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Abstract

This paper focuses on the following elliptic equation

—u —px)u="~f(x,u), ae x¢cl01],
u(0) —u(l) =u'(0) —u'(1) =0,

where the primitive function of f(x,u) is either superquadratic or asymptotically quadratic as u| — oo, or subquadratic as
[u| — 0. By using variational method, e.g. the local linking theorem, fountain theorem, and the generalized mountain pass
theorem, we establish the existence and multiplicity results for the periodic solution and subharmonic solution. (©2017 All
rights reserved.
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1. Introduction and main results

In this paper, we consider the following elliptic equation

(1.1)

—u” —pxJu="~f(x,u), ae x€l01],
u(0) —u(l) =u’(0) —u'(1) =0,

where 0 < 1 < oo, p(x) is continuous, and F(x,u) = f(l)l f(x,s)ds : [0,1] x R — R is l-periodic in x for all
u € R and satisfies the following assumption.

(A) F(x,u) is measurable in x for each u € R and there exist a € C(R*,R*),b € L1(0, ;R*) such that
[F(x, W] < a(ful)b(x), [f(x, w)l < a(lul)b(x)
forallu € R and a.e. x € [0, 1].

In the past, a series of existence results for periodic solution have been obtained in the literatures (see
[1,2, 8,13, 20, 21] and their references). But the widely used tool is either the various fixed point theorem
or cone theory.
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In recent years, however, many scholars have tried to use variational method to get the best result for
simple elliptic equation. Nevertheless, to the best of our knowledge, there are few such results. In [7], Liu
and Zhao considered the impulsive boundary value problem with small non-autonomous perturbations.
They showed the existence of three distinct classical solutions via variational methods and the three critical
point theorem. But their works did not identify that the solutions which they obtained are periodic or
subharmonic. This has motivated our interest in the topic.

As is known to all, there are many results on periodic solutions and subharmonic solutions for classical
Hamiltonian systems. In [4], Li et al. considered the second order Hamiltonian system

{il(t) +Bt)u(t) + VF(t,u(t)) =0, ae. tel0,TI, 12)

w(0) —u(T) =u(0) —u(T) =0,
where B(t) is an N x N symmetric matrix, continuous and T-periodic in t; F: R x RN — R is T-periodic
(T > 0) in t and satisfies the following.
(Fo) There exist constants ap > 0 and L; > 0, such that

(VE(t W), w) — 2F(t, 1) > —CF(t,u)
lul?

for all u € RN, with |u| > L; and a.e. t € [0, T].

In [4], the conditions (Fp) and (A) are used to prove the C condition. Nevertheless, Tang and Wu [19]
proved (C)* condition by (Fy), (A), and the following condition

F(t,u)
uj—0  |ul?

= +oco uniformly for a.e.te [0,T]. (1.3)

Clearly, we can use the method introduced in [4] to prove the (C)* condition without (1.3).
Over the last few years, many researchers studied the existence of periodic solutions for problem (1.2)
under the following condition.

(F{) Assume that there exist A > 2 and 3 > A — 2 such that

F
lim sup (X';\i) < oo uniformly for a.e. x € [0, T],
oo U
lim inf (VF(x, ), —2F(x,u) >0 wuniformly for a.e. x € [0, T].
lu|— o0 [ulB

Obviously, (Fo) is weaker than (F)). Hence, we will replace (F)) by (Fo).

For more papers on periodic solutions and subharmonic solutions for classical Hamiltonian systems
(1.2), please see [5, 9, 22-24] and their references. Inspired by those works mentioned above, we study
periodic solutions and subharmonic solutions problems for the elliptic equation (1.1).

1.1. Periodic solutions of elliptic equation

In this section, we deal with the existence and multiplicity of l-periodic solution of problem (1.1) under
the assumption: p(x) is l-periodic in x.

We will divide the problem into three cases.

1.1.1. The superquadratic case
For the superquadratic case, we make the following assumptions

(Fp) | llimo Fxw) _ uniformly for a.e. x € [0, 1].
ul—

[ul?

(F2) | llim F?z“;] = +oo uniformly for a.e. x € [0, 1].
ul— oo
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(F3) There exist constants ag, L1 > 0, such that

ao

(fx,u),u) —2F(x,u) > WF(x,u)
for all u € R, with [u| > L and a.e. x € [0, 1].
(F4) For some 19 >0
F(x,u) >0, Vu/ <7, V¥xel01 or F(x,u) <0, Vu <ry, Vvxel01.

(F5) F(x,—u) = F(x,u) for all u € R, and a.e. x € [0, 1].

Theorem 1.1. Suppose that F(x,u) satisfies (F1)-(F4), if 0 is an eigenvalue of —dd—;z +p(x), then problem (1.1) has
at least one nontrivial solution.

