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Abstract
This paper deals with the convergence of the wavelet thresholding estimator on Besov spaces Bsp,q(R

n). We show firstly the
equivalence of several Besov norms. It seems different with one dimensional case. Then we provide two convergence theorems
for the wavelet thresholding estimator, which extend Liu and Wang’s work [Y.-M. Liu, H.-Y. Wang, Appl. Comput. Harmon.
Anal., 32 (2012), 342–356]. c©2017 All rights reserved.
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1. Introduction

The convergence of wavelet series is important in both pure and applied mathematics. Kelly et al.
[9] studied firstly almost everywhere convergence of wavelet series in 1994. The wavelet thresholding
method, proposed by Donoho and Johnstone [7], plays fundamental roles in data compression, signal
processing, and statistical problems. Tao and Vidakovic [12, 13], Chen and Meng [2] study the convergence
of resulting wavelet series in pointwise and Lp settings, respectively.

As we know, the estimation of density function is important in statistical problems. Wavelet can be
successfully applied to the study of this problem. In some statistical models, the error of estimators
is measured in Lp norm (e.g., [3]). Besides, Besov spaces contain many functional spaces (e.g., Hölder
spaces, Sobolev spaces with non-integer exponents) as special examples. Liu and Wang [10] studied
the convergence rate of wavelet thresholding estimators for differential operator in Lp norm over Besov
spaces Bsp,q(R). In this paper, we shall study the convergence rate of wavelet thresholding estimators over
Besov spaces Bsp,q(R

n), which is different from Bsp,q(R) ([10]) because of different equivalent Besov-norm
theorems in Bsp,q(R

n).
This paper is organized as follows. Besov space with a standard norm is presented in Section 1.1. The

next subsection is devoted to give a wavelet thresholding estimator for ∂f based on non-standard form
(NSF) of differential operators. The main results are given in Section 1.3, which will be proved in Section
3. To do that, some auxiliary results are presented in Section 2.
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1.1. Besov norms
Let 0 < p,q 6∞, s > 0 and [s] stands for the largest integer less than or equals to s,

Bsp,q(R
n) := {f ∈ Lp(Rn) : |f|Bsp,q(Rn) <∞}.

Here, |f|Bsp,q(Rn) := ‖(2jsωMp (f, 2−j))j∈Z‖`q with M > [s] + 1 and ωMp (f, 2−j) denotes the M-th order
smooth modulus of a function f, defined by sup

|h|62−j
‖∆Mh f(·)‖Lp(Rn). The difference operator ∆h is defined

by ∆hf(·) := f(·+ h) − f(·) and ∆Mh f = ∆h(∆
M−1
h f) for a positive integer M > 1. The Besov (quasi-)norm

(called the standard Besov norm) is given by

‖f‖Bsp,q(Rn) := ‖f‖Lp(Rn) + |f|Bsp,q(Rn)

and two integers M,M ′ > s yield equivalent norms ([5, Remark 3.2.2]). Here and after, let N, Z, and
R be the set of positive integers, the set of integers, and the set of real numbers, respectively, as well as
N0 := N ∪ {0}. In addition, we use A . B to abbreviate that A is bounded by a constant multiple of B,
A & B is defined as B . A and A ∼ B means A . B and B . A.

1.2. Wavelet thresholding estimator
We begin with the concept of multiresolution analysis (MRA, [6]) in this section, which is a sequence of

closed subspaces {Vj}j∈Z of the square integrable function space L2(R) satisfying the following properties:
(i) Vj ⊂ Vj+1, ∀j ∈ Z;

(ii) f(·) ∈ V0 ⇔ f(2j·) ∈ Vj;
(iii)

⋃
j∈Z Vj = L2(R);

(iv) there exists a function φ(x) ∈ L2(R) called the scaling function such that {φ(x− k)}k∈Z forms an
orthonormal system and V0 = span{φ(x− k)}.

We can derive a corresponding wavelet function ψ(x) =
∑
k(−1)kh1−k2

1
2φ(2x− k) with hk = 〈φ(x),

2
1
2φ(2x−k)〉, such that {2

j
2ψ(2jx−k)}k∈Z constitutes an orthonormal basis of Wj, which is the orthogonal

complement of Vj in Vj+1. Now, we expand these results to L2(R
n). Define

Φ(x) = φ(x1)φ(x2) · · ·φ(xn) and Ψe(x) = ξ(x1)ξ(x2) · · · ξ(xn)

for e ∈ {0, 1}n and e 6= (0, 0, · · · , 0) (if ei = 1, ξ(xi) = ψ(xi), else ξ(xi) = φ(xi)). With the standard notation
fjk(x) := 2

