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Abstract
In this paper, we propose a stochastic service-resource mutualism model with Lévy noises and harvesting. Under some

assumptions, we study several dynamical properties of the model. We first obtain the thresholds between persistence and extinc-
tion for both the service species and the resource species. Then we give sharp sufficient conditions for stability in distribution of
the model. Finally, we establish sufficient and necessary criteria for the existence of the optimal harvesting policy. The optimal
harvesting effort and maximum of sustainable yield are also obtained. Our results reveal that the persistence, extinction, stability
in distribution and optimal harvesting strategy have close relationships with the random noises. c©2017 All rights reserved.
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1. Introduction

The investigation of the ecologically and economically reasonable harvesting strategies is one of the
most significant issues in mathematical biology. Over-harvesting has driven many species to go to extinc-
tion. It is therefore important to establish the optimal harvesting strategy for a species or a community.

In recent years, the optimal harvesting problems have attracted much attention (see e.g., [8–10, 12, 14]).
Under the famous catch-per unit effort (CPUE) hypothesis, Clark [10] gained the optimal harvesting
strategy for a deterministic logistic population model with constant coefficients. Then the result in [10]
was extended to the model with periodic coefficients by Fan and Wang [12]. Kar [14] established the
optimal harvesting strategy for a prey-predator model with prey-refuge. Braverman and Mamdani [9]
considered the optimal harvesting problems of single-species models with impulsive and continuous
harvesting effects. Braverman and Braverman [8] analyzed the optimal harvesting problems of single-
species models with diffusion.

In the real world, population models are inevitably affected by environmental perturbations (for ex-
ample, cold wave, drought, fire). Consequently, it is interesting and important to consider the optimal
harvesting problems of stochastic population models and to study the effects of environmental perturba-
tions on the optimal harvesting strategy. Beddington and May [5] did pioneering work in this area. By
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solving the corresponding Fokker-Planck equation, the authors [5] gained the optimal harvesting strat-
egy for a stochastic Logistic equation. Zou et al. [29] proposed the ergodic method and studied the
optimal harvesting problems of a stochastic Gompertz population model. Optimal harvesting problems
of stochastic population models with time delay were investigated by [16, 19, 20]. Stochastic population
models with harvesting and jumps were studied in [21, 26, 30].

On the other hand, service-resource mutualism is a usual phenomena in nature. A typical example
is Zoochory [6]: plant provides resource (food) for animals, and animals provides service (dispersion of
the seeds of the plants). Hence it is useful to study the optimal harvesting strategy of stochastic service-
resource mutualism models. However, as far as our knowledge is concerned, no results relative to this
problem have been reported.

In this paper, we propose a stochastic service-resource mutualism model with harvesting in Section
2. Then we establish sharp sufficient conditions for the persistence in the mean and extinction for each
species in Section 3, and study the stability in distribution of model in Section 4. Afterwards, we obtain
the sufficient and necessary conditions for the existence of optimal harvesting policy, and gain the explicit
forms of the optimal harvesting effect and the maximum of sustainable yield in Section 5. Finally, we
introduce several simulation figures to illustrate the theoretical results, and give some concluding remarks
in Section 6.

2. The model

Our model is based on the following Lotka-Volterra service-resource mutualism model ([24, 25]):
dz1(t)

dt
= z1(t)

[
r1 −m11z1(t) +m12z2(t)

]
,

dz2(t)

dt
= z2(t)

[
− r2 +m21z1(t) −m22z2(t)

]
,

(2.1)

where z1(t) stands for the population size of the resource species, and z2(t) represents the population size
of the service species. r1 > 0 is the growth rate of species 1, r2 > 0 is the death rate of species 2, mii > 0
is the intra-specific competition coefficient, and mij > 0 (i 6= j) is the mutualistic rate, i, j = 1, 2.

According to the famous CPUE hypothesis ([10]), we assume that both the resource species and the
service species are subject to harvesting with rates h1 > 0 and h2 > 0, respectively. Hence model (2.1)
becomes: 

dz1(t)

dt
= z1(t)

[
r1 −m11z1(t) +m12z2(t)

]
− h1z1(t),

dz2(t)

dt
= z2(t)

[
− r2 +m21z1(t) −m22z2(t)

]
− h2z2(t).

As said above, the growth of the species is often affected by various random noises. First of all, we
consider the famous white noises. There are several approaches to introduce the white noises. In this
paper we adopt the approach in [5, 7, 13, 17, 18, 27]), that is to say, we assume that the white noises
mainly affect the growth/death rates of the species, with

ri + σiḂi(t),

where Ḃ1(t) and Ḃ2(t) are white noises, namely, {B1(t)}t>0 and {B2(t))}t>0 are two standard Brownian
motions defined on a complete probability space (Ω, {Ft}t>0,P) with the filtration {Ft}, σ2

i (i = 1, 2)
denote the intensities of the white noises. Thereby, we obtain the following stochastic model:

dz1(t) = z1(t)

[
r1 − h1 −m11z1(t) +m12z2(t)

]
dt+ σ1z1(t)dB1(t),

dz2(t) = z2(t)

[
− r2 − h2 +m21z1(t) −m22z2(t)

]
dt+ σ2z2(t)dB2(t).