Remark 1.2. (F3) is weaker than (F)). It is easy to show that F(x,u) = lu? In(1 + [uf?) + sin [u* — In(1 + [u/?)
for all u € R and a.e. x € [0, 1], satisfies our assumption (F3) but not the condition (Fj) in RR.

Theorem 1.3. Suppose that F(x, u) satisfies (Fz), (F3), and (Fs), then problem (1.1) has infinitely many solutions.

1.1.2. The subquadratic case
For the subquadratic case, we make the following assumptions

(SF1) There exists r > 0 such that F(x, —u) = F(x,u) for all |u| < rand x € [0, 1].
(SF2) F(x,0) =0 for x € [0,1], and limy,,|_, %ﬁ) = +oo uniformly for x € [0, 1].

Theorem 1.4. Suppose that F(x, u) satisfies (SF1) and (SF3), then problem (1.1) possesses infinitely many solutions.

Remark 1.5. Under (SF;) and (SF,), by the well-known theorem (in [3]), we can also get a sequence of
critical value cx of @(u) (defined in next section) with cx < cx41 < 0 for k € IN, and {ck} converges to
Zero.

1.1.3. The asymptotically quadratic case
For the asymptotically quadratic case, we assume

(AFp) F(x,u) > 0 for all (x,u) € [0,1] x R, and there exist constants p € (0,2) and R; > 0 such that
(f(x,u),u) < puF(x,u) for all x € [0,1] and Ju| > Ry;

(AF,) |li‘mO Fm?) = oo uniformly for x € [0,1], and there exist constants c;, Ry such that F(x,u) < calul
ul—
for all x € [0,1] and |u| < Ry;
(AF3) liminf F(’;’r) > d > 0 uniformly for x € [0, U

—oo |

Theorem 1.6. Assume that (AF;)-(AF3) hold, F(x, —u) = F(x,u), then (1.1) possesses infinitely many solutions.

1.2. Subharmonic solutions of elliptic equation
We assume the following hypotheses.

(HF,) | l‘imo Fm” = 0 uniformly for a.e.x € [0, 1].
ul—

(HE,) There exist constants ag > 0, and L; > 0, such that

(f(x,u),u) —2F(x,u) > o

= WF(X/ 'LL)

for allu € R, with |u| > L and a.e. x € [0,1].
(HF3) F(x,u) >0, (x,u) € [0,1] x R.
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Theorem 1.7. Suppose that p(x) = m2w?, where m is a nonnegative integer, w = 2%, and T satisfies (A),
(HF1)-(HFE3), and the following condition

(HE,) 1|iﬁl_i)nf Fm?) > L2 2 yniformly for a.e. x € [0, 1.

Then there exist a sequence {kj} € IN, k; — oo, and corresponding distinct ;1 periodic solutions of problem (1.1).

Remark 1.8. In [22], Ye and Tang studied the existence of infinitely many solutions for problem (1.2) under
the condition (F}). As stated in Remark 1.2, (HF,) is weaker than (F}). Hence, our result generalizes and
improves Theorem 2 in [22].

2. Variational setting and proofs of the main results

In order to apply the variational methods, we first recall some related preliminaries and establish
corresponding variational framework for our problem (1.1), and then give the proofs of all the main
results.

2.1. Periodic solutions of elliptic equation
Let

H{ = {u: [0, - R | u is absolutely continuous, u(0) =u(l), and u' € L2(0, l;lR)}

be a Hilbert space endowed with the norm

1 1 3
Jull = (JO h(x)Pdx + JO u (X)|2dx>

for u € Hl. According to the Sobolev embedding theorem, Hi is compactly embedded into LP([0, 1], R)
for 1 < p < oo and there exists T, > 0 such that

lullp < Tpllull, VueH], 2.1)

where || - ||, denotes the usual norm on LP forall 1 < p < oo.
It follows from assumption (A) that the functional @ on H} given by

1, 1t L

O(u) = J lu (x)Pdx — J p(x)uz(x)dx—J F(x,u)dx
2 Jo 2 Jo 0

is continuously differentiable on H%. Moreover, one has

1
(@' (w),v) = JO ' (v (x) — p(x)ux)v(x) — f(x, wv(x)]dx

for all u,v € Hl. It is well-known that the solutions of problem (1.1) correspond to the critical points of ®
(see [5, 12, 16, 27]).
Let

1
Qx) =l = 5 [ (p06) + s = 31— K,

2 Jo
where K : Hl — H! is the linear self-adjoint operator. Clearly, K is compact. Hence, we can decompose H}
into the orthogonal sum of invariant subspaces under (I —K) due to classical spectral theory

H=H @H ' @H. (2.2)
Here H? = N(I —K), H™ and H™* are such that, for some & > 0,

Qu) < —gHqu, ifueH, (2.3)

Qu) > g||u||2, ifueH. (2.4)
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2.1.1. The superquadratic case
Let {ej}jen be a basis for H% and define Xj, Yy, and Zy asin [4, 5, 10, 16, 27].