jn
2 f(2jx − k), we construct an orthonormal bases {ΦJ,k,Ψe:j,k}j>J,e 6=(0,0,··· ,0),k for L2(R

n). As
usual, let

Pjf :=
∑
k

sj,kΦj,k and Qjf = Pj+1f− Pjf

with sj,k := 〈f,Φj,k〉.
Note that Tf(x) =

∫
K(x,y)f(y)dy ([1]) defines a bounded linear operator from L(Rn) to L(Rn) for

K(x,y) ∈ L(R2n). When representing K(x,y) by the basis

{Φ0,k(x)Φ0,k ′(y),Ψe:j,k(x)Φj,k ′(y),Φj,k(x)Ψe ′:j,k ′(y),Ψe:j,k(x)Ψe ′:j,k ′(y)}e,e ′,j,k,k ′ ,

we have
K(x,y) =

∑
k,k ′

r0
k,k ′Φ0,k(x)Φ0,k ′(y) +

∑
j>0,k,k ′

[
∑
e,e ′

α
j
e,e ′,k,k ′Ψe:j,k(x)Ψe ′:j,k ′(y)

+
∑
e

β
j
e,k,k ′Ψe:j,k(x)Φj,k ′(y) +

∑
e ′

γ
j
e ′,k,k ′Φj,k(x)Ψe ′:j,k ′(y)]

with

r
j
k,k ′ := 〈TΦj,k ′ ,Φj,k〉, α

j
e,e ′,k,k ′ := 〈TΨe ′:j,k ′ ,Ψe:j,k〉,

β
j
e,k,k ′ := 〈TΦj,k ′ ,Ψe:j,k〉, γ

j
e ′,k,k ′ := 〈TΨe ′:j,k ′ ,Φj,k〉.

So the NSF of T is defined by
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Tf =
∑
k

Φ0,k(x)
∑
k ′

r0
k,k ′Φ0,k ′(y) +

∑
j>0

∑
e,k

[Ψe:j,k(x)
∑
e ′,k ′

α
j
e,e ′,k,k ′Ψe ′:j,k ′(y)

+Ψe:j,k(x)
∑
k ′

β
j
e,k,k ′Φj,k ′(y) +Φj,k(x)

∑
e ′,k ′

γ
j
e ′,k,k ′Ψe ′:j,k ′(y)].

Then NSF of T for differential operator ∂ := ∂
∂xi

is rewritten by

Tf =
∑
k

Φ0,k(x)
∑
l

rls0,k−l +
∑
j>0

∑
e,k

[Ψe:j,k(x)2nj
∑
e ′,l

αe,e ′,lde ′,j:k−l

+Ψe:j,k(x)2nj
∑
l

βe,lsj,k−l +Φj,k(x)2nj
∑
e ′,l

γe ′,lde ′:j,k−l],
(1.1)

where αe,e ′,l :=
∫
Ψe(x − l)∂Ψe ′(x)dx, βe,l :=

∫
Ψe(x − l)∂Φ(x)dx, γe ′,l :=

∫
Φe(x − l)∂Ψe ′(x)dx, rl :=∫

Φ(x− l)∂Φ(x)dx and de ′:j,k := 〈f,Ψe ′:j,k〉. With the definitions of Pj and Qj, (1.1) leads to Tf = P0∂P0f+∑∞
j=0(Qj∂Qjf+Qj∂Pjf+ Pj∂Qjf). Since Pj +Qj = Pj+1,

Tf(x) = lim
j→∞Pj∂Pjf := lim

j→∞P ′jf(x).
1.3. Main results

The main work of this paper is to study the convergence of corresponding wavelet thresholding esti-
mator in Bsp,q(R

n). Throughout this paper, C stands for some positive constant which may change from
place to place and

εj,q :=

{
o(1), 1 6 q <∞,
O(1), q =∞ as j→∞.

We also need a classical notation (e.g., [10]): A scaling function ϕ is called r-regular, if ϕ has r continuous
(partial) derivatives and accuracy r, i.e., there exist finitely many cl,k such that for each fixed x ∈ R,

xk =
∑
l

cl,kϕ(x+ l) for k = 0, 1, · · · , r− 1.

Theorem 1.1. Let Φ(x) be an r-regular, compactly supported, and orthonormal scaling function. If f ∈ Bs+1
p,q (R

n)
with 1 < p <∞, 1 6 q <∞ and s > 0 such that np < s < r− 1, then P ′Jf(x) ∈ Bsp,q(R

n) and

(i) 2J(s−
1
p )‖P ′Jf− ∂f‖∞ = εJ,q as J→ +∞;

(ii) 2Js‖P ′Jf− ∂f‖p = εJ,q as J→ +∞;
(iii) ‖∂f− P ′Jf(x)‖Bsp,q(Rn) = εJ,q.

