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Abstract

In this paper, by combining the logarithmic-quadratic proximal (LQP) method and the square quadratic proximal (SQP)
method, we propose an inexact alternating direction method for solving constrained variational inequalities VI(S, f), where S is
a convex set with linear constraints. Under certain conditions, the global convergence of the proposed method is established.
We show the O(1/t) convergence rate for the inexact LQP-SQP alternating direction method. To demonstrate the efficiency of
the proposed method, we provide numerical results for traffic equilibrium problems. (©2017 All rights reserved.
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1. Introduction

Let R be the set of real numbers, and R} = {x € R;x > 0}, Ry, = {x € R;x > 0}. Further, given

n € N, set

T

Ri:{X:(Xl,"',Xn) :le'”/XTLGIR-F}/

and

T.
X100, Xn € R++}/

IR?__,_ ={x=(x1,"-,%Xn)
where ()T denotes the transpose. We denote by Pgrm (-) the projection under R, that is,
Prm(z) = argmin{||z—x|| : x € R}'}

Let A € R™*™, b € R™ and f : R} — IR™ be a continuous mapping. In this paper we focus
essentially on the structured variational inequalities:

find x* €S suchthat (x—x*)Tf(x*)>0, VxeS,
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with linear constraints
S={xeR"|ATx<b, x>0}

By attaching the Lagrangian multiplier vector y € R™" to the linear constraints ATx —b < 0, we obtain

(VI(Q,F)) find u*eQ suchthat (u—u*)"Fu*) >0, VueQ, (1.1)
where (
[ x [ flx)+Ay  on m
u—<y>, F(u)_<—ATX+b> and Q =R} xR (1.2)

The alternating direction method (ADM) was studied extensively in optimization and variational anal-
ysis and is an attractive approach for solving large-scale variational inequality problems with separable
structure, see for example [1, 5, 9, 12, 13, 16-21, 24, 25] and references therein. The classical proximal
alternating directions method (PADM) is one of the most attractive ADMs, as given (x¥,y*) € Q, x**1 is
produced via solving the following problem:

x€RY, (X —x)"{f(x) —ATA*=B(Ax—b)]+ (x—x*)} >0, V x' € RY, (1.3)

and the multiplier vector y**! is obtained by solving the following problem:
1
yeRT, (v -y {ly—y") - ;Bk(ATxk —b)} >0, Vy eRM™ (1.4)

Here v > 0 is a constant and Py > 0 is a given penalty parameter for the linearly constrained equation
Ax—Db=0.

Recently, a significant number of interior proximal methods have been developed via replacing x —x
by some nonlinear functionals. Very recently, some ADMs with logarithmic-quadratic proximal (LQP)
regularization [3-8, 15, 22, 23, 25] have been developed by substituting in the ADM (1.3) the term [(x — x5)
by (x —x¥) + p(uk — Uiu_1 )]. He et al. [15] proposed an LQP-based prediction-correction method to solve
VI(Q, F), as given uk = (xk,y*) € RY, xR™, and p € (0,1), the predictor ik = (%, §*) is obtained via
solving the following system:

k

{ Br(f(x) +Ay) +x —xF + p(x* = X&x™1) = £k ~ 0,

y =Pre [y* + 1Bk(ATXxF —b)], (1.5)

where Xy = diag(x}‘,x‘;, e ,xh), X~ is an n-vector whose j-th element is 1/x;, and v > 0. The new iterate

uktl = (xk*1 y**1) is obtained via solving the following system:

—1

{ TR (F(XX) + ATR) +x —xF + p(x* = X2x~1) =0,
y =Pro [y* + ZR(ATXF —b)].

