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Abstract

This paper deals with the convergence of the wavelet thresholding estimator on Besov spaces Bf),q (R™). We show firstly the
equivalence of several Besov norms. It seems different with one dimensional case. Then we provide two convergence theorems
for the wavelet thresholding estimator, which extend Liu and Wang’s work [Y.-M. Liu, H.-Y. Wang, Appl. Comput. Harmon.
Anal., 32 (2012), 342-356]. (©2017 All rights reserved.
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1. Introduction

The convergence of wavelet series is important in both pure and applied mathematics. Kelly et al.
[9] studied firstly almost everywhere convergence of wavelet series in 1994. The wavelet thresholding
method, proposed by Donoho and Johnstone [7], plays fundamental roles in data compression, signal
processing, and statistical problems. Tao and Vidakovic [12, 13], Chen and Meng [2] study the convergence
of resulting wavelet series in pointwise and L,, settings, respectively.

As we know, the estimation of density function is important in statistical problems. Wavelet can be
successfully applied to the study of this problem. In some statistical models, the error of estimators
is measured in L, norm (e.g., [3]). Besides, Besov spaces contain many functional spaces (e.g., Holder
spaces, Sobolev spaces with non-integer exponents) as special examples. Liu and Wang [10] studied
the convergence rate of wavelet thresholding estimators for differential operator in L, norm over Besov
spaces B}, ;(R). In this paper, we shall study the convergence rate of wavelet thresholding estimators over
Besov spaces Bj 4 (R™), which is different from BJ q (R) ([10]) because of different equivalent Besov-norm
theorems in B3 ,(R™).

This paper is organized as follows. Besov space with a standard norm is presented in Section 1.1. The
next subsection is devoted to give a wavelet thresholding estimator for dof based on non-standard form
(NSF) of differential operators. The main results are given in Section 1.3, which will be proved in Section
3. To do that, some auxiliary results are presented in Section 2.
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1.1. Besov norms
Let 0 < p,q < 00, s > 0 and [s] stands for the largest integer less than or equals to s,

Here, IfIBs Rn) = H(stwg/l(f,Z*j))jezng with M > [s] +1 and wj M(f,277) denotes the M-th order
smooth modulus of a function f, defined by sup |AMf(:) L, ®n)- The difference operator Ay, is defined
[h|<27

by Anf(:) := f(- + h) — f(-) and A}I\{lf = Ah(A]’Xl*lf) for a positive integer M > 1. The Besov (quasi-)norm
(called the standard Besov norm) is given by

IfllBg o (&) = [IfllL, me) + IflBg (&)

and two integers M, M’ > s yield equivalent norms ([5, Remark 3.2.2]). Here and after, let IN, Z, and
R be the set of positive integers, the set of integers, and the set of real numbers, respectively, as well as
INp := N U{0}. In addition, we use A < B to abbreviate that A is bounded by a constant multiple of B,
A 2 Bis defined as B S Aand A ~B means A < B and B < A.

1.2. Wavelet thresholding estimator
We begin with the concept of multiresolution analysis (MRA, [6]) in this section, which is a sequence of
closed subspaces {V;j}jcz of the square integrable function space L,(IR) satisfying the following properties:
i) V; CVji1, Y €Z;
(i) f(-) € Vo & f(2):) € Vj;

(i) Ujez Vs = L2(R);
(iv) there ex1sts a function ¢(x) € L[2(R) called the scaling function such that {¢(x —k)}xez forms an
orthonormal system and Vj = span{¢$(x —k)}.