To present next theorem, we shall import a concept [7]: A function δ(x, λ) : Rn ×R+ is called a
thresholding rule, if there exists C > 0 such that for all λ > 0,

|x− δ(x, λ)| 6 Cλ and |δ(x, λ)| 6 C|x|χ{|x|>λ},

where

χ{|x|>λ} =

{
1, |x| > λ,
0, |x| 6 λ.

Hard and soft thresholding are two well-known examples. Then the wavelet thresholding estimator of
f ∈ Lp is given by

Tλf(x) =
∑
k

s0,kΦ0,k(x) +

∞∑
j=0

∑
e,k

δ(de:j,k, λ)Ψe:j,k,

where de:j,k := 〈f,Ψe:j,k〉. Meanwhile, its NSF on differential operator is Tλf := T(Tλf). Similar to εj,q,
define

ελ,q :=

{
o(1), 1 6 q <∞,
O(1), q =∞, as λ→ 0.

The next theorem studies the convergence of Tλf to ∂f.
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Theorem 1.2. Let Φ(x) be an r-regular, compactly supported, and orthonormal scaling function. If f ∈ Bs+1
p,q (R

n)
with 1 < p <∞, 1 6 q <∞ and s > 0 such that np < s < r− 1, s ′ = s− n

p , then Tλf(x) ∈ Bsp,q(R
n) and

(i) λ−
2s ′

2s ′+n+2 ‖Tλf− f ′‖∞ = ελ,q;

(ii) λ−
2s ′

2s ′+3n+2 ‖Tλf− f ′‖p = ελ,q when f has compact support;
(iii) ‖Tλf− f ′‖Bsp,q(Rn) = ελ,q.

2. Some auxiliary results

In order to prove our main results in Section 3, we will give some auxiliary results in this part. Before
that, some equivalent Besov norms are presented below.

Let ϕ ∈ C∞(Rn) (real infinite differential functional spaces), supp ϕ ⊂ {ξ ∈ Rn : |ξ| 6 2} and ϕ(ξ) = 1
if |ξ| 6 1. Write ϕj(ξ) := ϕ(2−jξ) −ϕ(2−j+1ξ) with j ∈N. Then define ([14, Page 92])

‖f‖Bsp,q(Rn) := ‖(2ks‖ϕk(D)f‖Lp)k∈N0‖lq <∞,

where ϕk(D)f := (ϕkf̂)
∨ and f̂, f∨ are the classical Fourier transform and the inverse Fourier transform,

respectively.
Besides, let Dα = ∂|α|

∂x
α1
1 ∂x

α2
2 ···∂x

αn
n

, α = (α1,α2, · · · ,αn), and |α| = α1 + α2 + · · ·+ αn. Using Wk
p(R

n)

(the famous Lp Sobolev space with integer exponents k), we give the left needed Besov norms below.
Assume s < M ∈N ([14, Page 140]),

‖f‖1Bsp,q(Rn) := ‖f‖Lp + (

∫ 1

0
t−sq sup

06|h|6t
‖∆Mh f‖p

dt

t
)

1
q <∞

and using the usual modification when q =∞.
Let k < s < m+ k with m ∈N,k ∈N0 ([14, Page 8]),

‖f‖2Bsp,q(Rn) := ‖f‖Wk
p
+
∑
|α|=k

(

∫
Rn

|h|−(s−k)q‖∆mh Dαf‖p
dh

|h|n
)

1
q <∞

and also using the usual modification when q = ∞. When m = 2, k = [s] for s /∈ N and k = [s] − 1 for
s ∈N, β = s− k (0 < β 6 1), we denote ‖f‖2Bsp,q(Rn) by ([10])

‖f‖HBsp,q(Rn) := ‖f‖Wk
p
+
∑
|α|=k

(

∫
Rn

|h|−βq‖∆2
hD

αf‖p
dh

|h|n
)

1
q <∞.

First, we present these Besov norms are equivalent.

Theorem 2.1. If k < s < 2 + k (m = 2), k ∈N0, 1 < p <∞, 1 6 q 6∞, then ‖f‖HBsp,q(Rn) ∼ ‖f‖Bsp,q(Rn).