Later, by applying the LQP terms to regularize the ADM subproblems, Fu and Bnouhachem [11] devel-
oped the following LQP-based decomposition method: given uk = (xk,y*) € R™, xR%T,, ik = (%%,g%)
is obtained via solving the following system:

{ B (f(x) +Ay) +x—(1— p)xk — uXix_l = E]; ~ 0,
Br(—ATx+b) +vy—v(1—py* —vuViy ' = £f ~ 0,
where Xy, = diag(x]f,x‘f, e ,xl‘l),Yk = diag(y‘f,y‘;,- .- ,y];l),xfl (y~!) is an n-vector (m-vector) whose
j-th element is 1/x; (1/y;), u € (0,1). The new iterate u**! = (x**1,y**1) is the solution of the following
system:

{ TR (F(XF) + ATH) +x — (1 — p)xk — pX2x 1 =0,

WPBr(—ATZ+b) +vy —v(1—ply* — Y2yt =0.
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Note that in [11] ©i* and u**! are obtained via solving the LQP system. Very recently He et al. [14]
proposed a new method for solving VI(Q, F), the predictor it* = (%%,7¥) is obtained as in (1.5) and the
new iterate uk 1 = (x**1,y**1) is defined by

u = tuR 4+ (1 —t)Pq [uf — aF (") |,
where 0 < t <1 and «y is defined by

(uk _ ﬁk)TF(ﬂk)
[[F (k]2

Xk =

In this paper, we suggest that the complementarity subproblems arising in ADM (1.3) and (1.4) could
be regularized by LQP and the square quadratic proximal (SQP) regularizations, respectively; the LQP
and SQP regularizations force the solutions of ADM subproblems to be interior points of R' and RT",
respectively. More specifically, the iterative scheme of ADM with LQP and SQP regularizations is as

follows: given uk = (x*,y*) € Rt x RT,, the solution of (1.3)-(1.4) is obtained via solving the following
system:
Bi(f(x) + Ay) +x — (1 — p)x* —uXix~! =0, (1.6)
T v v 3 -1
Br(=A x+b)+ Sy — 5 (1-2wy" —vuVi(vy)™ =0, (1.7)

where X; = diag(x‘f,x&‘,- XK, Y = diag(y‘f, /y'f, o yR Yk, x Tt ((\fy)*l) is an n-vector (m-vector)

whose j-th element is 1/x; (1/ VYi ). Since (1.7) includes both square and quadratic terms, the method
is called the SQP method, and (1.7) is called the SQP system of nonlinear equations. Note that the
system (1.6)-(1.7) is a nonlinear system of equations, which is not easy to solve. Moreover, x and y
are overlapped and should be solved simultaneously. By combining the LQP and SQP methods, we
propose an inexact ADM for solving VI(Q, F). Each iteration of the proposed method contains a prediction
and a correction, the predictor is obtained via solving the LQP and SQP systems approximately under
significantly relaxed accuracy criterion. We also study the global convergence of the proposed method
under certain conditions. Our results can be viewed as significant extensions of the previously known
results.

We give some notation that is needed for the rest of the paper. Let G denote a symmetric positive-
definite matrix. Then ||v||g denotes (v Gv)!/2.

Throughout this paper we make the following standard assumptions.

Assumption A.

Al. f(x) is continuous and monotone mapping with respect to R%, i.e.,

(x—%)T(f(x) — (X)) =0, V¥x, %€ RY.

A2. The solution set of VI(Q),F), denoted by Q*, is nonempty. Note that F(u) is monotone whenever
f(x) is monotone.

2. LQP-SQP ADM

In this section, we suggest and consider the inexact LQP-SQP ADM for solving (1.1)-(1.2). Indeed,
finding the root of the nonlinear equation (1.6)-(1.7) is not an easy task. To handle this, we prefer solving
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(1.6)-(1.7) approximately to solving it exactly. First, the variable x is replaced by the current x* in (1.7) to
obtain y, denoted by §j*. Then, we find §* € RT, such that

vV _ v —1\—
Br(—A X" +b) + 55" — 2 (1—2uy* —vun(Vg*) 1 =0.

To use the new information as soon as possible, we use this new §j* in (1.6) to obtain an approximation
of x, denoted by x*.
Br(f(X) +AF") + %5 — (1 — wWx* — uX{ (X)) = 0.