Definition 2.1 ([19]). A sequence {x} € IN? is admissible if, for every o € IN?, there is m € N such that
on = « foralln > m.

Lemma 2.2 ([5, 15-17]). If Zy, = @ X;, then By =  sup  [|uf|ec — 0as k — oo.
jzk ueZyllulj=1

Lemma 2.3. Suppose (A) and (F2)-(F3) hold, then @ satisfies the (C)* condition.
Proof. Let X = HI, X! = H with {enJn>1 being its Hilbertian basis, X2 = H™ @ HC and define

Xll =span{ej, ey, ...,en}, neN, Xfl =X), neN, X = U X%, j=1,2.
nelN

Let {u, } be a sequence in H! such that {«,,} is admissible and satisfying
Uy € Xotn, SUP @(U,) < 00, (1+ [[tter,, DD (tar, )| — 0.

Hence, there exists a constant M > 0 such that

O (e, )l <M, (1 [t [)[@ (e, )| < M (25)
for all n.

Now we prove the sequence {uy, } is bounded. If {u, } is unbounded, we can assume that ||uy, || = o0
asn — oo. Let wy,, = Hiﬁ’ then |[wq, || = 1. Passing, if necessary, to a subsequence, for some w € H!
we obtain

Wq, =W weakly in H!, Wq,, — w in C([0, 1; R) (2.6)

as n — oo. Since p(x) is continuous and l-periodic in x, we can find a positive constant py such that
Ip(x)l <po, Vxel01. (2.7)

Using (2.5), (2.6), and (2.7), we have

L
J LA P P AT

l
M 1
S Tum 2 Dws < TP+ 2. @
0 Tuenl? 772 S e, | zJ(P(XH g, (x)dx + 5o+ Dlwa, [ (28)

0 " ”u‘xn”z

From (F;), we see that there exists a positive constant vy > L; such that F(x,u) > 0 for all u € R with
lu| > 1 and a.e. x € [0,1]. Noting that, the assumption (A) implies that

F(x,w)| < arb(x), [f(x,u)] < arb(x) (2.9)
for all u € R with |u| < r; and a.e. x € [0,1], here a; = 0g1a<x a(s). Then we obtain
IS
F(x,u) > —a;b(x) (2.10)
forallu € R and a.e. x € [0, 1].
If w =0, on one hand, by (2.8), we have
1
lim J Fooua,) ;1 2.11)
noooJo [[ue,|l 2
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On the other hand, we deduce from (F3), (2.5) and (2.9) that

J \F(x,uan)ld
72 X
(xllian 1z} o
1
< aolj ((F(% Worp ) Wy ) — 2F (X, U, ) dX — aolj ((F(x, Ua, ), e, ) — 2F(xX, Ug, ) ) dx
0 Xl <71}
< ap 1 (20(ug,) — (@ (Uay ), Uy ) + g (11 + Z)J a1b(x)dx
{xllwan I<T1}

< 3aalM + aal(rl +2)a1]/bl|1.

Then, we obtain

1
F(x,u F(x,u F(x,u
J ( "‘;)dx<J IF( oc;NdXJrJ IF( oc;)‘dx
0 Ilua,|l (e 121} el (e <} [Wa |
F(x,u ail|b
(xltanl>r) ol [[ttec, ]
— _ a b 1
< e |2 (Bay ™M + a5 (g +2)a [b]]y) + Hu” ”|2 -0
Xn

as n — oo, which contradicts to (2.11). Sow # 0. Let L = {x € [0,1],|w(x)| > 0}, then |L| > 0, and
[un| — +o00 asn — +oo for a.e. x € L.
From (F;), one has
. F(x, Uu,, )
lim ———*

5~ = Foo ae. on L.
n—-+oo |uocn|

We conclude from (2.10) and Fatou Lemma that

1

F F
limian de}liminf <J |(X’iuc’;“)'Iw(xnlzdx— 4@ ZJ b(x)dx)
n—+00 Jo [l Ue, || notoo \Jp [ue, e 17 Jio L

F(x,u ai||b
> liminf <J [Flo o, )| “2“)||w(xn|2dx— 1l H12> = +o09,
n—too \JI Uyl o,

which is contradiction to (2.8), so ||[uy, || is bounded. By similar arguments as those in Proposition 4.1 in
[12], we get that the (C)* condition is satisfied. The proof is completed. O

Lemma 2.4 ([5, 11]). If the Cerami sequence of ® is bounded, then its subsequence converges weakly to solution of
problem (1.1).

Proof of Theorem 1.1.

Step 1. We claim that @ has a local linking at 0 with respect to (X!, X?). Here we only consider the case
where 0 is an eigenvalue of —d%
similar.