We can derive a correspondmg wavelet function P(x) = Y | (— khl,kZ%d)(Zx —k) with hy = ($p(x),
22 ¢(2x —k)), such that (22 (2ix — k)}kez constitutes an orthonormal basis of Wj, which is the orthogonal
complement of Vj in Vj 1. Now, we expand these results to L>(IR™). Define
Q(x) = d(x1)d(x2) -~ d(xn) and We(x) = &(x1)E(x2) - -+ &(xn)

fore € {0,1}" and e # (0,0,---,0) (if s =1, E(x4) = P(x4), else E(xi) = P(x1)). With the standard notation
fik(x) = 27 f(21x — k), we construct an orthonormal bases (@1, Yeijkti>1,e£000,- 0,k for [2(R™). As
usual, let

Pifi= Y sx®;x and Qjf = Pjy1f —Pjf
k

with Sjk == <f (D) k>
Note that Tf(x) = [K(x,y)f(y)dy ([1]) defines a bounded linear operator from L(R™) to L(R™) for
K(x,y) € L(R?™). When representing K(x,y) by the basis

{Pox (x)Poxr (Y), Ve k() DPj1r (Y), @i (X)Werij i (Y), Yerj k (X)Wer 1 (Y) e e 1 ks

we have )
Z Tk X/ q)o k(X d)o k’ ) + Z [Z fx)e,e/,k,k/lye:j,k(X)We’:j,k/ (U)
k,k’ j=0,k,k’ ee’
+Zﬁekk/ e)k )k/ +Z’Ye’kk/ Jk \ye’:)',k/(y)]
with
T‘Lk, = <T(Dj,k/, (D]',k>, (x]e,e’,k,k/ = <we’:j,k’/qje:j,k>/
[?)le’k, = <T(Dj,k/r\ye:)',k>/ ’YL’,k,k’ = <We/:j,k// q)j,k>'

So the NSF of T is defined by
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Tf—Z(DOk Zrkk’(DOk’ +ZZ e]k Z(Xee’kk’ e ]k/(y)

>0 ek e’k
+\Pe:j,k(x) Z Be,k,k’q)j/k' )+ ;, k(x Z Y ’kk’ e’:j, k(Y
/ / k/
Then NSF of T for differential operator 0 := 57~ is rewritten by
Tf—Zq)Ok ZTLSOk 1+ZZ esj k(X 2]Z“ee'1de]k1
j=0 ek

(1.1)
+\ye]k ZJZBels]k l+q)]k ZJZ'Ye’lde]k l]
e/l
where xe e = [We(x —VO¥e/ (x)dx, Ber = [Welx — )OO (x)dx, Yer1 = [ De(x — Wi (x)dx, T :=
JO(x—1)0®(x)dx and derjx == (f, Wer,x). With the definitions of P; and Qj, (1.1) leads to Tf = PyoPof +
Z):O(Q]aQ]f-i- QjaP]-H— Pjanf). Since P' + Qj = Pj+1,
Tf(x )—11mP6Pf—hmPf( ).
j—o0 j—o0

1.3. Main results

The main work of this paper is to study the convergence of corresponding wavelet thresholding esti-
mator in B} (R™). Throughout this paper, C stands for some positive constant which may change from
place to place and

0(1), q=oo asj — oo.

We also need a classical notation (e.g., [10]): A scaling function ¢ is called r-regular, if ¢ has r continuous
(partial) derivatives and accuracy v, i.e., there exist finitely many cy . such that for each fixed x € R,

k:ZCl,k(P(X-FU for k=0,1,---,r—1.

. o(1), 1<q<oo,
&j,q =

Theorem 1.1. Let @ (x) be an r-regular, compactly supported, and orthonormal scaling function. If f € BS“(]R“)
withl <p<oo,1<q <ooands>05uchthat L <s<r—1,then P{ f( )EBS, (R™) and

(i) 277 |PIf— Offloo = £1,q a5 ] = +o00;
(ii) ZJSHP f— apr = €y,q a8 ] — +00;
(iii) ||of — P f(x ||Bs Rn) = £7,q-

To present next theorern, we shall import a concept [7]: A function 5(x,A) : R™ x R is called a
thresholding rule, if there exists C > 0 such that for all A > 0,

|X_6(X/)\)| < C)\ and |6(X/)\)| < C|X|X{|X|>)\}/

where
1, |x| > A,
X{|x|>A) = 0, [xl <A

Hard and soft thresholding are two well-known examples. Then the wavelet thresholding estimator of
f € L;, is given by