We are now in the position to incorporate another random noise, the Lévy noise, into account. As a
matter of fact, the growth of the species in the natural world is often affected by many sudden random
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shocks (e.g., epidemics, earthquakes, toxic pollutants). For example, the Sandoz Chemical Accident, the
Gulf of Mexico oil spill, and the SARS and the Fukushima Daiichi nuclear disaster. Generally speaking,
these sudden random shocks can not be described by the white noises. Many researchers (see, e.g.,
[2, 18, 21, 26]) have claimed that these sudden random shocks can be modeled by Lévy noises. Hence we
gain the following model:

dz1(t) = z1(t
−)

[
r1 − h1 −m11z1(t

−) +m12z2(t
−)

]
dt+ σ1z1(t

−)dB1(t) + z1(t
−)

∫
X

ξ1(x)Q̃(dt, dx),

dz2(t) = z2(t
−)

[
− r2 − h2 +m21z1(t

−) −m22z2(t
−)

]
dt+ σ2z2(t

−)dB2(t) + z2(t
−)

∫
X

ξ2(x)Q̃(dt, dx),
(2.2)

where zi(t−) is the left limit of zi(t), Q̃(dt, dx) = Q(dt, dx)−β(dx)dt, Q is a Poisson counting measure, X

is a measurable subset of (0,+∞), and β is the characteristic measure of Q with β(X) < +∞. Throughout
this paper, we always suppose that Q, B1(t), and B2(t) are independent, and 1+ξi(x) > 0, x ∈ X, i = 1, 2.

3. Persistence and extinction

First of all, we define some notations and introduce an assumption.

R2
+ = {x ∈ R2| xi > 0, i = 1, 2}, ηi =

σ2
i

2
+

∫
X

(
ξi(x) − ln(1 + ξi(x))

)
β(dx), i = 1, 2,

b1 = r1 − η1 − h1, b2 = r2 + η2 + h2, M = m11m22 −m12m21, M1 = b1m22 − b2m12, M2 = b1m21 − b2m11.

Assumption 3.1. There is a constant c̃ > 0 such that∫
X

[
ln(1 + ξi(x))

]2
β(dx) < c̃,

∫
X

ξ2
i(x)β(dx) < c̃, i = 1, 2,

which means that the intensities of the Lévy noises are not too large.

Lemma 3.2. If M > 0, then for any initial value z(0) ∈ R2
+, model (2.2) has a unique global positive solution

z(t) = (z1(t), z2(t))
T almost surely (a.s.). If moreover, Assumption 3.1 holds, then

lim
t→+∞ ln zi(t)

ln t
6 1, a.s., i = 1, 2, (3.1)

and for any p > 0, there exists a constant c = c(p) > 0 such that

lim sup
t→+∞ E[zpi (t)] 6 c, i = 1, 2. (3.2)

Proof. The proofs of the existence and uniqueness of the global positive solution and (3.1) are similar to
these in [22] (Lemmas 3 and 4), and hence are omitted.

The proof of (3.2) is similar to that in [2] (Theorem 3.1) and we omit it too.

Lemma 3.3 ([22]). Suppose that y(t) : [0,+∞)→ R+ is a stochastic process, and let Assumption 3.1 hold.

(a) If there exist two positive constants T and δ0 such that

lny(t) 6 δt− δ0

∫t
0
y(s)ds+

2∑
i=1

σiBi(t) +

2∑
i=1

δi

∫t
0

∫
X

ln(1 + ξi(x))Q̃(ds, dx) a.s.

for all t > T , where σi and δi are constants, then lim sup
t→+∞ t−1

∫t
0
y(s)ds 6 δ/δ0 a.s., if δ > 0,

lim
t→+∞y(t) = 0 a.s., if δ < 0.
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(b) If there exist three positive constants T , δ, and δ0 such that

lny(t) > δt− δ0

∫t
0
y(s)ds+

2∑
i=1

σiBi(t) +

2∑
i=1

δi

∫t
0

∫
X

ln(1 + ξi(x))Q̃(ds, dx) a.s.

for all t > T , then

lim inf
t→+∞ t−1

∫t
0
y(s)ds > δ/δ0 a.s..

We are now in the position to give our first main result.