Proof. By Definitions (1.2.5/1), Theorem 1.2.5 (3) and Theorem 1.3.4 in [14] (k < s < 2 + k, k ∈ N0,
1 < p < ∞, 1 6 q 6 ∞), we have ‖f‖HBsp,q(Rn) ∼ ‖f‖Bsp,q(Rn). On the other hand, Remak 9.13 in [15] tells
us that ‖f‖Bsp,q(Rn) ∼ ‖f‖1Bsp,q(Rn) for 0 < p,q 6∞, σp < s < M ∈N0 (σp = nmax{ 1

p − 1, 0}). Meanwhile,
when 0 < p,q 6∞, 0 < s < M ∈N0, simple calculations lead to ‖f‖1Bsp,q(Rn) ∼ ‖f‖Bsp,q(Rn). In fact,

∫ 1

0
t−sq sup

06|h|6t
‖∆Mh f‖p

dt

t
=

∞∑
j=0

∫ 2−j

2−j−1
t−sq sup

06|h|6t
‖∆Mh f‖p

dt

t
∼
∞∑
j=0

2jsq sup
06|h|62−j

‖∆Mh f‖p ln 2, (2.1)

where the equivalence part of (2.1) is from Lemma 9.1 (iv) in [8]. Then the desired conclusion follows.
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By Theorem 2.1, we have an important corollary.

Corollary 2.2. If s > 0, 1 < p <∞,1 6 q 6∞, then f ∈ Bs+1
p,q (R

n) if and only if ∂f ∈ Bsp,q(R
n).

In addition, we can get the convergence of projection operators in Besov spaces.

Theorem 2.3. Let Φ(x) be an r-regular function, 0 < s < r, 1 6 p 6∞, 1 6 q <∞. Then

lim
j→∞ ‖f− Pjf‖Bsp,q(Rn) = 0

for f ∈ Bsp,q(R
n). Moreover,

‖f‖Bsp,q(Rn) ∼ ‖(s0,·)‖lp + ‖{2
j(s+n

2 −
n
p )‖de:j,·‖lp}j>0‖lq .

Proof. Note that ‖f‖Bsp,q(Rn) ∼ ‖f‖DBsp,q(Rn) := ‖P0f‖Lp + ‖(2js‖Qjf‖Lp)j>0‖lq by Theorem 3.6.1 in [5]. It is
easy to show that lim

j→∞ ‖f− Pjf‖DBsp,q(Rn) = 0, where q 6=∞ is needed. Then

lim
j→∞ ‖f− Pjf‖Bsp,q(Rn) = 0

holds for f ∈ Bsp,q(R
n).

Similar to Theorem 1.1 in [11], we can easily get the proof of equivalence.

Remark 2.4. Theorem 2.3 says that f = PJf+
∑
j>JQjf in Besov norm. Moreover, f ∈ Bsp,q(R

n) can be
characterized by wavelet coefficients norm ‖(s0,·)‖lp + ‖{2

j(s+n
2 −

n
p )‖de:j,·‖lp}j>0‖lq .

The last two auxiliary results are the following lemmas.

Lemma 2.5 ([9]). Let Φ be an orthonormal scaling function and Ψe be the corresponding wavelets. IfΦ and Ψe are
bounded in absolute value by a Lebesgue integrable function L(x) with L(x) 6 L(y) for |x| > |y|, then the scaling
function and wavelet expansion

∑
k s0,kΦ0,k(x) +

∑∞
j=0
∑
e,k de:j,kΨe:j,k (1 6 p 6∞) of f ∈ Lp(Rn) converges

to f(x) pointwise almost everywhere.

Lemma 2.6. Let Φ(x) be 1-regular and Ψ(x) be the corresponding wavelet. If f ∈ Lp(Rn)
⋂

C(Rn) with 1 6 p 6
+∞ and s ∈ R such that sp > n, then the following two identities hold uniformly on Rn.

(i) f(x) = P0f(x) +
∑∞
j=0
∑
e,k de:j,kΨe:j,k(x), when |de:j,k| . 2−j(s+

n
2 −

n
p );

(ii) ∂f(x) = ∂(P0f)(x) +
∑∞
j=0
∑
e,k de:j,k∂Ψe:j,k(x), when |de:j,k| . 2−j(s+1+n

2 −
n
p ).

Proof.

(i). When 1 6 p 6∞, Lemma 2.5 says

f(x) = P0f(x) +

∞∑
j=0

∑
e,k

de:j,kΨe:j,k(x)

almost everywhere. On the other hand, when |de:j,k| . 2−j(s+
n
2 −

n
p ),

|
∑
e,k

de:j,kΨe:j,k(x)| 6
∑
e,k

|de:j,k|2
jn
2 |Ψ(2jx− k)| . 2−j(s−

n
p ).

Hence,
∑

j>0,e,k
de:j,kΨe:j,k(x) converges uniformly for sp > n, which implies the continuity of

∞∑
j=0

∑
e,k
de:j,kΨe:j,k(x). Because P0f(x) and f(x) are continuous, the proof of (i) is completed.