We describe the new method in detail.
Algorithm 2.1 (LQP-SQP method).
Step 0. The initial step: Given e >0, p € (0,1), n € (0,1) and k =0, u® = (x%,y%) € R, xR,

vo >0, [30 > 0.
Step 1. Convergence verification: If {max [|[x* — %}, [[y* — %[/} < €, then stop. Otherwise, go to Step 2.
Step 2. Prediction step:

(1) Compute the predictor it* = (%*,§%) € R, x RT", via solving the following system

{ Br(f(x) +Ay) +x —xF + p(x* = X&x71) = gk ~ 0,

2.1

Br(—ATx +b) + % (y —y*) + vienly® — Vi) 1) = £k ~ 0, @1)
satisfying

_ 1—p

67 e <

[ £
E"(ﬁb)'

(14wl 0
G= ( 0 " viewy ) (2.3)
2 m

n?[uk —a¥g, (2.2)

where

and

G-1&k|]2
(2) Compute 1y = 1711 e
T+u

ke — kg
(3) If rx >, then reduce Bx by Bk := Bk * 0.8/« and go to Step 1.
Step 3. Adjust 3 and v for the next iteration if necessary:

(1) Prepare an enlarged 3 for the next iteration if 1y is too small,

B _J Bxx0.7/m¢ if m <05,
T B otherwise.

(2) Adjust v for balancing the next iteration

viex05  if > 4ty, €K & |
Vi+1 = Ve v

:Tk,

Vi %2 if t, >4ty, where t;:=

St
Vi, otherwise Vit

Step 4. Correction step:

Compute the new iterate u*+1(

ay ) as the solution of the following system

1+p

1_—”ockﬁk(f(fck)+Agk)+7<—xk+u(xk—X%{x_l) =0, (2.4)
%Ockﬁk(—ATik-Fb)+%(y—yk)+\/ku(yk—Yk(\/§)_l) =0. '
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Set k := k+ 1 and go to Step 1.

How to choose a suitable step length i > 0 to force convergence will be discussed later.

Remark 2.2. The main task of the prediction is to find an approximate solution of the following equations

Bi(Fx) + ATS) +x = (1— ) — pxix ! =0, (25)
Bi(—A TR  +b) + 2 [y —y" )+ vienly* — Vi(v) ) = 0. 26)

We can choose a suitable i > 0 and set the exact solution of
v —
Brel—ATx ) + Ty —y") + vienly* — Vi) 1) =0, 27)
denoted by {j¥, as the approximate solution of (2.6). Then set the exact solution of

Bi(f(x*) + AG*) +x — (1 —p)x* —pXgx ' =0, (2.8)

denoted by %, as the approximate solution of (2.5). It follows from (2.1) and (2.7)-(2.8) that

goo (&) o Bx(FERD ) ) g (RS ()
Tl EE ) T Br(=ATREHATXK) ) T PR AT (xk—xk) )
Remark 2.3. We suggest a self-adaptive procedure to find such a suitable small . If 1 <1, the prediction
i = (%%, §%) is accepted; otherwise, reduce the value of B by Bk := B *0.8/7k and repeat the procedure.
Too small values of 31, however, usually lead to extremely slow convergence according to our numer-

ical experiments. Thus it is necessary to avoid this situation. In addition, balancing (||£X||/v/T+ p) and
(I1&511/y/ Vi) via adjusting v is also necessary for practical computation.

We need the following result to study the convergence analysis of the proposed method.

Lemma 2.4. Given u* = (x*,y*) € RT | x RTY, and q = (qx, qy) € R™ x R™, let u = (x,y) be the positive
solution of the following equations:

Lk K w2 1)
{qx—i—x xX*+uxk—=Xix"1) =0, 2.9)

qQy + 2y —y*) + vien(y* = (yy) ) =0,

where Xy = diag(x¥, x5, .-+ %K), x71 = (1/x1,- -+, 1/xn), Yk = diag(y¥y/yk, -+, y&/yk) and (\y) ! =
(v1/y1,-- ,/1/ym). Then for any w € R} x RT*, we have

w1 Tq > 3 (e wlfs — [ —wls) + o g T e gz @ag)
where G is defined by (2.3).
Proof. Let w = (wy, wy). We will show that
R N R PR 1)
and
(wy 1) Tay > Iy v 2y w2+ Ty e 12)

The first inequality is inspired by [2, Lemma 2]. Since x > 0, x* > 0 and wy > 0, we have

(Wy)i (xF)2/x1 = ()i (2xE —x4).
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It follows from (2.9) that

((wx)i —x1) T (g )i = (xi = (Wi )1) (%0 — (1 — wxf — p(x{)?/x4)
D)7 — (1= w)xixf — p(x)? = xi (wi)i + (1= mxf (wi)i 4 m(wy)i (2xF —xq)
D7 — (1= pxixt — p(x§)? — (14 wxi(wy )i + (1 + w)xf (wy )i

