xn(t)

convergent to x(t) on C(Iβ,En). That is f̃(t, xn(t)) −→ f̃(t, x(t)). By the Controlled Convergence Theorem
3.4, we have

lim
n→∞

∫t
0
f̃(s, xn(s))ds =

∫t
0
f̃(s, x(s))ds.

So, F̃xn −→ F̃x. That is to say F̃ is continuous.
Assume that V ⊂ C(x0,β) satisfies the condition V = conv(F̃(V) ∪ {x}). we shall prove V is relatively

compact, thus (3.6) is satisfied. In fact, let

F̃(V(t)) = {F̃x|x ∈ V} = {x0 +

∫t
0
f̃(s, x(s))ds, x ∈ V}.

By properties of the measure of weak non-compactness and the assumption (3.7), we have

µ(σ(x, [F̃(V(t)]r)) = µ(σ(x, [x0 +

∫t
0
f̃(s, x(s))ds]r))

6 µ(σ(x, [
∫t

0
f̃(s, x(s))ds]r))

6 µ(σ(x, t · conv[f̃([0, t]× V([0, t]))]r))
6 t · µ(σ(x, [f̃([0, t]× V([0, t]))]r))
6 β · µ(σ(x, [f̃(Iβ × V(Iβ))]r))
6 β · c · µ(σ(x,V(Iβ))).

Hence µ(σ(x, [F̃(V(t))]r)) 6 β · c · µ(σ(x,V(Iβ))) for each t ∈ Iβ.
Because V = conv(F̃(V)∪ {x}) then

µ(σ(x,V(t))) 6 µ(σ(x, [F̃(V(t))]r)) 6 β · c · µ(σ(x,V(Iβ))).

By Lemma 3.13, we have

µ(σ(x,V(Iβ))) 6 β · c · µ(σ(x,V(Iβ))) 6 α · c · µ(σ(x,V(Iβ))).

So, µ(σ(x,V(Iβ))) = 0 and µ(σ(x,V(t))) = 0 for each t ∈ Iβ. By Arzelá-Ascoli theorem V is relatively
compact in C(Iβ,En). Using Theorem 3.12 there exists a fixed point of the operator F which is a weak
solution of problem (3.5).

Example 3.15. Consider the following discontinuous system{
x̃′(t) = f̃(t, x̃) + h̃(t),
x̃(0) = x̃0, (3.9)
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where f̃(t, x̃) is (FHP)-integrable and f̃(t, ·) is weak continuous about first variable t, h(t) = χ{g(t)} + Ã is
a fuzzy-number-valued function and

g(t) =

{
2t sin 1

t2 −
2
t cos 1

t2 , t 6= 0,
0, t = 0,

and

Ã(s) =


s, 0 6 s 6 1,
2 − s, 1 < s 6 2,
0, others.

Since x̃(t) is a generalized solution of the initial value problem (3.9) if and only if the integral equation

x̃(t) = x̃0 + (FHP)

∫t
0
(f̃(s, x̃(s)) + h̃(s))ds,

holds true. That is to say

x̃(t) = H̃(t) + (FHP)

∫t
0
f̃(s, x̃(s))ds,

where H̃ = x̃0 + χ{G(t)} + Ã · t and

G(t) =

{
t2 sin 1

t2 , t 6= 0,
0, t = 0.

Let f̃(s, x̃) to be satisfied (3.7) in Theorem 3.14 and H = {H̃x|x ∈ C(x0,α)} is strong equicontinuous and
weak uniformly ACG∗ on Iα. Since x̃(t) is a generalized solution of the initial value problem (3.9), we
have x̃(t) is continuous. In fact, for all λ ∈ [0, 1], x−λ and x+λ are continuous. Therefore, for t0 ∈ [0,a] and
for all ε > 0, there exists δ > 0, we have

|x−0 (t) − x−0 (t0)| < ε, |x+0 (t) − x+0 (t0)| < ε.

For above t, there exists a fuzzy number Ã such that x̃(t) = x̃(t0) + Ã. Then, we have |A−
0 | < ε and

|A+
0 | < ε. We notice that

D(x̃(t), x̃(t0)) = sup
λ∈[0,1]

max{|x−λ (t) − x
−
λ (t0)|, |x+λ (t) − x

+
λ (t0)|}

= sup
λ∈[0,1]

max{|A−
λ |, |A

+
λ |} = max{|A−

0 |, |A+
0 |} < ε.

So, x̃(t) is continuous on [0,a]. Then, by Theorem 3.14, the initial value problem (3.9) has at least one
weak solution x̃(t).

4. Conclusions and future works

In this paper, we study the Henstock-Pettis integral of compact convex set-valued functions and fuzzy-
number-valued function and the convergence theorem of fuzzy Henstock-Pettis integrals. In addition,
we deal with the Cauchy problem of discontinuous fuzzy systems involving the weak fuzzy Henstock
integral in fuzzy number space. The function governing the equations is supposed to be discontinuous
with respect to some variables and satisfy nonabsolute fuzzy integrability. Our result improves the result
given in [3, 4, 6, 7, 20, 22, 23, 39] and [9] (where uniform continuity was required), as well as those referred
therein. In the future research, we shall deals with a new derivative and Hestock-Pettis-∆-integral for
fuzzy-number-valued functions on time scales. Also, we shall study and investigate fuzzy differential
equations and fuzzy integral equations with ∆H-derivative and FHP-∆-integral on time scales.
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