(ii). Similar to (i), |de:j,k| . 2−j(s+1+n
2 −

n
p ) implies the uniform convergence and the continuity of
∞∑
j=0

∑
e,k

de:j,k∂Ψe:j,k(x).
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3. Proof of main results

Based on auxiliary results of Section 2, this section is devoted to prove Theorem 1.1 and Theorem 1.2.
In fact, the proofs of these theorems are very similar to Theorem 1.2.a and Theorem 1.3.a in [10]. But the
characterization of Besov spaces by wavelet coefficients is different from [10], and even the definition of
Besov space is different. For the sake of understanding the proof of main results easily, we give the proofs
in detail.

We begin with the proof of Theorem 1.1 firstly.

Proof of Theorem 1.1. Note that de:j,k := 〈f,Ψe:j,k〉, then f ∈ Bs+1
p,q (R

n) implies

(2j(s+1+n
2 −

n
p )‖de:j·‖p)j>0 ∈ lq, (3.1)

according to Theorem 2.3. By |djk| . 2−j(s+1+n
2 −

n
p ) and Lemma 2.6, one knows that

f(x) = P0f(x) +

∞∑
j=0

∑
k

de:j,kΨe:j,k(x), ∂f(x) = ∂(P0f)(x) +

∞∑
j=0

∑
e,k

de:j,k∂Ψe:j,k(x) (3.2)

hold uniformly. Note that PJf(x) = P0f(x) +
J−1∑
j=0

∑
k

de:j,kΨe:j,k(x) for J > 0. Then |sJ0,k| := |〈PJf, ϕ0k〉| =

|s0,k| := |〈f, ϕ0,k〉| and |dJe:j,k| := |〈PJf, Ψe:j,k〉| 6 |djk| for j > 0. Hence,

‖sJ0,·‖p + ‖{2
j(s+1+n

2 −
n
p )‖dJe:j,·‖p}j>0‖lq 6 ‖s0,·‖p + ‖{2j(s+1+n

2 −
n
p )‖de:j,·‖p}j>0‖lq . ‖f‖Bs+1

p,q (Rn).

Now, PJf ∈ Bs+1
p,q (R

n) follows from the fact ‖PJf‖p . ‖f‖p and Theorem 2.3. Hence, (PJf) ∈ Bsp,q(R
n)

(Corollary 2.2). This argument also shows the boundedness of PJ on Bsp,q(R
n). Therefore, P ′Jf :=

PJ∂(PJf) ∈ Bsp,q(R
n).

(i) By the representation of PJf, ∂(PJf)(x) = ∂(P0f)(x) +
J−1∑
j=0

∑
e,k
de:j,k∂Ψe:j,k(x). This with (3.2) leads to

∂(PJf)(x) − ∂f(x) =
∞∑
j=J

∑
k

de:j,k∂Ψe:j,k(x). Using (3.1), one has

‖∂(PJf)(x) − ∂f(x)‖∞ = ‖
∞∑
j=J

∑
k

de:j,k∂Ψe:j,k(x)‖∞ .
∞∑
j=J

‖de:j,·‖∞2(
n
2 +1)j = 2−J(s−

n
p )εJ,q. (3.3)

Similarly, because f ∈ Bs+1
p,q (R

n), ∂f ∈ Bsp,q(R
n) and d ′e:j,k := 〈∂f, Ψe:j,k〉 satisfies |d ′e:j,k| . 2−j(s+

n
2 −

n
p )εj,q

due to Theorem 2.3. Then Lemma 2.6 says ∂f(x) = P0(∂f)(x) +
∞∑
j=0

∑
k

d ′e:j,kΨe:j,k(x) and PJ(∂f)(x) =

P0(∂f)(x) +
J−1∑
j=0

∑
k

d ′e:j,kΨe:j,k(x). Moreover, PJ(∂f)(x) − (∂f)(x) =
∑∞
j=J

∑
k d
′
e:j,kΨe:j,k(x) and

‖PJ(∂f)(x) − (∂f)(x)‖∞ .
∞∑
j=J

‖de:j·‖∞2
nj
2 = 2−J(s−

n
p )εJ,q. (3.4)

Note that P ′Jf := PJ(∂(PJf)) and ‖PJf‖∞ . ‖f‖∞. Then ‖P ′Jf− (∂f)‖∞ = ‖PJ(PJf) ′ − f ′‖∞ 6 ‖PJ∂(PJf) −
PJ(∂f)‖∞ + ‖PJ(∂f) − (∂f)‖∞ . ‖∂(PJf) − (∂f)‖∞ + ‖PJ(∂f) − (∂f)‖∞, which leads to the desired ‖P ′Jf −
(∂f)‖∞ . 2−J(s−

n
p )εJ,q from (3.3) and (3.4).