Theorem 3.4. For model (2.2), if M > 0 and Assumption 3.1 holds, then
(I) if M2 > 0, then both z1 and z2 are persistent in the mean, i.e.,

lim
t→+∞ t−1

∫t
0
z1(s)ds =

M1

M
, lim
t→+∞ t−1

∫t
0
z2(s)ds =

M2

M
, a.s.; (3.3)

(II) if M2 = 0, then the service species is non-persistent in the mean a.s.: lim
t→+∞ t−1

∫t
0
z2(s)ds = 0 a.s., and

lim
t→+∞ t−1

∫t
0
z1(s)ds = b1/m11, a.s.; (3.4)

(III) if M2 < 0,
(i) if b1 > 0, then (3.4) holds and the service species dies out a.s., i.e., lim

t→+∞ z2(t) = 0, a.s.;
(ii) if b1 = 0, then the service species dies out a.s., and the resource species is non-persistent in the mean

a.s.: lim
t→+∞ t−1

∫t
0
z1(s)ds = 0 a.s.;

(iii) if b1 < 0, then both the resource species and the service species die out a.s..

Proof. According to Itô’s formula (see, e.g., [15]), one can see that

dz1(t) =

[
b1 −m11z1(t) +m12z2(t)

]
dt+ σ1dB1(t) +

∫
X

ln
(
1 + ξ1(x)

)
Q̃(dt, dx),

dz2(t) =

[
− b2 +m21z1(t) −m22z2(t)

]
dt+ σ2dB2(t) +

∫
X

ln
(
1 + ξ2(x)

)
Q̃(dt, dx).

Consequently,

t−1 ln
z1(t)

z1(0)
= b1 −m11t

−1
∫t

0
z1(s)ds+m12t

−1
∫t

0
z2(s)ds

+ σ1t
−1B1(t) + t

−1
∫t

0

∫
X

ln
(
1 + ξ1(x)

)
Q̃(ds, dx),

(3.5)

t−1 ln
z2(t)

z2(0)
= −b2 +m21t

−1
∫t

0
z1(s)ds−m22t

−1
∫t

0
z2(s)ds

+ σ2t
−1B2(t) + t

−1
∫t

0

∫
X

ln
(
1 + ξ2(x)

)
Q̃(ds, dx).

(3.6)

(I). By (3.5)×m21+(3.6)×m11, we have

t−1m21 ln
z1(t)

z1(0)
+ t−1m11 ln

z2(t)

z2(0)

= b1m21 − b2m11 −Mt
−1
∫t

0
z2(s)ds+ σ1m21t

−1B1(t) + σ2m11t
−1B2(t) (3.7)

+m21t
−1
∫t

0

∫
X

ln
(
1 + ξ1(x)

)
Q̃(ds, dx) +m11t

−1
∫t

0

∫
X

ln
(
1 + ξ2(x)

)
Q̃(ds, dx).

In view of (3.1), for arbitrary ε ∈ (0, min{1,M2}), there exists a measurable set Ωε ⊂ Ω with P(Ωε) > 1− ε
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and a T = T(ε) > 0 such that for ω ∈ Ωε and t > T ,

t−1m21 ln
z1(t)

z1(0)
− t−1m11 ln z2(0) 6 ε.

When this inequality is used in (3.7), one can see that for t > T ,

t−1m11 ln z2(t) >M2 − ε−Mt
−1
∫t

0
z2(s)ds+ σ1m21t

−1B1(t) + σ2m11t
−1B2(t)

+m21t
−1
∫t

0

∫
X

ln
(
1 + ξ1(x)

)
Q̃(ds, dx) +m11t

−1
∫t

0

∫
X

ln
(
1 + ξ2(x)

)
Q̃(ds, dx).

It then follows from (b) in Lemma 3.3 and the arbitrariness of ε that

lim inf
t→+∞ t−1

∫t
0
z2(s)ds >M2/M, a.s..

In the same way, one can prove that

lim inf
t→+∞ t−1

∫t
0
z1(s)ds >M1/M, a.s.. (3.8)

To prove the desired assertion (3.3), we need only to show that

lim sup
t→+∞ t−1

∫t
0
zi(s)ds 6Mi/M, a.s., i = 1, 2. (3.9)

In fact, according to (3.5), we can observe that for sufficiently large t,

t−1 ln z1(t) 6 b1 + ε−m11t
−1
∫t

0
z1(s)ds+m12 lim sup

t→+∞
[
t−1
∫t

0
z2(s)ds

]
+σ1t

−1B1(t) + t
−1
∫t

0

∫
X

ln
(
1 + ξ1(x)

)
Q̃(ds, dx).

In view of (3.8), the resource species does not go to extinction. An application of Lemma 3.3 gives

b1 + ε+m12 lim sup
t→+∞

[
t−1
∫t

0
z2(s)ds

]
> 0.

It then follows from Lemma 3.3 and the arbitrariness of ε that

lim sup
t→+∞

[
t−1
∫t

0
z1(s)ds

]
6

b1 +m12 lim sup
t→+∞

[
t−1
∫t

0 z2(s)ds
]

m11
, a.s..