Taf(x ZSOK(DOK +ZZ§ e MWesj ks

j=0 ek
where de;j i == (f, Ve x)- Meanwhlle, its NSF on differential operator is T\f := T(T\f). Similar to ¢; 4,

define
_Jo(l), 1<q<oo,
AT 0(1), q=oo,

The next theorem studies the convergence of T f to of.

as A — 0.
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Theorem 1.2. Let @ (x) be an r-regular, compactly supported, and orthonormal scaling function. If f € B;fql(lR“)
withl <p <oo,1< q<ooands >0 such that % <s<r—1,8 =s— %, then Thf(x) € Bf,,q(]R“) and

(@) A5 | Taf — ']|oo = Enq/
(i) A~ R | Taf —f'||p = €a,q when f has compact support;
(iii) [|TAf —f'llgs , (Rn) = €rq-

2. Some auxiliary results

In order to prove our main results in Section 3, we will give some auxiliary results in this part. Before
that, some equivalent Besov norms are presented below.

Let @ € C®(IR™) (real infinite differential functional spaces), supp ¢ C {{ € R™ :[§] < 2} and @(&) =1
if [£] < 1. Write @;(&) == (2~ Jg) — @(27771E) with j € N. Then define ([14, Page 92])

IfllBs,, (rn) = (2l @ (D)Fll, Jken I, < oo,

where @i (D)f := (@ f)Y and f, fV are the classical Fourier transform and the inverse Fourier transform,
respectively.

. Joc| .
Besides, let D% = %, o= (1,0, -+ ,an), and || = o1 + ap + - - + &, Using WE(RM)
0%, 10x, 20Xy P

(the famous L, Sobolev space with integer exponents k), we give the left needed Besov norms below.
Assume s < M € IN ([14, Page 140]),

1
dt, 1
. — M o
190y = I, + (| €59 sup AN, T% < o0
0 0<Ihi<t

and using the usual modification when q = co
Let k <s <m+k withm € N,k € Ny ([14, Page 8]),

C(s— dh
IFlegg ey i= Wl + 3 (] 99 ATD L2003 < o0
|x|=k

al=

and also using the usual modification when q = co. When m =2, k = [s] for s ¢ N and k = [s] — 1 for
seN,B=s—k(0<p <1),wedenote HfHZBs (rn) by ([10])

_ dh
s = Wy + 3 (] WPaaRD ) < oo

la|=k

_Q‘H

First, we present these Besov norms are equivalent.
Theorem 2.1. Ifk <s<2+k(m=2),keNy 1<p<oo,1<q< oo, then HfHHBs RM) HfHBs R™)

Proof. By Definitions (1.2.5/1), Theorem 1.2.5 (3) and Theorem 1.3.4 in [14] (k < s < 2+ k, k € Ny,
1<p<oo,1<q< ), we have HfHHBs RM) HfHBs . On the other hand, Remak 9.13 in [15] tells

us that HfH]Bs R") HleBS (rn) for 0 < p, q < 00, Op < s < M € Ny (0p = nmax{1 —1,0}). Meanwhile,
when 0 < p, q < oo 0<s< M € Ny, simple calculations lead to HleBs (R") Hf”Bs rn)- In fact,

1 a & r) >

jtsq sup [|AN' ], — —ZJ %9 sup |Ahfupf~sz sup AN, In2,  (2.1)
0 0<|h|<t t = 0<|hl<t 0< 5