T T R

Hence, (2.11) holds.
1

For each t > 0 we have % (1- l) 1— T < (t—1). Since y > 0,y* and wy > 0, by using the above
"
j

1
2
inequality, then after multiplication by (wy);y;* > 0 for each j =1,--- , m, we obtain

Kk
V'Y Y; 1
(wy)jy¥ [ 1= =] < (wyljuis [ = -1 —(wy)j(y5 —y¥),
Y19 \/E ) ]2 y) 2 Yy )

and after multiplication by yjyf >0foreachj=1,---,m,

Kk
VY 1 [y¥ 1

R 1= Y ) <y (2 1) = SRk —
y)y]( 75 Yivis | 4, 595 (U —y5),

adding the two inequalities, then we obtain

((wy)j — ;) <;Vk(9j —y§) + v (U}Q —U}Q\/E(\/lﬁ)_l))

< Svinlivg )~y —u8) + 2wty —yF(lwy)s — vy).

Using the identities

and recalling (2.9), thus we obtain

(twy)s —wi)(ay)s > 0 (g )y 52— () —y?) + T 2

Summing over j =1,---,n, we obtain (2.12). Adding (2.11) and (2.12) the proof is complete. O]

3. Basic results

In this section, we prove some basic properties, that will be used to establish the sufficient and neces-
sary conditions for the convergence of the proposed method. First, we apply Lemma 2.4 to the prediction
step.

Lemma 3.1. Given u® = (x¥,y¥) € R, x R, let ii* be the predictor produced by (2.1). For each w =
(Wx, Wy) € Q, we have

1
(w—a*) T (£ = BiF(E") < S (I —wlg

2 - T (3.1)
R L e (TR
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Proof. We apply Lemma 2.4 to the prediction equation (2.1). Note that

<k “ky_ rk
(pre ‘= < %i((ﬂ);%;iyb)) 55 > = BkF(ﬁk) - Ek'

By setting q = qpre in (2.9) and u = i* in (2.10), it follows that

. Vi(1—n) .
K12 — ——ly* — g~

1 . —u
(w—u)T(—qpre)<§(Iluk—wllé—Hu“—wH2@)— 5 I — 1 y

The assertion is proved. O

Now, we apply Lemma 2.4 to the correction step.
Lemma 3.2. Given u* = (x*,y*) € R, x R, let ii* be the predictor produced by (2.1) and u*1 (o) be the
corrector produced by (2.4). Then, we have

vi (1 —
M o) |12 + %H‘Jk —y* " o) 2

1-— -
+ 25— o BiF(E) T (W () — ).
+u

H k+1(

[k — % — [u o) —ut|E = (1—p)|x* —x

Proof. The proof is an application of Lemma 2.4 to the correction equation (2.2).

1—p <k ~k
BBk FAT ) 1w
qCOI" ( %Jrﬁockﬁk( AT)zk_{_b) 1+M“kﬁk (u )'

By setting q = qcor in (2.9) and w = u* € Q*, u = uk*1 () in (2.10), we obtain

(W —u (o)) T qeor > Huk“(ock) —ufg — k=t E) -
+1;7M||Xk—xk“(cxk)|!2+wwk—yk“(%)ll% o
It follows from the above inequality that
e — w1 — [ (o) —w¥ g = (1= w) e —x (o) |2 + WHyk—ykﬂ(mnz
2 B ) T ) )
= (a2 B eyt o2
X 2 e B T ) — 64) (6~ w) )
> (1wl o2+ VT ey g
2o () T (0 ) — ),
The last inequality of (3.3) uses the fact that F is monotone and the inequality
(@ —u) T (F(E*) > (@ —u") TF(u) > 0. O

Consequently, we have the following theorem.
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Theorem 3.3. Given uk = (x,y*) € R, x R, let i* be the predictor produced by (2.1) and u**1 (o) be
the corrector produced by (2.4). Then, we have