Consequently,

m11 lim sup
t→+∞

[
t−1
∫t

0
z1(s)ds

]
−m12 lim sup

t→+∞
[
t−1
∫t

0
z2(s)ds

]
6 b1, a.s.. (3.10)

Similarly, by (3.6), we gain

m22 lim sup
t→+∞

[
t−1
∫t

0
z2(s)ds

]
−m21 lim sup

t→+∞
[
t−1
∫t

0
z1(s)ds

]
6 −b2, a.s.. (3.11)

Solving (3.10) and (3.11) leads to the required assertion (3.9).
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(II). Note that M2 = b1m21 − b2m11 = 0, hence b1 > 0. According to (3.5), for arbitrary ε ∈ (0, min{1,b1}),
there exists a measurable set Ωε ⊂ Ω with P(Ωε) > 1 − ε and a T = T(ε) > 0 such that for ω ∈ Ωε and
t > T ,

t−1 ln z1(t) > b1 − ε−m11t
−1
∫t

0
z1(s)ds+ σ1t

−1B1(t) + t
−1
∫t

0

∫
X

ln
(
1 + ξ1(x)

)
Q̃(ds, dx).

It then follows from Lemma 3.3 and the arbitrariness of ε that

lim inf
t→+∞ t−1

∫t
0
z1(s)ds > b1/m11, a.s..

Hence the resource species does not go to extinction, and then we get (3.10). Now we are in the position
to show

lim sup
t→+∞ t−1

∫t
0
z2(s)ds = 0, a.s.. (3.12)

Denote by

D1 =

{
lim sup
t→+∞ t−1

∫t
0
z2(s)ds > 0

}
.

Assume that P(D1) > 0. For any ω ∈ D1, (3.11) holds. Substituting (3.10) into (3.11) leads to

m22

[
lim sup
t→+∞ t−1

∫t
0
z2(s,ω)ds

]
6 −b2 +m21

[
lim sup
t→+∞ t−1

∫t
0
z1(s,ω)ds

]

6 −b2 +

b1 +m12
[

lim sup
t→+∞ t−1

∫t
0 z2(s,ω)ds

]
m11

m21.

Consequently,

lim sup
t→+∞ t−1

∫t
0
z2(s,ω)ds 6M2/M. (3.13)

Since M2 = 0, then the contradiction arises. Thereby one gets (3.12). Substituting (3.12) into (3.10) results
in

lim sup
t→+∞ t−1

∫t
0
z1(s)ds 6 b1/m11, a.s..

Then (3.4) follows.

(III). (i) Note that b1 > 0, it then follows from the proof of (II) that (3.13) holds. And hence (3.4) holds.
Substituting (3.4) into (3.6), we can observe that for sufficiently large t,

t−1 ln z2(t) 6
M2

m11
+ ε−m22t

−1
∫t

0
z2(s)ds+ σ2t

−1B2(t) + t
−1
∫t

0

∫
X

ln
(
1 + ξ2(x)

)
Q̃(ds, dx).

whereM2/m11 + ε < 0. It then follows from Lemma 3.3 and the arbitrariness of ε that lim
t→+∞ z2(t) = 0, a.s..

Finally, let us show (ii) and (iii) together. Firstly, let us prove that lim
t→+∞ z2(t) = 0 a.s.. Let

D2 =

{
lim sup
t→+∞ t−1

∫t
0
z1(s)ds > 0

}
, D3 =

{
lim sup
t→+∞ t−1

∫t
0
z1(s)ds = 0

}
.

Hence, P(D2) + P(D3) = 1. For arbitrary ω ∈ D2, in view of (II), we can see that

lim
t→+∞ z2(t,ω) = 0.
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For every ω ∈ S3, by (3.6), we have

t−1 ln z2(t,ω) 6 −b2 + ε−m22t
−1
∫t

0
z2(s)ds+ σ2t

−1B2(t) + t
−1
∫t

0

∫
X

ln
(
1 + ξ2(x)

)
Q̃(ds, dx),

where ε < b2. An application of Lemma 3.3 and the arbitrariness of ε gives

lim
t→+∞ z2(t,ω) = 0.

Thereby, lim
t→+∞ z2(t) = 0, a.s..

Substituting lim
t→+∞ z2(t) = 0 into (3.5) yields

t−1 ln z1(t) 6 b1 + ε−m11t
−1
∫t

0
z1(s)ds+ σ1t

−1B1(t) + t
−1
∫t

0

∫
X

ln
(
1 + ξ1(x)

)
Q̃(ds, dx).

If b1 < 0, then by Lemma 3.3 and the arbitrariness of ε,

lim
t→+∞ z1(t) = 0, a.s..

If b1 = 0, then according to Lemma 3.3 and the arbitrariness of ε,

lim sup
t→+∞ t−1

∫t
0
z1(s)ds 6 b1 = 0, a.s..

This completes the proof.