Using (F1), we can get that there exists l; > 0 such that

—p(x) and F(x,u) > 0 for all lu|] < 7, x € [0,1]. The other cases are

o
[F(x,u)l < Elul2 (2.12)

for all [u| < 1; and a.e. x € [0,1]. Due to (2.12), (2.1), and (2.4), for u € X! = HT with |[u|| <13 £ Tl—;, we
have

O (u) > §||u||2 2 Jl lul2dx >0
= 2 2 O = 7
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which implies that
®(u) >0, VueX! with |[ul| <rs.

Setu=u"+u’ € X2 = H~ @ H satisfying |[u|| <14 = %, by (2.1), (2.3), and (F4) we get

5
o) < —5fu |,
which implies that
®(u) <0, Yue X with |Ju| <14
Let r = min{r3, 4}, then ® has a local linking at 0.

Step 2. We claim that @ maps bounded sets into bounded sets.
Assume that ||u|| < M for some positive constant M. Combining (2.1) and (2.7) with (A), we have

1 1 , 1 1 1
0w < 2J ' Pdx + pzoj u?dx + aMJ b(x)dx < %Mz +amlIbll
0 0 0
for all u € H!, where apy = max  a(s).
0<s<TeM

Step 3. We claim that for every m € IN,
®(u) - —oo as |ul| = oo, on XL P X2
Evidently, there exists d; > 0 such that
lull < diflufl2, Vu e X5, X2 (2.13)

By (F), there exists a constant 1, > 0 such that F(x,u) > %d%(po +2)[ul? for all ju| > 1, and a.e. x € [0,1].
Applying (A), we have [F(x, u)| < rr}(e)a?] a(s)b(x) for all [u| < 1, and a.e. x € [0, 1], which implies that
sel0, 1

—_

F(x,u) > fd%(Po +2)[ul>? = M; — max a(s)b(x)
SE[O,lzJ

N

forallu € R, and a.e. x € [0, 1], where M; = %d% (po+ 2)1%, and py is the same as in (2.7). Combining this
with (2.13), we get, for u € X}, @ X?,

cPotl

1
1
0w < P2l - [ Foxwax < 3l + Mit+ M,

which implies that
®(u) = —oo as |lul| = oo on XL, PX?,
where M, = m[g{% a(s)||bl|p1. Therefore, by the local lining theorem (see [6, 17, 27]), the proof is complete.
sell, Ly

O

Proof of Theorem 1.3. Obviously, we can prove that @ satisfies condition (C) in the similar way as Lemma
2.3, and ®(—u) = ®(u) by using (Fs5). Then, we only need to check conditions (A;) and (A;) of the
fountain theorem (see [4, 6, 7, 14, 15, 25]).

Step 1. In fact, for each u € Yy, there exists a constant d, > 0 such that
[ul] < dalfull2- (2.14)

Applying condition (F,), there is 13 > 0 such that F(x,u) > (1+ po)d%IuI2 for all ju] > 13 and a.e. x € [0, 1].
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From assumption (A), one has |F(x,u)| < apb(x) for all u € R with [u| < 13 and a.e. x € [0,1], where

a; = max a(s). Then,
O<S<l3

F(x,w) > (1+po)d3(lul® —13) — azb(x) (2.15)

forallu € R and a.e. x € [0,1].
Therefore, for all u € Yy, combining (2.14) with (2.15), we have

1

2
14

< =Pl + (14 po) 3L+ az ],

O(w) < 5wz + %HuH% — (1 +po)dz(|[ul3 — 3V + az[[bll

which implies that ®(u) — —oo as ||u|| — oo in Yy. Hence, (A1) holds.

Step 2. Let us define 1 = B, '. Applying lemma 2.2, we have
Tk — 400, as k — oo. (2.16)

Then by (2.4), we get that Zy, C H™ and 13 > 45 las]|/b|; for k large enough. Thus, for all u € Zy with
|lu|| = Tk, we have ||u||o < 1. Hence,

d d
©(u) > F[uf* — asflblly > 7.

where a3 = Orgaé(l a(s). Therefore, it follows from (2.16) and the above expression that
IS

inf ®d(u) - +oo as k — oco.
ueZy,lull=rx

Hence, (A;) is proved. O

2.1.2. The subquadratic case
Proof of Theorem 1.4. We consider the truncated functional

1 1 l

1
I(w) = 5 |[ul? + (—2 L (p(x) + 1)dX—JO F(qu)d"> A(ffl)

for all u € H{, where h : R* — [0,1] is a non-increasing C! function such that h(s) =1 for 0 < s < Too
and h(s) =0 for s > %. Clearly, I € C'(H},R) and I(0) = 0.
Case 1. |Ju|]| > %. It is easy to see I(u) = ||u/|?, which shows that
I(u) = 400 as |Jul| — oo.
Hence, I is bounded from below and the (PS) condition holds. By lemma 2.4 we know that this is enough
to get a solution of problem (1.1).

Case 2. ||u]| < 2. By the sobolev embedding, one has
2T Yy g

00

() < Julx)[loo < Toollulx)[| < 5, Vx € [0, 1.