1—
e — )% — [ (o) —wt R > (Huk — M o) |1E + 200 (W (o) — 1) T Gd(uk, wk)
1+p (3.4)
— 2000l — %5 = cucvienly* — 54)2),
where
d(uk, k) = (U —ak) + ek, (3.5)
Proof. Since u**1(a) € Q, by substituting w = u**! (o) in (3.1) we obtain
1 -
(W o) = 5) T (85 = BicF(E5)) < S (Ju® = Hou) & — [[5° = u* (e [13)
1— Vil — ) (36)
— I xR = P g g2
Using the following identity
1 1
(W (o) — 1) TGuk — k) = Z(Hak —u (o) |5 — ek —u () 1) + EHuk -z, (GY)
Adding (3.6) and (3.7), we obtain (using the definition of G from (2.3))
(W o) — ) T{G(W* — %) + £ — BiF(E ) < pllx* — =%+ 55y — ¥,
which implies
(W (o) = 04 TBIF(R) > (1 (o) — 05 TG, 0 — wlx* =352 = By — g2 (39)
Combining (3.3) and (3.8), we obtain
* * v (1 _ )
¥ = s — ¥+ o) = w2 (1= )l =X |2+ 2y -y o) 2
1—
+ 25 () — %) T Ga(uk, 0¥
1+p
1—u C e (3.9)
_9 %
1+M0‘kHHX |
I—q k_ k2
1_|_u0<kLWk||U ge"
We observe the first two terms of the right-hand-side of (3.9),
Vi (1 —p)
(1= )l = x o) |2 4 = [y =y ) 2
- Kk k+1 I G ol ) TR 2
S _ SR TR yk -
T (e - O gy
_ Ll ek 2
= o )
Substituting it into (3.9), we obtain the required result. O]

Theorem 3.4. Let d(uX, %) be defined by (3.5). Then for any u* € Q* and oy, > 0, we have

= I — 1w (o) — w1 > @),

where
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@ (o) i= 200, @ (U, 15) — o ||d(u¥, 14)|%, (3.10)
and v
(¥, %) o= [ = P+ [y - g P+ (u - TeE

Proof. 1t follows from (3.4) and (3.5) that

* * 1— ~ ~
ek —ut )% — (o) —wrE > ﬁ(zcxk{(uk“(ock) —u) 4 (uk - 1T Gk, 1)
— 2aneu [ — K52 — ancvienJy® — 9412 + ¥ —uF T () 13 )
= ﬂ(zmuk—akﬁed(uk k) — 2oge|xk — %2
1+
— aaevicht|ly* — 9|7 — ol d(uk, 7|
ek = (o) — aged(uk, @) ||2>
1— 3.11
> i (200w = 9 TG (W, 16 — Xk - 2 -
1+p
Vi H - -
— 2By - g4 — ek, w))1% )
= 1 (el P Yy g k0 TE)
T 1+ +u 2
— o fld(u*, af))
_1-u k <k 2 Kk <ky(2
= s (2ot 1) — oAt 1) ).
The assertion follows directly from (3.10) and (3.11). O
Since @ () is concave quadratic function of «y, it reaches its maximum at
L e(uk k)
o = —————5, (3.12)
© k)
with
(o) = o (U, 1), (3.13)
Under condition (2.2) we have
20 (u*, @) — [|d(u®, @) G = 2/ =5+ viely* =g — uk — g — 167N
3 Vi(1— ) _ _
= (1= ) =2+ =5 y* — g P~ G TTEM G
N Vi(l1+p) _ .
1+u < 1+ p)x* — k||2+2||9k—yk||2> — GG (3.14)
= vk —afE — 16T EN G
= 1+H(1 ﬂ ||LL _ak||2G
Therefore, it follows from (3.12) and (3.14) that
1
o > = (3.15)
2
Consequently, from (3.13), (3.14), and (3.15), we obtain
0=,
Do) > — Lo Bk g2, (3.16)

41+ w)
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4. Convergence of the proposed method

In this section, we consider the convergence analysis of the proposed method. From the numerical
point of view, it is necessary to attach a relaxation factor y € [1,2) to the optimal step size o to achieve
faster convergence.

Theorem 4.1. Let u**1(ya*) be the solution of (2.4). Then for any u* € Q* and y € [1,2), we have

Y2-v)(1-7m3) [1-p)\? i}
4 1"_}1 Huk_ukHé‘

[ ye) =g < ek —ufE -

Proof. Note that for y € [1,2), we obtain

D (yoq) = 2y o(u®, @) — (V2o ) (|| d(u®, @F)|%)
= (2yeq — v oq) @ (uk, 0*) (4.1)
=v(2—v)P(x).