Remark 3.5. According to Theorem 3.4, we can see that both the service species and the resource species
are persistent if and only if M2 > 0.

4. Stability in distribution

Definition 4.1. If there exists a unique probability measure χ(·) with support R2
+ such that for arbitrary

z(0) ∈ R2
+, the transition probability p(t, z(0), ·) of z(t) converges weakly to χ(·) with t→ +∞, then model

(2.2) is said to be stable in distribution (SID).

Assumption 4.2. m11 > m21, m22 > m12. This assumption is a technical assumption to make the proof
work.

Theorem 4.3. Let Assumptions 3.1 and 4.2 hold. If M2 > 0, then model (2.2) is SID.

Proof. Let z(t; z(0)) and z(t; z̃(0)) stand for two solutions of (2.2) with z(0) ∈ R2
+ and z̃(0) ∈ R2

+, respec-
tively. Define

U(t) =

2∑
i=1

∣∣∣∣ ln zi(t; z(0)) − ln zi(t; z̃(0))
∣∣∣∣.

It then follows from Itô’s formula (see e.g., [15]) that

dU(t) = sgn
(
z1(t; z(0)) − z1(t; z̃(0))

)[
−m11

(
z1(t; z(0)) − z1(t; z̃(0))

)
+m12

(
z2(t; z(0)) − z2(t; z̃(0))

)]
dt

+ sgn
(
z2(t; z(0)) − z2(t; z̃(0))

)[
m21

(
z1(t; z(0)) − z1(t; z̃(0))

)
−m22

(
z2(t; z(0)) − z2(t; z̃(0))

)]
dt

6 −

(
m11 −m21

)∣∣∣∣z1(t; z(0)) − z1(t; z̃(0))
∣∣∣∣dt−(m22 −m12

)∣∣∣∣z2(t; z(0)) − z2(t; z̃(0))
∣∣∣∣dt.
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That is to say,

0 6 E(U(t)) 6 U(0) −
(
m11 −m21

) ∫t
0

E

∣∣∣∣z1(s; z(0)) − z1(s; z̃(0))
∣∣∣∣ds

−

(
m22 −m12

) ∫t
0

E

∣∣∣∣z2(s; z(0)) − z2(s; z̃(0))
∣∣∣∣ds.

Since m11 > m21, m22 > m12 and U(0) < +∞, then we have(
m11 −m21

) ∫t
0

E

∣∣∣∣z1(s; z(0)) − z1(s; z̃(0))
∣∣∣∣ds+(m22 −m12

) ∫t
0

E

∣∣∣∣z2(s; z(0)) − z2(s; z̃(0))
∣∣∣∣ds 6 U(0) < +∞.

Thereby,

E

∣∣∣∣zi(t; z(0)) − zi(t; z̃(0))∣∣∣∣ ∈ L1[0,∞), i = 1, 2.

According to (2.2),

E(z1(t)) = z1(0) +
∫t

0

[
(r1 − h1)E(z1(s)) −m11E(z2

1(s)) +m12E(z1(s)z2(s))

]
ds,

E(z2(t)) = z2(0) +
∫t

0

[
(−r2 − h2)E(z2(s)) −m22E(z2

2(s)) +m21E(z1(s)z2(s))

]
ds.

Hence E(z1(t)) and E(z2(t)) are continuously differentiable functions. In view of (3.2),

dE(z1(t))

dt
= (r1 − h1)E(z1(t)) −m11E(z2

1(t)) +m12E

(
z1(t)z2(t)

)
6 r1E(z1(t)) +

m12

2
E

(
z2

1(t) + z
2
2(t)

)
6 c1,

dE(z2(t))

dt
= (−r2 − h2)E(z2(t)) −m22E(z2

2(t)) +m21E

(
z1(t)z2(t)

)
6
m21

2
E

(
z2

1(t) + z
2
2(t)

)
6 c1,

where c1 is a positive constant. Consequently, E(z1(t)) and E(z2(t)) are uniformly continuous functions.
An application of Barbalat’s result [3] yields

lim
t→+∞E|zi(t; z(0)) − zi(t; z̃(0))| = 0, i = 1, 2. (4.1)

Denote by P(t, z(0),Υ) the probability of {z(t; z(0)) ∈ Υ} with initial value z(0) ∈ R2
+, where Υ is a

Borel set. According to (3.2) and Chebyshev’s inequality (see e.g., [23]), it is easy to see that {p(t, z(0), ·)}
is tight ([23]).

Denote by P(R2
+) all the probability measures on R2

+. For arbitrary P1, P2 ∈P , define the Kantorovich
metric as follows:

dΦ(P1,P2) = sup
φ∈Φ

∣∣∣∣ ∫
R2
+

φ(θ)P1(dθ) −
∫
R2
+

φ(θ)P2(dθ)
∣∣∣∣,

where

Φ =

{
φ : R2

+ → R

∣∣∣∣|φ(θ1) −φ(θ2)| 6 ||θ1 − θ2||, |φ(·)| 6 1
}

.