N| o

Applying (SF), we have F(x, —u) = F(x,u), x € [0, 1], and I(u) = I(—u).

k
For any k € N, set Ex = @ X;, where X; = span{e;}, there is a constant dy > 0 such that
j=1

dilluf = uf, Vu e Ex. (2.17)
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By (SF»), there exists r5 > 0 such that
F(x,u) > (po +2)di|ul? (2.18)

for all u| < r5 and x € [0,1]. Hence, for u € Ey with |[u]| = 1k = %min{l, T—i}, applying (2.7), (2.17) and
(2.18), we have

< Sl + P
2

which implies that

Po+2
2

_Po+2

12,
2

lull® = (po +2)[[ufl* =

1
!%—Jﬂxww<
0

+2
fueEx:|lu =k} C {ue Hi:I(u) < _POZ li}

Let Ax ={u € Hj : I(u) < —Pot2 +}, by the properties of genus we get that

Y(Ax) = y({{u € Bt luf| = W}) >
which implies that Ay € T and

2)12
sup I(u) < —m < 0.
ucAyg 2

By virtue of Theorem 1 (see [3] and its reference), we can see that I admits a sequence of critical points
{fwie} such that I(ux) < 0, ux # 0 and ux — 0 as k — oo, when [Jug]| < ﬁ. In fact, I(u) = ®(u) with

v < . Hence, the sequence of critical points {uy} satisfies ®(uy) < 0,ux # 0 and ux — 0as k — oo
with HukH < %.
By the two cases we have discussed above, the proof of Theorem 1.4 is finished. O

2.1.3. The asymptotically quadratic case
In this subsection, the space and space decomposition we talked about are same as those established
before. To get our next result, we should use the following inner product and norm

1 1 1
(ulv) = (|A|iu/ |‘A|7\))2 + (uOIVO)ZI ||u” = (ulu)il

where u =u~ +u’+u' and v =v~ +0 +v* with respect to the decomposition (2.2), the operator

d2
So the functional @ defined on H% is
1t ., T, v 1, o
O(u) = 3 O(\u = plJuw))dx —¥(u) = 5 [u”||” = Sfu” " = ¥(u) (2.19)

forallu=u"+ul+ut e Hl =H  PH P H", where ¥(u) = fé F(x, u)dx.
Note that (AF;) and (AF3) imply

F(x,u) < C(1+u*), Vix,u)el0,1 xR (2.20)
for some C; > 0.
Proposition 2.5 ([24]). Suppose that (AF,) and (AF3) are satisfied. Then ¥ € Cl(H%,IR) and V' : H% — (H%)* is
compact, and hence © € Cl(H%, R). Moreover,

1

‘P/(u)v = J (f(x,u),v), (2.21)
0

O (Wv=(ut,vh)—(u,v ) —¥ (uv (2.22)

forallu,v € Hl = H- @H P H" withuw = u™ +ul +u" and v = v— +0 + v, respectively, and critical
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points of @ on H} are solutions of (1.1).

Let Xj=span{e;} for all j € IN, where {e;, : n € N} is the system of eigenfunctions of A, and Yy =

k 00
Xj, Zy, = @ X;. Consider the following C!-functional @, : H} — R defined by
j=1

j=k
Oy :=A(u)—AB(u), Aell,2].

where .
1 1
Alu) = EHquHZ, B(u) = EHLL*HZ —i—J F(x, uw)dx. (2.23)
0
By virtue of Proposition 2.5, we know that @, € Cl(H%,]R) for all A € [1,2]. Note that ®; = ®, where
@ is the functional defined in (2.19).

Lemma 2.6. Let (AF,) and (AFs) hold. Then B(u) > 0 for all w € H} and B(u) — oo as |[u|| — oo on any
finite-dimensional subspace of H1.

Proof. Obviously, (2.23) and (AF;) imply that B(u) > 0 for all u € H{.
We claim that for any finite-dimensional subspace E € Hj, there exists a constant € > 0 such that

meas ({x € [0, 1] : Ju(x)] > e|ju|]}) > €, Vue E\{0}, (2.24)

where meas(-) denotes the Lebesgue measure in RR.
If this conclusion is not true, then for any n € IN, there exists u,, € E\{0} such that

meas ({x c[0,1U: lun(x)| > Huﬂ”}) < l

n n

Set v, = HL‘—KH € E for all n € IN. Then {v,} is bounded, and

meas ({x e[0,: |va(x)] > 1}) < l, ¥n € IN. (2.25)
n n

Passing to a subsequence if necessary, we may assume vy, — vg in H! for some vg € E. Clearly, |[vo|| =1,
and

1
J vn —wldx -0 asm — oo, |[vo|lec > 0. (2.26)
0

By the definition of norm || - || «, there exists a positive constant §p such that
meas({x € [0,1] : [vo(x)] = d0}) = bp. (2.27)
For any n € N, set
An = {x e [0,1:vn(x) < 711}’ AS =10, 1\An.
Let Ag ={x € [0,1 : [vg(x)| = d0}. Applying (2.25) and (2.27), for n large enough, one has