(ii) By the assumption f ∈ Bs+1
p,q (R

n), one knows ∂f ∈ Bsp,q(R
n). In addition, the proved fact says

P ′Jf ∈ Bsp,q(R
n). Hence, P ′Jf − ∂f ∈ Bsp,q(R

n), and (2js‖(P ′Jf − ∂f) − Pj(P ′Jf − ∂f)‖p)j>J ∈ lq thanks to
Theorem 2.3. Clearly,

Pj(P
′
Jf) = PjPJ∂(PJf) = PJ∂(PJf) = P

′
Jf for j > J,
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then (2js‖Pj(∂f) − ∂f‖p)j>J ∈ lq. Namely, ‖PJ(∂f) − (∂f)‖p = 2−JsεJ,q. Since ‖P ′Jf− (∂f)‖p 6 ‖PJ∂(PJf) −
PJ(∂f)‖p + ‖PJ(∂f) − ∂f‖p . ‖∂(PJf) − ∂f‖p + ‖PJ(∂f) − ∂f‖p, it remains to show

‖∂(PJf) − (∂f)‖p = 2−JsεJ,q. (3.5)

From (3.2), ∂(PJf)(x) − (∂f)(x) =
∞∑
j=J

∑
k

de:j,k∂Ψe:j,k(x). Because Ψe is compact supported and bounded,

one obtains

‖∂(PJf) − (∂f)‖p 6
∞∑
j=J

‖
∑
e,k

de:j,k∂Ψe:j,k(x)‖p .
∞∑
j=J

2(
n
2 +1)j2−

jn
p ‖de:j,·‖p =

∞∑
j=J

2−js‖de:j,·‖p2j(
n
2 +s+1−n

p ).

When q= 1, ‖∂(PJf) − (∂f)‖p = 2−JsεJ,q follows easily from (3.1); when 1< q <∞, assume
1
q
+

1
q ′

= 1,

then by the Hölder inequality and (3.1),

‖∂(PJf) − ∂f‖p . (

∞∑
j=J

2−jsq
′
)

1
q ′ ‖{‖de:j,·‖p2j(

3
2+s−

1
p )}j>J‖q . 2−Jsεq.

This reaches (3.5) and the proof of (ii) is completed.

(iii) As shown in the first paragraph of this proof, when f∈Bs+1
p,q (R

n), PJf∈Bs+1
p,q (R

n), sJ0,k := 〈PJf, Φ0,k〉 =
s0,k := 〈f, Φ0,k〉 for k ∈ Z, and dJe:j,k := 〈PJf, Ψe:j,k〉 = de:j,k := 〈f, Ψe:j,k〉 for j < J. Then PJf− f ∈
Bs+1
p,q (R

n). With the help of Theorem 2.3,

‖PJf− f‖Bs+1
p,q

∼ ‖sJ0,· − s0,·‖p + ‖{‖dJe:j,k − de:j,k‖p2j(s+1+n
2 −

n
p )}j>0‖q = ‖{‖de:j,·‖p2j(s+1+n

2 −
n
p )}j>J‖q.

Because ‖f‖Bs+1
p,q

∼ ‖s0,·‖p + ‖{‖de:j,k‖p2j(s+1+n
2 −

n
p )}j>0‖q, lim

J→+∞ ‖PJf− f‖Bs+1
p,q

= 0 for 1 6 q < ∞. Simi-

larly, lim
J→+∞ ‖PJ(∂f) − (∂f)‖Bsp,q

= 0. Note that ‖P ′Jf− PJ(∂f)‖Bsp,q
=: ‖PJ∂(PJf) − PJ(∂f)‖Bsp,q

. ‖∂(PJf) −

(∂f)‖Bsp,q
. ‖PJf − f‖Bs+1

p,q
. Then, lim

J→+∞ ‖P ′Jf − PJ(∂f)‖Bsp,q
= 0, and finally the desired conclusion

lim
J→+∞ ‖P ′Jf− (∂f)‖Bsp,q

= 0 follows from

‖P ′Jf− (∂f)‖Bsp,q
6 ‖P ′Jf− PJ(∂f)‖Bsp,q

+ ‖PJ(∂f) − (∂f)‖Bsp,q
.

Next, we prove Theorem 1.2.