For all φ ∈ Φ and t, s > 0, we compute that∣∣∣∣Eφ(z(t+ s; z(0))) − Eφ(z(t; z(0)))
∣∣∣∣ = ∣∣∣∣E[E

(
φ

(
z(t+ s; z(0))

)∣∣∣∣Fs)]− Eφ

(
z(t; z(0))

)∣∣∣∣
=

∣∣∣∣ ∫
R2
+

Eφ

(
z(t; z̃(0))

)
p

(
s, z(0), dz̃(0)

)
− Eφ

(
z(t; z(0))

)∣∣∣∣
6
∫
R2
+

∣∣∣∣Eφ(z(t; z̃(0)))− Eφ

(
z(t; z(0))

)∣∣∣∣p(s, z(0), dz̃(0)
)

.

(4.2)
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In view of (4.1), there exists a t1 > 0 such that for t > t1,∣∣∣∣Eφ(z(t; z̃(0))) − Eφ(z(t; z(0)))
∣∣∣∣ 6 E

∣∣∣∣φ(z(t; z̃(0))) −φ(z(t; z(0)))∣∣∣∣ 6 E

∣∣∣∣z(t; z̃(0)) − z(t; z(0))∣∣∣∣ 6 ε. (4.3)

Plugging (4.3) into (4.2) leads to∣∣∣∣Eφ(z(t+ s; z(0))) − Eφ(z(t; z(0)))
∣∣∣∣ 6 ε, ∀ t > t1, s > 0.

It then follows from the arbitrariness of φ that

sup
φ∈Φ

∣∣∣∣Eφ(z(t+ s; z(0))) − Eφ(z(t; z(0)))
∣∣∣∣ 6 ε, ∀ t > t1, s > 0.

That is to say
dΦ(p(t+ s, z(0), ·),p(t, z(0), ·)) 6 ε for all t > t1, s > 0.

Consequently, for all z(0) ∈ R2
+, {p(t, z(0), ·)} is Cauchy with respect to t. Choose z(0) = (0.5, 0.5)T, then

{p(t, (0.5, 0.5)T, ·)} is Cauchy. That is to say, there is a unique χ(·) ∈P(R2
+) satisfying

lim
t→+∞dΦ

(
p(t, (0.5, 0.5)T, ·),χ(·)

)
= 0.

Thanks to (4.1),

lim
t→+∞dΦ

(
p(t, z(0), ·),p(t, (0.5, 0.5)T, ·)

)
= 0.

Therefore,

lim
t→+∞dΦ

(
p(t, z(0), ·),χ(·)

)
6 lim
t→+∞dΦ

(
p(t, z(0), ·),p(t, (0.5, 0.5)T, ·)

)
+ lim
t→+∞dΦ

(
p(t, (0.5, 0.5)T, ·),χ(·)

)
= 0.

On the other hand, since Assumption 3.1 holds, then M > 0. It then follows from (3.3) that the support of
χ is R2

+. This completes the proof.

Remark 4.4. Under Assumptions 3.1 and 4.2, according to Theorem 3.4 we can see that if M2 < 0, then
model (2.2) is not SID.

5. Optimal harvesting policy

Now let us consider the optimal harvesting policy of model (2.2). Our objective is to find out the
optimal harvesting effect h∗ = (h∗1 ,h∗2)

T such that:

I Y(h) = lim
t→+∞

2∑
i=1

E(hizi(t)) is maximum;

I Both z1 and z2 are persistent.

Theorem 5.1. Consider system (2.2), and let Assumptions 3.1 and 4.2 hold. Define

M̄ =

(
m11 −m12
−m21 m22

)
, L = (r1 − η1,−r2 − η2)

T, ∆ = (∆1, ∆2)
T = [M̄(M̄−1)T + I]−1L.

(i’) If M2|h=∆ > 0, ∆1 > 0, ∆2 > 0 and M̄−1 + (M̄−1)T is positive semi-definite, then h∗ = ∆ and

Y∗ = max{Y(h)} = ∆TM̄−1(L−∆). (5.1)
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(ii’) If the conditions in (i’) are not satisfied, then the optimal harvesting policy does not exist.

Proof. Let H = {h = (h1,h2)
T ∈ R2|M2 > 0, hi > 0, i = 1, 2}. According to Lemma 3.2 and Remark 3.5, if

h ∈ H, then (3.3) is satisfied; moreover, if h∗ exists, then h∗ ∈ H.