1.8
meas(An N Ag) > meas(Ag) —meas(A;,) = & — o > 50.
Evidently, for n large enough, we have

1
J v —voldx > J

1
([vol = vnl)dx = (80 — =) - meas(An N Ag) >0,
0 AnNAg n

which contradicts (2.26). So (2.24) holds.
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For the € given in (2.24), set A, = {x € [0, 1] : u(x)| > €|[u||} for all u € E\{0}. Using (2.24),
meas(Ay) > €, Yu € E\{0}. (2.28)
Applying (AF3), there exists a constant R3 > R; such that
F(x,u) > glul, Vx € [0,1] and |u] > Rs, (2.29)
where Rj is given in (AF;). Observe that
[u(x)] > R3, Vxe Ay (2.30)
for any u € E with |Jul| > %. By (AF;), (2.28)-(2.30), for any u € E with ||ul| > %, we obtain

meas(/Ay

) _ de?
B(w) > | Flxu)dx > delful- z ——Iul,
AL 2 2

which implies B(u) — oo as |[u| — oo on any finite dimensional subspace E C H{. The proof of lemma
2.6 is finished. O

Lemma 2.7. Assume that (AF;)-(AF3) is satisfied. Then there exist a positive integer ki and two sequences
0 <1k < px — 0as k — oo such that

O(k(}\) = inf (D)\(LL) >0, Vk >k, (2.31)
UEZy,|lull=px
Ex(A) = inf D) (u) — 0 as k — oo uniformly for A € [1,2], (2.32)

ueZy,lull<px

and
Br(A) = max Ddy(u) <0, VkeNN, (2.33)

ueYy,||ul|=rx

k 0
where Yy, = @ X; = spanfey, e, -, ex}and Zy, = @ X; = span{ey, - - -} forall k € N.
j=1 j=k

Proof.

Step 1. We show that (2.31) and (2.32) hold.
Note that Z, C H™ for k large enough. Due to (2.1), for any u € H! with |[u]| < %, one has |[uf/c < Ry,
where R; and 14, are the constants given in (AF;) and (2.1), respectively. Then for k large enough and
u € Zy with |Juf] < %, by (AF;), we obtain

1 L 1
Dy (u) > EHqu —2J F(x, u)dx > Euuuz —2colull;, YA€ ,2]. (2.34)
0
Let
k= sup |lul;, VkeN, (2.35)
weZy Jluf=1
then

lk — 0, ask— oo. (2.36)
Since H% is compactly embedded into Ll Evidently, (2.34) and (2.35) imply

1
OA(w) > 5 [ulf” = 2c2b|lu] (237)
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for any k large enough and u € Zy with |Juf| < %. For any k € IN, let
Pk = 8calk. (2.38)

Combining this with (2.36), we get
px — 0 as k — oo. (2.39)

Clearly, there exists a positive integer k; large enough such that

R
Pk < —2, Yk =K. (2.40)
Using (2.37), (2.38), and (2.40), for any k > k4
02
o (A) == inf Oy (u) > =X >0.
UEZy, ||u||=px 4

By (2.37), for any k > k; and u € Zy with |[u|| < px, we have
O (u) > —2colip.
Note that ®,(0) =0, then

> inf O (u) = —2colkpr, Vk = k.
ueZy,|lull<pr

Combining this with (2.36) and (2.39), we have

E(A) = inf ®)(u) — 0 as k — oo uniformly for A € [1,2].
UEZy,|lul<px

Step 2. We prove (2.33).
For any k € IN, there exists a constant Cy > 0 such that

[ull2 = Cillufl, Yu e Y. (2.41)

Using (AF,), for any k € IN, there exists a constant 5, > 0 such that

1
F(x,u) > C—ilulz, VIul < S (2.42)

By (2.1), for any k € N and u € H} with |Ju]| < %‘Z, one has ||u|lo < 8%, where T is the constant in (2.1).
Applying (2.41) and (2.42), for any k € N and u € Yy with |Juf| < %, one has

1 2 HUH% 1 2
Or(u) < Sfull =" < =5 vl vA€IL2. (2.43)
Cy 2
Now for any k € IN, we choose 0 < 1 < min{py, %}, thus
12
Kk
Br(A) = max Dp(uw) < ——==<0, VkeN.
ueYy,|ul|l=rk 2
The proof of this lemma is finished. O

Proof of Theorem 1.6. By virtue of (2.20) and (2.1), @) maps bounded sets to bounded sets uniformly for
A € [1,2]. Obviously, @ (—u) = @, (u) for all (A, u) € [1,2] x H since F(x, —u) = F(x, u). So, the condition
(T1) of the variant fountain theorem (see [26]) holds. Lemma 2.6 indicates that the condition (T,) is
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satisfied, and Lemma 2.7 implies that (T3) holds for all k > k;, where k; is given in (2.42). Hence, by
virtue of the variant fountain theorem, for any k > ki, there exist A, — 1,u,, € Yy, such that