It follows from Theorem 3.4 and (4.1) that

k=P = T (o) —ut [ > RO (yat)
= Y2 =) 4 0(a"),
Then the assertion follows from (3.16) immediately. O

To prove the convergence of the proposed method we need the following lemma, the proof of which
is again an application of Lemma 3.1.

Lemma 4.2. For given u* = (x*,y*) € R}, x R™, and By > 0, let U* be obtained by (2.1), then for each
u € Q, we have

. T k | gk

e (F50) (GBI, e

Proof. First, substituting w = u in (3.1) we have

(u—a*) T (BiF(E" — £)) > 3(0° —ufg — Ju* —uE)
1 = P My - g

Therefore, to show (4.2), we need only to prove

LR (% — x| — [x* —x[?) + 552 x* — =52 = (¢* = %) T((1+ px — (ux* +%5)), (4.3)
and

YR gy gyl VB g = Y g Ty (454 @)

First, by a manipulation we obtain

1+, 1—p N

— (%S = x> = [ = x||?) + TIIXk — %2
= (T4 w)x T — (14 px T &5 — (1= ) (%59) T — pf x> + 1%
= (14 wx " (x*—x%) — (x* =) T (px* + %)
= (x*—

X

and thus (4.3) holds. Similarly, we can prove (4.4) and the proof is complete. O
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The following result can be proved by similar arguments to those in [11, 14, 15]. Hence, the proof is
omitted.

Theorem 4.3 ([11, 14, 15]). If infy o Bk := B > O, then the sequence {u*} which is generated by the proposed
method converges to some u™ that is a solution of VI(Q, F).

5. Convergence rate

Recall that O* can be characterized as (see [10, (2.3.2)])

0 =N {aeQ : (u—a)TF(u)>o}.
ueQ

This implies that it € Q) is an approximate solution of VI(Q, F) with accuracy e > 0 if it satisfies
(—uw)"Flu) <e, VueQ. (5.1)

Now, we show that after t iterations of the proposed method, we can find a @ € Q such that (5.1) is
satisfied with e = O(1/t).

Lemma 5.1. Let ii* be generated by (2.1) and u*1(you) be generated by (2.4). Then we have the following
(W (yon) =) TBRF(EY) > ofld(w, 89 G + (W (youd) —u) T G, ). (5:2)

Proof. 1t follows from (3.8) that

- - < v -
(W (yen) =) TBF(RY) > (W (yon) — )T G, 1) — wlx* — %412 — ZEE [y* — 5|

= (W (yag) —uk +uk —19) TG (uk, 1) — pxe — %<2
Vi -
- TH‘Jk —‘JkHZ

- - Vil
= [Juk — Mg — px* =& — ==

5l =g+ (- e
+ (' (yon) —uf) TGd(u, )
= @, 1) + (W (yon) —u¥) TGd(uk, a¥)

= o[l d(u®, @)% + (W (you) —uk) T Gd(uk, i) 0

Lemma 5.2. Given u* € R x R, . Let ©i* be generated by (2.1) and w1 (yoy) be generated by (2.4). If we
take Ty, = ;—Eyock, then for any u € Q, we have

(=) TBer() > B2V s, ) + 5 (T s —ulfs — I —ul). (59

Proof. 1t follows from (3.2)

Ll L

1
T ~
(w— S fyen) TBF(E) 2 5 (! (vead —ulfg = ¥ —wl) + 55

v |5 (54)
Adding (5.2) and (5.4), we obtain

N N N T N
(u—1") T By F(E*) > ogeld(uf, wM)5 + (W (you) —u¥)  Ga(u*, a¥)
1 k+1 2 k 2 —H k k+1
# e (S o) =l — ¥ =) + oo s ek =