XINlx j=0 I [h|<27)

where the equivalence part of (2.1) is from Lemma 9.1 (iv) in [8]. Then the desired conclusion follows. [
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By Theorem 2.1, we have an important corollary.
Corollary 2.2. If s > 0,1 <p < 00,1 < q < o0, then f € By [(IR™) if and only if 9f € B}, . (R™).
In addition, we can get the convergence of projection operators in Besov spaces.
Theorem 2.3. Let O (x) be an r-reqular function, 0 < s <1,1<p < 00,1 < q < oco. Then
hm ||f —P; fHBs rn) =0

for f e B} o (R™). Moreover,

<

By, ey ~ 650, ) I, + 127272 1 des, [l byl

Proof. Note that ||f||Bs RM) ||fHDBs o (RM) = [PofllL, + H(2]'3||Q]-f||1_p))->0|]1Lq by Theorem 3.6.1 in [5]. It is
easy to show that l1m Hf P f HDBS (]Rn) = 0, where q # oo is needed. Then

jg{}oH iflles , (RM)

holds for f € B}, ,(R™).

Similar to Theorem 1.1 in [11], we can easily get the proof of equivalence. O
Remark 2.4. Theorem 2.3 says that f = Pyf+ ) ;-; Q;f in Besov norm. Moreover, f € B}, ;(R™) can be
characterized by wavelet coefficients norm ||(so,.)|[1, + [{2i 2 %) Ides, I, Jizollt,-

The last two auxiliary results are the following lemmas.

Lemma 2.5 ([9]). Let @ be an orthonormal scaling function and V. be the corresponding wavelets. If ® and Y. are
bounded in absolute value by a Lebesgue integmble function L(x) with L(x) < L(y) for |x| > |yl, then the scaling
function and wavelet expansion Y soxPox(x) + ZJ 0 Ze k desjcWesji (1 < p < o0) of f € L, (R™) converges
to f(x) pointwise almost everywhere.

Lemma 2.6. Let ®(x) be 1-reqular and WY(x) be the corresponding wavelet. If f € LP(R™) (N C(R™) with 1 < p <
+oo and s € R such that sp > n, then the following two identities hold uniformly on R™.

(@) f(x) =Pof(x) + 3520 X e x desjkWesjk(x), when |de;l <o ity

(if) (x) = d(Pof) (x) + 5% T e desjd0Wes(x), when desil 270370,
Proof.
(i). When 1 < p < oo, Lemma 2.5 says

f(x) = Pof(x JrZZde)k\ye]k

j=0 ek

almost everywhere. On the other hand, when |d¢ i S 27) (H%*%),
|Zde]kwe]k <Y e 2T W@ — k) S 27078,
ek

Hence, >_ de:j,k‘i’e:j,k(x) converges uniformly for sp > n, which implies the continuity of
j>0,e,k

[e¢]
> 2 dejiWesjk(x). Because Pof(x) and f(x) are continuous, the proof of (i) is completed.
j=0ek

(ii). Similar to (i), [de:jx| S 2 s+t —3) implies the uniform convergence and the continuity of

o0

Z Z de:irka\ye:j,k(x). -

j=0 ek



J. Zhao, Z. Zhuang, J. Nonlinear Sci. Appl., 10 (2017), 61496158 6154

3. Proof of main results

Based on auxiliary results of Section 2, this section is devoted to prove Theorem 1.1 and Theorem 1.2.
In fact, the proofs of these theorems are very similar to Theorem 1.2.a and Theorem 1.3.a in [10]. But the
characterization of Besov spaces by wavelet coefficients is different from [10], and even the definition of
Besov space is different. For the sake of understanding the proof of main results easily, we give the proofs
in detail.

We begin with the proof of Theorem 1.1 firstly.

Proof of Theorem 1.1. Note that dejx = (f, Wesj ), then f € BS'I(R™) implies
(@ ldesy lp)zo €19, (3.1)

according to Theorem 2.3. By [dji| < 27357172 7%) and Lemma 2.6, one knows that

f(x) = Pof(x +ZZde]k\ye)k of(x) = d(Pof) (x +ZZdeJka‘Pe]k) (3.2)

j=0 k j=0 ek

hold uniformly. Note that Pyf(x) = Pof(x Z > deijiWe:k(x) for ] > 0. Then \s(])’kl = [(Pyf, @ok)l =
i=0 k

skl == I(f, @ox)land |dL; | :=I(Psf, ey i)l < Idjicl for j = 0. Hence,

n n

j 1+5—-1) j 14n_n
Iy + 1220 aL S lpYizolha < liso,llp + 27270 ldes, p)solha S Ifllgg -