Dy v, (ur,) =0, @x, (un,) = Nk € [Ex(2), Br(1)] asn — co. (2.44)

For the sake of notational simplicity, throughout the remaining proof of Theorem 1.6 we always set
un =1u,, forallm € N.
Claim 1. {un}is bounded in H%.
Obviously, for the constant Rz given in (2.29), there exists a constant M3 such that

'F(x,u) — ;(f(x,u),u)' <Mjs, ¥xe€0,1] and [u| < Rs. (2.45)

By virtue of (2.21), (2.22), (2.29), (2.44), (2.45), and (AF;), we obtain

1

_(D)\n (un) = Eq);\“ |Yn (Un)un — (D?\n(un)

1
1
= )\nJ [F(x,un) — E(f(x,un),un> dx
0
> )\n(z_ FL)
2
> d}\n(z_ FL)
4

J F(x, un)dx — AnMsl
J [unldx —AnM3l, ¥n €N,

where L, = {x € [0,1] : [un(x)| > Rz}. Combining this with (2.44), there exists a positive constant My such
that

J [unldx < My, Vne N. (2.46)
Ln

For any n € IN, let xn : [0, 1] — R be the indicator of L, thatis for alln € IN,

) 1, xe L,
X =
Xn 0, x¢&Ln

Then by the definition of L,, and (2.46), one has
1 —xn)un|leo <R3 and |[[Xnunl1 < Mg, ¥n € N.
Applying (2.1) and by Holder inequality, we have

i+ udll2 < (1= xn)unlloo iy + i fl1 + Ixntn 1 llun +udfloo
<c3(R3+My)llug +1l], ¥YneN

for some c3 > 0. Thus, we obtain

[y +ud]l2 <c3(Rs+My), ¥neN.

In view of the equivalence of norms || - || and || - || on H~ @ HY, there exists a positive constant M5 such
that

[uy +udl < Ms, YneN. (2.47)
Note that

1
wb))? = 20, (un) + Anllun | + 24, L F(x,un)dx, ¥n € N.
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Thus by (2.19), (2.20), (2.43), and (2.47), it holds that

1
tn | = 20, (n) + An e |2+ i + 12 + 20 j Flx,n)dx
0 (2.48)

< Mg +4C T [[unlll, Yne N

for some Mg > 0, where T, and C; are the constants in (2.1) and (2.20), respectively. Since u < 2 in (2.48),
{un} is bounded in H!.
Claim 2. {un} possesses a strong convergent subsequence in H}.
Actually, by Claim 1, without loss of generality, we can assume that

U, — U, u9L—>u8, u:{—\uar, Un — Ug, asSM — 00 (2.49)

for some up = uy +ud+ul € Hl = H-@H @ HT since dim(H™ @ H’) < oco. In view of the Riesz
representation theorem, (I);\n ly,: Yn = Y and vy H% — (H%)* can be considered as <I);\n ly,: Yn = Yn
and ¥’ : H} — H}, respectively, where Y, is the dual space of Yy,. Note that

0=0y lv, (un) =1 —An(upy +Pu¥ (un)), ¥neN,
where P;, : Hl — Yy, is the orthogonal projection for all n € N. Thus
uh =An(u; 4+ Pa¥ (un)), VneN. (2.50)

By Proposition 2.5, vy H% — H% is also compact. Since the compactness of Y and (2.50), the right
hand side of (2.50) converges strongly in H{ and u;; — ug in Hi. Combining this with (2.49), we obtain
Un — U in H%. Hence Claim 2 is true.

Now by the variant fountain theorem (see [1, 10, 26]), we know that ® = ®@; has infinitely many
nonzero critical points. Thus, problem (1.1) has infinitely many nonzero solutions due to Proposition 2.5.
The proof of Theorem 1.6 is finished. O

2.2. Subharmonic solutions of elliptic equation

In this section, we assume p(x) = m*w?, where m € N, w = 2%. Choose k € IN. Replacing 1 by

kl in the definitions of H%, Q, <D/, Q, H% H—, and Ht, we get the corresponding spaces and functions

HL,, @k, @, Qx, HY, Hy, and H;, respectively. Especially, according to p(x) = m>w?, we get

H, = {Z}i%*l(aj Cosjkflwx%—bj sinjktwx) : aj,b; e R0O<j<km— l} ,
HY ={acosmwx +bsinmwx:a,bc R},

Kl Kl
H = {u € H]1<1 : J u(x) cosjk twxdx = J u(x) sinjktwxdx = 0,0 <j < km} ,
0 0

and we define H, = 0 if m = 0. Let us point out that the norm || - || in the following is the usual norm
defined on H}d. Arguing as Section 2.1, we can find 8, > 0 and Cy > 0 such that

%
2

o
Qe > Sl ifueHy, (2:52)

Qk < ——J[ul?, ifueH,, (2.51)

and
[ulloo < Cicllull, Vu € Hy,. (2.53)
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Proof of Theorem 1.7.