Proof of Theorem 1.2. By Tλf(x) =: T(Tλf)(x), it is sufficient to show ∂(Tλf) ∈ Bsp,q(R) or Tλf ∈ Bs+1
p,q (R) by

Theorem 1.1 (i), in order to conclude Tλf ∈ Bsp,q(R
n). Note that de:j,k := 〈f,Ψe:j,k〉 satisfies |δ(de:j,k, λ)| .

|de:j,k| and ‖de:j,·‖p . 2−j(s+1+n
2 −

n
p )εq due to Theorem 1.1. Because Ψe are compactly supported,

‖
∑
k

δ(de:j,k, λ)Ψe:j,k(x)‖p . 2(
n
2 −

n
p )j‖δ(de:j,·, λ)‖p . 2(

n
2 −

n
p )j‖de:j,·‖p . 2−(s+1)j.

In fact, if a bounded function g ∈ L2(Rn) has compact support, then for 1 6 p 6∞,
1
p
+

1
p ′

= 1 ([8]),

‖
∑
k

ck2
j
2g(2jx− k)‖p 6 ‖

∑
k

|g(x− k)|‖
1
p ′∞ ‖c‖p2(

n
2 −

n
p )j‖g‖

1
p

1 .

Moreover,
∑
j>0 ‖

∑
e,k δ(de:j,k, λ)Ψe:j,k(x)‖p .

∑
j>0 2−(s+1)j <∞, which means∑

j>0,e,k

δ(de:j,k, λ)Ψe:j,k(x) ∈ Lp(Rn).
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Now,
Tλf(x) =:

∑
k

s0,kΦ0,k(x) +
∑
j>0

∑
e,k

δ(de:j,k, λ)Ψe:j,k(x) ∈ Lp(Rn)

with s0,k = 〈f,Φ0,k〉. On the other hand, assume ŝ0,k = 〈Tλf,Φ0,k〉 and d̂e:j,k = 〈Tλf,Ψe:j,k〉, then ŝ0,k = s0,k
and |d̂e:j,k| = |δ(de:j,k, λ)| . |de:j,k|. Hence,

‖ŝ0,·‖p + ‖{2j(s+1+n
2 −

n
p )‖d̂e:j,·‖p}j>0‖q . ‖s0,·‖p + ‖{2j(s+1+n

2 −
n
p )‖de:j,·‖p}j>0‖q . ‖f‖Bs+1

p,q (Rn).

This shows Tλf ∈ Bs+1
p,q (R

n) thanks to Theorem 2.3.

(i) As in the first paragraph, one knows |de:j,k| := |〈f,Ψe:j,k〉| . ‖de:j,·‖p . 2−j(s+1+n
2 −

n
p ). This with

Lemma 2.6 (ii) leads to

∂f(x) = ∂(P0f)(x) +

∞∑
j=0

∑
e,k

de:j,k∂Ψe:j,k(x). (3.6)

Recall that Tλf(x) :=P0f(x)+
∑∞
j=0
∑
e,k δ(de:j,k, λ)Ψe:j,k(x) and Tλf∈Bs+1

p,q (R
n) implies Tλf(x) = ∂(Tλf)(x)

∈ Bsp,q(R
n), according to Corollary 2.2. Then Tλf(x) = ∂(P0f)(x)+

∑∞
j=0
∑
e,k δ(de:j,k, λ) ·∂Ψe:j,k(x). Since

|δ(de:j,k, λ)| . |de:j,k| . 2−j(s+1+n
2 −

n
p ),

∑
j>0,e,k

δ(de:j,k, λ)Ψe:j,k(x) and
∑

j>0,e,k
δ(de:j,k, λ)∂Ψe:j,k(x) converge

uniformly on Rn. Therefore Tλf(x) = ∂(P0f)(x) +
∑
j>0,k δ(de:j,k, λ)∂Ψjk(x). Combining this with (3.6),

one has
Tλf(x) − ∂f(x) =

∑
j>0

∑
e,k

[δ(de:j,k, λ) − de:j,k]∂Ψjk(x). (3.7)

Let J := max{1, [ 2
2s ′+n+2 log2

εq
λ ]}, because ‖de:j,·‖p . 2−j(s+1+n

2 −
n
p )εq, δ(de:j,k, λ) = 0 when j > J. Here

s ′ := s−
n

p
. Then, |Tλf(x) − ∂f(x)| 6

J∑
j=0

∑
e,k

|δ(de:j,k, λ) − de:j,k||∂Ψe:j,k(x)|+
∞∑

j=J+1

∑
e,k

|de:j,k||∂Ψe:j,k(x)|. By

|δ(de:j,k, λ) − de:j,k| . λ and |de:j,k| . 2−j(s+1+n
2 −

n
p )εq,

|Tλf(x) − ∂f(x)| .
J∑
j=0

λ2(
n
2 +1)j +

∞∑
j=J+1

2−j(s+1+n
2 −

n
p ) · εq2(

n
2 +1)j . λ2

3
2J + 2−s

′Jεq.