Now, Pyf € B;ﬂ(]R“) follows from the fact ||Pjf|, < [[fll, and Theorem 2.3. Hence, (Pyf) € B} (R™)
(Corollary 2.2). This argument also shows the boundedness of P;j on Bf,/q(]R“). Therefore, Pff =
Pyo(Pyf) € By q(R™).

J—1
(i) By the representation of Pyf, 9(Pyf)(x) = 0(Pof)(x) + 3 > de:;jxOWe:;k(x). This with (3.2) leads to
j=0ek

o(Pyf)(x) —of(x) = i 2 dejk0V¥e: i (x). Using (3.1), one has
i—] K

0Py I) — 00 = |3 Y descd¥es 0o £ 3 e 23 =275 80y o (33
i=] x j

Similarly, because f € B;fql(]R“), of € By, 4(R™) and d,. gk = (of, We. ) k) satisfies |d/ ; i W S Z*j(H%*%)ej,q
due to Theorem 2.3. Then Lemma 2.6 says 0f(x) = Po(df)(x) + ZOZ dejYesk(x) and Py(df)(x) =
i=0 k

—l—ZO%de)k e,k (x). Moreover, Py(9f)(x) — (8f)(x) = 372 3\ dijWesjx(x) and
j

[Py (x) = (0F) (X)lloo S D lldess floc2 =277 ey . (3.4)
i=]

Note that Pff = P](a(P]f)) and HP]fHoo S HfHoo Then HP f— af)Hoo = HP](P]f)/_f/Hoo § HP]a(P]f) —
Py(0f) 0o + [|[P7(0f) — (0f)[|oo S [[O(Pyf) — (0f)||co + [|Pj(0f) — (0f)||oo, which leads to the desired ||P]’f—
(1) oo S 2771573 )g; o from (3.3) and (3.4).
(ii) By the assumptlon f e BSH(IR“), one knows of € By ((R™). In addition, the proved fact says
P]f € Bp,q(R™). Hence, P]f af € By q(R™), and (ZjSH(P]’f—af) —P]-(P]’f—af)Hp)jZI € 19 thanks to
Theorem 2.3. Clearly,

Pj(Pff) = PjP]a(P]f) = P]a(P]f) = Pff for ] = ],
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then (27%||P;(9f) — of||p)j>; € 19. Namely, ||Pj(of) — af )|[p =27T%¢j 4. Since [Pyf— (0f)[lp < [[PyO(Pyf) —
Py(0f)||p + ||Py(0f) — of]|, < [[0(Pyf) — Of||p + [|Pj(0f) — Of ||}, it remains to show

1d(Py) — (3f)||p =27 T5¢) 4. (3.5)

o
From (3.2), 9(Pyf)(x) — (0f)(x) = 3 > de:j,k0We:jk(x). Because ¥, is compact supported and bounded,
j=J k
one obtains
Ha(P]ﬂ_(af)”P Z”Zde]ka\ye]k p ZZ +1 lzi?llde] ||p —ZZ ]SHde] H 2J +s+177)
i=] i=] i=]

1 1
When q=1, |[3(Pyf) — (3f) ||, = 2775¢j q follows easily from (3.1); when 1< ¢ < oo, assume q + 7 =1,
then by the Hélder inequality and (3.1),

> feq/y L (3, o1 _
ID(Pyf) = 3fllp S (D 2759 |{[|des, 1,2 Z 77 Yz llq S 277 %¢q.
i=]
This reaches (3.5) and the proof of (ii) is completed.
(iif) As shown in the first paragraph of this proof, when f € B3 (R™), P;f€BSH(R™), s}, == (P}, Qo) =
sox = (f, Qo) for k € Z, and dL:)’,k = (Pyf, Yeijx) = dejx := (f, Yeijx) for j < J. Then Pjf —f €
B;fql (R™). With the help of Theorem 2.3,

1422 j(s+14+2-1
IPyf — fllggsa ~ llsd. = so.llp + 1AL — desicllp? 22 Y50llq = Il des, 152270 Yl g.