Step 1. In a similar way as the proof of Lemma 2.3 with | replaced by kl, we can obtain that @y satisfies
the (C) condition.

Step 2. We claim that there exist pyx > 0 and by > 0 such that
Or(u) >br >0, Yue H’kF NoB,,.

Evidently, by virtue of (HF;) and the periodicity of F in x, for any ¢ > 0, there exists a positive constant
p1 such that
F(x, W) < exful? (2.54)

for all [u] < p; and a.e. x € [0,1]. Let ¢ = 54—“ > 0, px = min{l, p—L} > 0, and by = %pi > 0, using
(2.52)-(2.54), we obtain

Sk 1 LU S
Dy (u) > HUH — &k . lul~dx > ZHu” = by

forallu € Hz NoBy,.
Step 3. Let
ex(x) = sin((km+ 1)k~ twx)uyg

for all x € R and uy € R with |ug| = 1, where w = ZT” Then, one has

/ k 1
ey = m w cos((km + 1)k wx)ug
for all x € R, which implies
’ kl
||ekHL2(o,k1;1R) =5
and 5
Iy (km+1) , 2
lexllt2 (o) = ez @ lexlIT2 o, um) -
Applying (HFy), for
F 1+2
gp = Inf liminf Lo It me >0,
x€[0,1] |ul—o0 |1,L|2 2

there exists a positive constant 14 such that

142
F(x,u) > ( +2 mw2+€o) hu?

for all [u| > 14 and a.e. x € [0,1]. Therefore, due to (HF3) and the periodicity of F(:,u), we have

142
F(x,u) > ( +2 me + £0> ul> — My (2.55)

for allu € N and a.e. x € [0, kl], where M, = (”2'“ 2 +eo)l3
By the properties of H,_ and HY, one has

kl kl
[l :J |u|2dX+J u'Pdx < (1+m2w?)|jul?, (2.56)
0 0

forallu e H_ H%. Thus, combining (2.51) and (2.55) with (2.56), we get

5 2kt m2w?2s2 [kt Kl
DO (sex +u) < —2k||u_||2+2J IekIde— 5 J Ieklzdx—J F(x,sex +u)dx
0 0 0
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1 1+ 2km 14+2m
< szsZ <k2> ||ek\|2L2 — < 5 wz—i—so) (52H6k||2L2 + HuHZLz) + kM7l

1
< —Esoklsz — Mg|[u|® + kMl

forall s > 0 and u € H,, @ HY, where Mg = ((1+2m)w?/2+ ¢)/(1 + m*w?).
Hence we have

Oy (sex +u) <0, either s >s; or |u| > sy, (2.57)
where
= %ar\ds— kMgt
1= ” 2 = Ms
Let
Fk:{sek:0§s<sl}@{ueHg@Hg: [lu]] <Sz}. (2.58)
Thus
aFk = Fkl UFk2 U Fk3/
where

Py = {u e Hy @MY« ] < 2},
Fi, = s1e @ {u € Hig @HY : [Jull < s2},
Fi, ={sex: 0 < s <si}@P{ueH, @HY: [u =s2}.

By virtue of (2.57), one has
Dp(u) <0, Yue sz UFk3'

Applying (HFj3), it holds that @y (u) < 0 for all u € H,, @ H?, which implies that
Or(u) <0, Yue Fk1~

Therefore,
Dy (u) <0, VYue oFy.

Finally, by the generalized mountain pass theorem (see [11, 14, 17, 18, 27]), for a given k € IN, there
exists a critical point uy € H]ld such that @y (uy) > 0.

Step 4. We claim that (1.1) has infinitely many subharmonic solutions.
If ux =uy for some k > 1, it is easy to see that

d)k(uk) = kd)l(ul) — 400, as k — oo. (259)

Note that

2 (kL 2,22 rkl Kkl 142
Dy (uk) < sup (SJ Ieklzdx— m (; S J IekIde—J F(x,u)dx) < ( + m> w?*Msl,
0

ueFy 2 0 0

where Fy is the same as (2.58). This is a contradiction to (2.59). Hence, @y (uy) is bounded for all k and
there exists a constant k; € IN such that uy # u; for all k > k;. Repeating what we have just shown, there
exists a ko > kg such that uy, # uy, for all kik > ko. If it is not true, then @y ) (wy, k) = k@, (uy, ) = oo
as k — oo, which contradicts that @y y (uy, k) is bounded. In a similar way, we can get a sequence {uk].} of
distinct nontrivial solutions of problem (1.1). The proof of Theorem 1.7 is finished. O
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