This with the choice of J leads to |Tλf(x) − ∂f(x)| 6 2λ
2s ′

2s ′+n+2 ε
n+2

2s ′+n+2
q . Note that J → +∞ if and only if

λ→ 0, then the conclusion (i) holds.

(ii) Applying Bernstein inequality ([8]) to (3.7), one obtains

‖Tλf− ∂f‖p 6
∑
j>0

2j‖
∑
e,k

[δ(de:j,k, λ) − de:j,k]Ψe:j,k(x)‖p. (3.8)

Because both f and Ψe have compact supports, the number of non-zero wavelet coefficients de:j,k isO(2jn)
on level j. This with |δ(de:j,k, λ) − de:j,k| . λ implies that for fixed J > 0,

J∑
j=0

2j‖
∑
e,k

[δ(de:j,k, λ) − de:j,k]Ψe:j,k(x)‖p .
J∑
j=0

2nj · 2jλ‖Ψe:j,k‖p =

J∑
j=0

2j(
3n+2

2 −n
p )λ . 2J(

3n+2
2 −n

p )λ. (3.9)

On the other hand (because Ψe are compact supported and bounded),

‖
∑
k

[δ(de:j,k, λ) − de:j,k]Ψe:j,k‖p . 2(
n
2 −

n
p )j‖δ(de:j,·, λ) − de:j,·‖p

6 2(
n
2 −

n
p )j(‖δ(de:j,·, λ)‖p + ‖de:j,·‖p) . 2(

n
2 −

n
p )j‖de:j,·‖p.
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By ‖de:j,·‖p . 2−(s+1+n
2 −

n
p )jεq and

‖
∑
e,k

[δ(de:j,k, λ) − de:j,k]Ψe:j,k(x)‖p . 2(
n
2 −

n
p )j2−(s+1+n

2 −
n
p )jεq = 2−(s+1)jεq,

we have ∞∑
j=J+1

2j‖
∑
e,k

[δ(de:j,k, λ) − de:j,k]Ψe:j,k(x)‖p .
∞∑

j=J+1

2−sjεq = 2−sJεq. (3.10)

The combination of (3.8), (3.9), and (3.10) tells ‖Tλf− ∂f‖p . 2J(
3n+2

2 −n
p )λ+ 2−Jsεq. Similar to (i), taking

J := max{1, [ 2
2s ′+3n+2 log2(λ

−1εq)]} ( s ′ := s− n
p ), then ‖Tλf− ∂f‖p = λ

2s
2s ′+3n+2 εq.

(iii) Let de:j,k = 〈f,Ψe:j,k〉 and d̂e:j,k = 〈Tλf,Ψe:j,k〉. Then

‖Tλf− f‖Bs+1
p,q

. ‖{‖d̂e:j,· − de:j,·‖p2j(s+1+n
2 −

n
p )}j>0‖q

due to Theorem 2.3. Since Tλf(x) = ∂(Tλf)(x), Tλf− ∂f = ∂(Tλf− f) and ‖Tλf− ∂f‖Bsp,q
6 ‖Tλf− f‖Bs+1

p,q
.

Moreover,
‖Tλf− ∂f‖Bsp,q

. ‖{‖d̂e:j,· − de:j,·‖p2j(s+1+n
2 −

n
p )}j>0‖q. (3.11)

Recall that Tλf(x) := P0f(x) +
∑
j>0,k δ(de:j,k, λ)Ψe:j,k(x), then

|d̂e:j,k| = |δ(de:j,k, λ)| . |de:j,k| and |d̂e:j,k − de:j,k| . |de:j,k|.

By f ∈ Bs+1
p,q (R

n) and Theorem 2.3,

‖(‖de:j,·‖p2j(s+1+n
2 −

n
p ))j>0‖q . ‖f‖Bs+1

p,q
.

Hence,

lim
J→+∞

∞∑
j=J+1

(‖de:j,·‖p2j(s+1+n
2 −

n
p ))q = 0 for 1 6 q <∞. (3.12)

Because limλ→0 d̂e:j,k = de:j,k for each 1 6 j 6 J,

lim
λ→0

J∑
j=0

[‖d̂e:j,· − de:j,·‖p2j(s+1+n
2 −

n
p )]q = 0.

This with (3.11) and (3.12) lead to lim
λ→0
‖Tλf− ∂f‖Bsp,q

= 0.

Remark 3.1. Theorems 1.1 and 1.2 can be used to study the smoothness estimation of n-dimensional
density functions in statistical problems (e.g., [4]), and this is the next work we will focus on.
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