(i’). By (3.3), for all h ∈ H,

lim
t→+∞ t−1

∫t
0
hTz(s)ds =

2∑
i=1

hi lim
t→+∞ t−1

∫t
0
zi(s)ds = hTM̄−1(L− h). (5.2)

By Theorem 4.3, there is a unique invariant measure χ(·) to model (2.2). According to Corollary 3.4.3
and Theorem 3.2.6 in [11], χ(·) is strong mixing and ergodic. By (3.3.2) in [11], one obtains

lim
t→+∞ t−1

∫t
0
hTz(s)ds =

∫
R2
+

hTyχ(dy). (5.3)

Denote by ζ(y) the stationary probability density of model (2.2). Then

Y(h) = lim
t→+∞

2∑
i=1

E(hizi(t)) = lim
t→+∞E(hTz(t)) =

∫
R2
+

hTyζ(y)dy. (5.4)

Since the invariant measure of model (2.2) is unique, then according to the one-to-one correspondence
between ζ(·) and χ(·) (see e.g., [11, P.105]), we have∫

R2
+

hTyζ(y)dy =

∫
R2
+

hTyχ(dy). (5.5)

In view of (5.2), (5.3), (5.4), and (5.5), one can see that

Y(h) = hTM̄−1(L− h). (5.6)

Denote by ∆ = (∆1,∆2)
T the solution of the following equation

0 =
dY(h)

dh
=

d(hT)

dh
M̄−1(L− h) +

d
dh

[
(L− h)T(M̄−1)T

]
h = M̄−1L−

[
M̄−1 + (M̄−1)T

]
h. (5.7)

Then ∆ = [M̄(M̄−1)T + I]−1L. It is easy to see that

d
dhT

[
dY(h)

dh

]
=

(
d

dh

[(
dY(h)

dh

)T])T
=

(
d

dh

[
LT(M̄−1)T − hT[M̄−1 + (M̄−1)T]

])T

= −(M̄−1 + (M̄−1)T).

Therefore, if M̄−1 + (M̄−1)T is positive semi-definite and ∆ ∈ H, then ∆ is the unique extreme point of
Y(h), and hence h∗ = ∆ and (5.1) holds.

(ii’). Firstly, let us demonstrate that ifM2|h=∆ 6 0, or ∆1 < 0, or ∆2 < 0, then there is no optimal harvesting
policy. If this statement is false, denote by h̃∗ = (h̃∗1 , h̃∗2)

T the optimal harvesting effort. Hence h̃∗ ∈ H.
Therefore,

M2|h=h̃∗ > 0, h̃∗1 > 0, h̃∗2 > 0.

Note that H̃∗ is the optimal harvesting effort, hence H̃∗ must be the unique solution of (5.7). On the other
hand, ∆ is also the solution of (5.7). Consequently, h̃∗i = ∆i > 0 and

M2|h=∆ =M2|h=h̃∗ > 0.

This is a contradiction.
Secondly, let us demonstrate that if M2|h=∆ > 0, ∆1 > 0, ∆2 > 0, and M̄−1 + (M̄−1)T is not positive

semi-definite, then there is no optimal harvesting policy. Note that M2|h=∆ > 0, ∆1 > 0, ∆2 > 0, then we
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have (5.6). Let (κij)2×2 = M̄−1 + (M̄−1)T. Hence

κ11 = 2m22/M > 0.

It follows that M̄−1 + (M̄−1)T is not a negative semi-definite matrix. Then M̄−1 + (M̄−1)T is indefinite.
Consequently, Y(h) in (5.6) does not have extreme points ([4]).

6. Numerical simulations and conclusions

In this paper, we proposed and studied a stochastic service-resource mutualism system with harvest-
ing and Lévy jumps. Our main results are Theorems 3.4, 4.3, and 5.1. Theorem 3.4 gives the sufficient and
necessary conditions for persistence in the mean and extinction of the species. Theorem 4.3 studies the
SID of the model. Theorem 5.1 establishes the sufficient and necessary conditions for the existence of the
optimal harvesting policy, and gives the explicit forms of the optimal harvesting effect and the maximal
of the yield.
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Figure 1: Solutions of (2.2) with r1 = 0.6, r2 = 0.03, h1 = h2 = 0, m11 = 0.6, m12 = 0.3, m21 = 0.4, m22 = 0.5, X = R+, β(X) = 1,
ξ1(x) ≡ 0.3504, ξ2(x) ≡ 0.1482. (a) is with σ2

1 = 0.1, σ2
2 = 0.02; (b) is with σ2

1 = 0.1, σ2
2 = 0.62; (c) is with σ2

1 = 1.2, σ2
2 = 0.02.

Theorem 3.4 reveals that whether z1 (respectively, z2) is persistent or not depends only upon the sign
of b1 (respectively, M2) which has close relationship with the white noises and Lévy noises.