[u you) |5
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Using the following inequality
N 1—p T (14 )
k+1 Kk > - k_ o k+1 2 2
(W (yen) —uk) " Gd(uk, ak) > e e~ readlls — 2(1 L ld a|Ig,
we obtain (2 .
~k\ T - ’Y (089
(u—a*) BKF(E") > =, a)|G + 5 (lu" —ufg — u* —ullg),
2 2Tk
and by using the monotonicity of F, we obtain (5.3). O
Now, we are ready to present the O(1/t) convergence rate of the proposed method.
Theorem 5.3. For any integer t > 0, we have a iy € Q that satisfies
(e —w) TP < e —ufs, vue o,
where
1 & t
= ,th Z Bkaﬂk and Tt = Z Bka-
k=0 =
Proof. Summing the inequality (5.3) over k =0, - - - , t, we obtain
t t T 1
<<Z Bka> u-y Bkaﬁk> Flu) + EHU—UOHZG 20
k=0 k=0
Using the notations of Y and ti; in the above inequality, we derive
_ T 2
— F Q.
(W) TF) < g iy, e
Indeed, 1y € Q because it is a convex combination of @Y, !, ..., @t. The proof is complete. O]

It follows from (3.15) that
(1—wBy
2(14 )

Suppose that for any compact set D C Z, let d = sup{[ju—u’||gl|z € D}. For any given e > 0, after at most

[ a+we }
t{( —1)Bye 1

Y > (t+1).

iterations, we have
(e —u) TFlu) <e, YueD.

That is, the O(1/t) convergence rate of the inexact LQP-SQP ADM is established in an ergodic sense.

6. Numerical experiments

We apply our proposed method in the following examples to illustrate its advantage and efficiency.

6.1. Numerical experiments for traffic equilibrium problems
The test examples in this section arise from the traffic equilibrium problems.

6.1.1. Traffic equilibrium problems

We consider a network [15] shown in Figure 1 which consists of 25 nodes, 37 links and 6 origin/destination
(O/D) pairs. We apply the proposed method in this traffic network equilibrium problems with two modifications,
one with link capacities and the other with both link capacities and low bounds on travel demands. We use the
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same notation as in [15]. The traffic equilibrium problems can be described as follows:
(x—x*)TF(x*) >0, Vxe€S,

where
F(x) = At(ATx) —BA(Bx).

For practical applications, S has the following different forms.

o Traffic equilibrium problems with link capacity bound,
S=xeR"|ATx<b, x>0},

b is the given link capacity vector

o Traffic equilibrium problems with link capacity bound and demand lower bound,
S={xe R"|ATx<b, B'x>d, x>0}

It is clear that all these traffic equilibrium problems are special cases of the structured variational inequality (1.1)-
(1.2). We apply the proposed method to solve these problems.

In all test implementations, we use the forms of function t(f) and A(d) from [15], and we take uw = (x%,y9),
where each element of x” and y° is equal to 1, p = 0.01, ¥ = 1.95, and n = 0.95. For this test problem, the stopping
criterion
lex (1) oo

llex (1000

maX{ ,Hey(uk)lloo} <e,

for different ¢ are reasonable.

29 30 31 32 33

Y Y Y Y Y
61)-34-32)-35.(53)-30.04)-37.53)
Figure 1: A directed network with 25 nodes and 37 links.

6.1.2. Problems with link capacity bounds
The constraints set of problems with link capacity bounds is S = {x € R™ | ATx < b, x > 0}, where b is a
given capacity vector. We report the numbers of iteration, the number of function evaluations, and the CPU time

for different capacities and different ¢ in Tables 1 and 2.

Table 1: Numerical results for different ¢ with b = 40.
Different || The method in [11] || The method in [15] || The proposed method
I3 k 1 CPU(s) k 1 CPU(s) k 1 CPU(s)
107° 209 | 450 0.068 217 | 457 0.068 202 | 424 0.048
10°° 249 | 534 0.068 247 | 522 0.063 238 | 496 0.061
107 279 | 596 0.79 275 | 583 0.077 270 | 560 0.075

As illustrated in Subsection 6.1.1, the output vector x is the path-flow, and the link flow vector is AT x. In fact,
y* in the output is referred to as the toll charge on the congested link. For the example with link capacity b = 40
we list the optimal link flow and the toll charge in Table 3. Indeed, the link toll charge is greater than zero if and
only if the link flow reaches capacity.
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Table 2: Numerical results for different ¢ with b = 50.