Because [|f]lgs:1 ~ I|so,.lp + Il desicllp2 2705001, ]m}_\ IPyf —fllggs = 0 for 1 < g < co. Simi-
’ H o0 ’

larly, lim |[Py(3f) — (3f)l|s;,, = 0. Note that [[Pyf—Py(0f)s; . =: [[Pya(Pyf) = Py(df) sy, < [9(Pyf) —

(0f)llBs,, = ||P]f—fHB%1. Then, ]Erfm]]Pff— Py(0f)|[g;, = 0, and finally the desired conclusion

lim |[|Pjf—(0f)[|gs , = O follows from

J—+o0 P4

IPff— (f) B3, < IIPff— Py (df)ss,, + I[Py (3F) — (3F) b, O
Next, we prove Theorem 1.2.

Proof of Theorem 1.2. By T\f(x) =: T(TAf)(x), it is sufficient to show 9(Txf) € B}, ;(R) or Thf € BS+1(R) by
Theorem 1.1 (i), in order to Conclude TAFEBY 4 (R™). Note that de.jx = (f, Ve k) satisfies |6(de_),k,7\)| <

|des, x| and [|desj, |lp S 27 Jlstlt3—5 eq due to Theorem 1.1. Because ¥, are compactly supported,

n

1> 8(desii MWesi i (¥)lp <2272 7)8(des, Nllp S 20272 |[de, Jlp < 27TV,
k

1 1
In fact, if a bounded function g € L?(R™) has compact support, then for 1 < p < oo, 5 + ? =1 ([8)]),

n

(n_n); 1
HZCkzz 2x—K)p < HZlgx I ellp2 33V g7

Moreover, Zj>0 2 ek ®(des i MWeii (X lp S Zj>0 2~ (s+1)j « 5o, which means

D 8(desj i A Wesii(x) € LP(R™).
j=0,e,k
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Now,

Thf(x ZSqu)Ok )4 D 8(desi AN Wesi(x) € LP(R™)

j=0 ek

with S0k = <f, (DO,k>- On the other hand, assume Sox = <T)\f, (D0/k> and ae:)-,k = <T)\f, \ye:j,k>/ then 80,k = S0k
and |de;j x| = [8(de:j1, Al S ldej k|- Hence,

A j(s+H1+2—T) 4 j(s+1+5—7
130, llp + 12270 des Iplizollq S llsoqllp + 1275270 ey, Iplizolla S Ifllpgi gey-

This shows Ty f € BSH (R™) thanks to Theorem 2.3.

(i) As in the first paragraph, one knows |de;jx| == [(f, Weiix)l S |ldes llp < 23 sH1+3 %) This with
Lemma 2.6 (ii) leads to
df(x) = 3(Pof) (x +ZZde]ka\veJk x). (3.6)
j=0 ek

Recall that Ty f(x):=Pof(x) + ZJ 20 Ze K O(dej i, A)Weijk(x) and Tafe B;fql(]R“) implies Taf(x) = 0(Trf)(x)
€ B} 4(R™), according to Corollary 2.2. Then Txf(x) = 9(Pof)(x) + Z;-X;O 2 ek Odesjk,A) - OWes i (x). Since
18(desj i Al S ldesicd S 270570 7 8(dey o MWesic(x) and T 8(desj i, A)dWes(x) converge

j=0,e,k j=0,e,k
uniformly on R™. Therefore T)f(x) = 0(Pof)(x) + Z)’)O,k d(de:j,x, AW (x). Combining this with (3.6),
one has
Taf(x Z Z de. i, KA de: j, Kl a‘y]k( x). (3.7)
j=0 ek