• Firstly, let us consider the effects of the white noises. Clearly,

db1

d(σ2
1)
< 0,

db1

d(σ2
2)

= 0,
dM2

d(σ2
1)
< 0,

dM2

d(σ2
2)
< 0. (6.1)

Hence, with the increase of intensity of white noise of the resource species, σ2
1, both the resource

species and the service species tend to die out; with the increase of intensity of white noise of the
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service species, σ2
2, the service species tends to die out while the persistence of the resource species

does not change. To see these more clearly, let us work our several numerical simulations. In Fig. 1,
we only let the values of σ2

1 and σ2
2 vary. Comparing Fig. 1 (a) with Fig. 1 (c), we can see that with

the increase of σ2
1 (from 0.1 to 1.2), both z1 and z2 tend to die out. On the other hand, comparing

Fig. 1 (a) with Fig. 1 (b), one can observe that with the increase of σ2
2 (from 0.02 to 0.62), z2 tends to

die out while z1 still is persistent.
• Now let us see the effects of the Lévy noises. For simplicity, let ξi(x) ≡ ξ̃i > −1, i = 1, 2. Note that

db1

dξ̃1

{
< 0, if ξ̃1 > 0,
> 0, if ξ̃1 < 0,

db1

dξ̃2
= 0,

dM2

dξ̃1

{
< 0, if ξ̃1 > 0,
> 0, if ξ̃1 < 0,

dM2

dξ̃2

{
< 0, if ξ̃2 > 0,
> 0, if ξ̃2 < 0. (6.2)

Here we only consider the case ξ̃i > 0, i = 1, 2, other cases can be analyzed similarly. In this case,
(6.2) means that with the increase of intensity of Lévy noise of the resource species, both the resource
species and the service species tend to die out; with the increase of intensity of Lévy noise of the
service species, the service species tends to die out while the persistence of the resource species does
not change.
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Figure 2: Probability density function of (2.2) at t = 5000. The parameters are the same with these in Fig. 1 (a).

Theorem 4.3 and Remark 4.4 indicate that whether model (2.2) is SID or not depends only upon the
sign of M2. According to (6.1), we can see that both σ2

1 and σ2
2 are harmful for the SID of model (2.2).

Similarly, in view of (6.2), when ξ̃i > 0, i = 1, 2, both ξ̃1 and ξ̃2 are also harmful for the SID of model (2.2).
We plot the probability density functions of (z1(t), z2(t))

T at time t = 5000 in Fig. 2 where the parameters
are the same with these in Fig. 1 (a).
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Figure 3: E
[
h1z1(t) + h2z2(t)

]
of (2.2) with the same parameters given in Fig. 1 (a) except h. Red line is with h = h∗ =

(0.2296, 0.0077)T, green line is with h = (0.15, 0.005)T, and blue line is with h = (0.3, 0.01)T.
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Theorem 5.1 gives the optimal harvesting policy of model (2.2). Let us introduce an example to
illustrate this. Consider the parameters given in Fig. 1 (a) except h. It is easy to see that Assumptions 3.1
and 4.2 hold, and M̄−1 + (M̄−1)T is positive definite. According to Theorem 5.1, compute that

∆ = (0.2296, 0.0077)T,M2|h=∆ = 0.0735 > 0.

That is to say, the conditions in (i’) are satisfied. Hence

h∗ = ∆ = (0.2296, 0.0077)T, Y∗ = 0.1535.

We plot E
[
h1z1(t) + h2z2(t)

]
in Fig. 3. Red line is with h = h∗ = (0.2296, 0.0077)T, green line is with

h = (0.15, 0.005)T, and blue line is with h = (0.3, 0.01)T. Clearly, when h = h∗, the yield is maximum. On
the other hand, Theorem 5.1 shows that both the optimal harvesting effect h∗ = (h∗1 ,h∗2)

T and the maximal
of yield Y∗ have close relationships with σ2

i and ξi(x), i = 1, 2. Once again, we let ξi(x) ≡ ξ̃i > 0, i = 1, 2.
Compute that

dh∗i
d(σ2

j)
< 0,

dh∗i
dξ̃j

< 0,
dY∗

d(σ2
j)
< 0,

dY∗

dξ̃j
< 0, i, j = 1, 2.

Therefore, with the increase of σ2
i and ξ̃i, both h∗j and Y∗ decrease, i, j = 1, 2.
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Figure 4: Probability density function of (2.2) at t = 5000. The parameters are the same with these in Fig. 1 (a) except m12 = 0.51.

Some problems deserve further research. Firstly, it is worth weakening Assumption 3.1 and Assump-
tion 4.2. It is important to mention that Assumption 3.1 and Assumption 4.2 are just sufficient. For
example, Fig. 4 indicates that even m22 < m12, system (2.2) could be SID. It is also interesting to take
other factors into account, for example, regime switching (see e.g., [28]), and reaction-diffusion (see e.g.,
[1]). We leave these problems for future work.
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Appl., 161 (2014), 969–979. 1


	Introduction
	The model
	Persistence and extinction
	Stability in distribution
	Optimal harvesting policy
	Numerical simulations and conclusions