Different The method in [11] The method in [15] The proposed method

€ k 1 CPU (s) k 1 CPU (s) k 1 CPU (s)
107 403 | 833 0.11 405 | 853 0.094 391 | 795 0.086
10— 485 | 997 0.11 488 | 1021 0.094 475 | 963 0.10
107 567 | 1161 0.14 570 | 1185 0.011 560 | 1133 0.11

Table 3: The optimal link flow and the toll charge on the link when b = 40.

Link | Flow | Charge || Link | Flow | Charge || Link | Flow | Charge || Link | Flow | Charge
1 40.00 43 11 1.85 0 21 40.00 1.1 31 11.96 0
2 38.15 0 12 11.96 0 22 40.00 136.6 32 40.00 164.2
3 40.00 163.2 13 26.19 0 23 26.19 0 33 40.00 135.6
4 13.81 0 14 13.81 0 24 0 0 34 26.19 0
5 0 0 15 0 0 25 0 0 35 28.04 0
6 0 0 16 0 0 26 0 0 36 40.00 301.3
7 0 0 17 0 0 27 0 0 37 0 0
8 0 0 18 0 0 28 0 0 - - -
9 0 0 19 0 0 29 26.19 0 - - -
10 40.00 1.1 20 40.00 1.8 30 1.85 0 - - -

6.1.3. Problems with link capacity bounds and demand low bounds

The constraints set of problem in this subsection is S = {x € R™ | ATx <b, B'x>d, x >0}, where b and d are
given vectors. In the test example we let each element of b and d be equal to 40 and 10, respectively. We report the
numbers of iterations, the mapping evaluations, and the CPU time for different ¢ in Table 4.

Table 4: Numerical results for different ¢ with link flow capacity ATx <40 and demand low bound BT x > 10.

Different The method in [11] The method in [15] The proposed method
€ k 1 CPU (s) k 1 CPU (s) k [} CPU (s)
10—° 400 | 850 0.11 392 | 834 0.089 257 | 550 0.07
10~° 485 | 1028 0.12 470 | 998 0.09 315 | 670 0.081
10~7 571 | 1209 0.13 561 | 1187 0.011 375 | 795 0.1

The dual variable y* can be divided into two subvectors yj (to the capacity constraints ATx < b)and y7; (to the
demand lower bounds B "x > d). Here y7} in the output is referred to as the toll charge on the congested link, while
y]; represents the subsidy on the O/D pair. For the test example, we list the optimal link flow and the toll charge
in Table 5. The optimal demand and the subsidy of each O/D pair are given in Table 6. The outputs coincide with

the optimal condition.

Table 5: The optimal link flow and the toll charge on the link when b = 40.

Link | Flow | Charge || Link | Flow | Charge || Link | Flow | Charge || Link | Flow | Charge
1 40.00 17.4 11 10.00 0 21 40.00 6.9 31 10.00 0
2 40.00 12.6 12 10.00 0 22 | 40.00 306.5 32 34.65 0
3 40.00 333.9 13 14.61 0 23 19.96 0 33 | 25.35 0
4 25.39 0 14 8.69 0 24 3.30 0 34 | 23.14 0
5 16.70 0 15 9.88 0 25 13.18 0 35 | 30.00 0
6 6.82 0 16 0 0 26 13.18 0 36 | 40.00 294.0
7 6.82 0 17 0 0 27 | 13.18 0 37 14.65 0
8 6.82 0 18 6.82 0 28 | 20.00 0 - - -
9 0 0 19 0 0 29 | 23.14 0 - - -
10 | 40.00 25.6 20 36.86 0 30 6.86 0 - - -

Table 6: The optimal demand and the related subsidy.
(O.D) Pair (1,20) | (1,25) | (2,20) | (3,25) | (1,24) | (11,25)
Optimal demand 10 10 10 10 60 20
Subsidy 9094 | 730.6 | 710.2 | 29.1 0 0

Tables 1, 2, and 4 show that the proposed method solves the traffic equilibrium problem very efficiently.
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7. Conclusions

In this paper, we have proposed an inexact LQP-SQP ADM for solving structured variational inequalities. Each
iteration of the LQP-SQP ADM includes prediction and correction steps where prediction and correction points are
obtained by solving series of related systems of nonlinear equations. Global convergence of the proposed method
is proved under mild assumptions. Some preliminary numerical results are reported to verify the effectiveness of
the proposed LQP-SQP ADM in practice.
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