Let | := max{1, | log, 511}, because ||de;j,.|lp <27 ) S+1+2*1)aq, 8(des,k,A) = 0 when j > J. Here

2
2s’+n+2
n J o]
s’ :=s— —. Then, [Taf(x) —=0f(x)| < }_ > [8(de:;j i, A) — desjkll0Wesj i (X)+ 3 D Idesll0We:,k(x)]. By
P j=0 e,k j=J+lek
18(desjiA) — desjxl S Aand |dej il 27775 )eg,

] ©
|TAf(x x)| < Zy\z 3H1)j 4 Z pi(s I+ —3) qu(%ﬂ)] < A2 +275/]£q.
j=0 j=J+1

n+2

This with the choice of | leads to [Taf(x) — 0f(x)| < 2A27 e e%f 2 Note that ] — +oo if and only if
A — 0, then the conclusion (i) holds.

(ii) Applying Bernstein inequality ([8]) to (3.7), one obtains

| TAf —0f]|p < ZzJHZ (desj i A) — desj i Werg x (X) [|p- (3.8)
j=0 ek

Because both f and Y. have compact supports, the number of non-zero wavelet coefficients de.; x is O (2im)
on level j. This with [5(dej,i,A) — de:j, x| S A implies that for fixed | > 0,

M,n M,n
Z2’HZ (desjio\) — des i Wesj i (x ||p<sz muwejkup—ZZJ g2t A (3.9)
j=0

On the other hand (because ¥, are compact supported and bounded),

1Y 18(desjic N — desjidWesiicllp <2272 [[8(desy, A) — desj, [l
k

TL

PI(118(dess, o Allp + l1dess - lp) S 20277 )| des, p-

N\:

N

2(

'U



J. Zhao, Z. Zhuang, J. Nonlinear Sci. Appl., 10 (2017), 61496158 6157

By ||des;, |lp <2 ¢+ 2 3)e, and

| Z[Mde:j,k,M — deg xWesi i ()||p S22 P2 (e = (st ie
ek

we have

Z 2| 2[5(de:j,k,7\) —de;j Ve (Xp S Z 278eq =2 ¢, (3.10)
j=J+1 ek j=J+1

The combination of (3.8), (3.9), and (3.10) tells ||TAf —0f||, < DI 250 + Z*I%q. Similar to (i), taking
J :=max{l, [m log, A teq)]} (s :=s— ), then |Taf —0f|lp = AZTisnT €q-

(111) Let de:j,k = <f, lye:j,k> and ae;j,k = <T)\f,\ye;j,k>. Then
~ : 14n_n
ITAf = Fllggys < 101dess, — desy, 1927277 ol

due to Theorem 2.3. Since ‘J}\f(x) = a(T)\f)(X), ‘I}\f— of = a(T)\f— f) and ||7}\f— afHB%,q < ||T)\f— fHBls;rql.
Moreover, .
ITAf = 0fllgs , S Ildess, — des 1p2" T 270 50l (3.11)

Recall that Ty f(x) := Pof(x) + Z]-?O,k d(de:j i, AN)Weij ik (x), then
|desj il = 18(desj i, Al S ldesj il and |desx — des ikl < desj k-
By f € B;fql (R™) and Theorem 2.3,

j 14n_n
[0l des 527270 i0llq < 11Fl1 g -

Hence,
lim E desi.|[p2 12799 =0 for 1 < g < oo.
] 1 5 l(” e:j, Hp P ) (3.12)

Because limy_,q ae;j,k = de:jx foreach 1 <j <J,

J
li doi — dos js+1+3—=3a —_ .
lim 3 [des, —des, [p2 37519 =0
j=0
This with (3.11) and (3.12) lead to lim ||TAf — 0f|[gs  =0. O
A—0 P-4

Remark 3.1. Theorems 1.1 and 1.2 can be used to study the smoothness estimation of n-dimensional
density functions in statistical problems (e.g., [4]), and this is the next work we will focus on.
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