Fixed points for multivalued contractions with respect to a Pompeiu type metric

Iulia Coroian
Department of Land Measurements and Exact Sciences, University Of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur St., 400372 Cluj-Napoca, Romania.

Communicated by A. Petrusel

Abstract

The purpose of this paper is to present a fixed point theory for multivalued H^{+}-contractions from the following perspectives: existence/uniqueness of the fixed and strict fixed points, data dependence of the fixed point set, sequence of multivalued operators and fixed points, Ulam-Hyers stability of a multivalued fixed point equation, well-posedness of the fixed point problem, limit shadowing property for a multivalued operator, set-to-set operatorial equations and fractal operator theory. (c)2017 All rights reserved.

Keywords: H^{+}-type multivalued mapping, Lipschitz equivalent metric, multivalued operator, contraction. 2010 MSC: 47H10, 54H25.

1. Introduction

Let (X, d) be a metric space and $\mathcal{P}(X)$ be the set of all subsets of X. We denote

$$
\begin{aligned}
P(X) & :=\{Y \in \mathcal{P}(X) \mid Y \neq \emptyset\}, \\
P_{c l}(X) & :=\{Y \in \mathcal{P}(X) \mid Y \text { is closed }\}, \\
P_{b, c l}(X) & :=\{Y \in \mathcal{P}(X) \mid Y \text { is bounded and closed }\}, \\
P_{c p}(X) & :=\{Y \in \mathcal{P}(X) \mid Y \text { is compact }\} .
\end{aligned}
$$

$B y B(x, r)$ and respectively $\tilde{B}(x, r)$ we will denote the open and respectively the closed ball centered at $x \in X$ with radius $r>0$.

The following (generalized) functionals are used in the main sections of the paper.

1. The gap functional generated by d :

$$
D_{d}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \quad D_{d}(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\} .
$$

2. The diameter generalized functional:

$$
\delta: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \quad \delta(A, B)=\sup \{d(a, b) \mid a \in A, b \in B\} .
$$

3. The excess generalized functional:

$$
\rho_{d}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \quad \rho_{d}(A, B)=\sup \left\{D_{d}(a, B) \mid a \in A\right\}
$$

4. The Hausdorff-Pompeiu generalized functional:

$$
\mathrm{H}_{\mathrm{d}}: \mathrm{P}(\mathrm{X}) \times \mathrm{P}(\mathrm{X}) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \quad \mathrm{H}_{\mathrm{d}}(A, B)=\max \left\{\rho_{\mathrm{d}}(A, B), \rho_{\mathrm{d}}(B, A)\right\}
$$

5. The Pompeiu generalized functional:

$$
H_{d}^{+}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \quad H_{d}^{+}(A, B):=\frac{1}{2}\left\{\rho_{d}(A, B)+\rho_{d}(B, A)\right\}
$$

We will avoid the subscript ${ }_{d}$ when we work with just one metric d on X.
Let (X, d) be a metric space. If $T: X \rightarrow P(X)$ is a multivalued operator, then $x \in X$ is called fixed point for T if and only if $x \in T(x)$. We denote by F_{T} the fixed point set of T and by $(S F)_{T}$ the set of all strict fixed points of T, i.e., elements $x \in X$ such that $T(x)=\{x\}$.

Concerning the Pompeiu functional H^{+}defined above, we have several properties.
Lemma 1.1 ([13]). The following conclusions take place:
(a) H^{+}is a metric on $\mathrm{P}_{\mathrm{b}, \mathrm{cl}}(\mathrm{X})$;
(b) H^{+}is a generalized metric (in the sense that it can take also infinite values) on $\mathrm{P}_{\mathrm{cl}}(\mathrm{X})$.

Using the Pompeiu type functional H^{+}, the following notion was introduced in [13], see also [12].
Definition 1.2 ([13]). Let (X, d) be a metric space. A multivalued mapping $T: X \rightarrow P_{b, c l}(X)$ is called H^{+}-contraction with constant α, if

1. there exists a fixed real number $\alpha, 0<\alpha<1$ such that for every $x, y \in X$

$$
H^{+}(T(x), T(y)) \leqslant \alpha d(x, y)
$$

2. for every $x \in X, y \in T(x)$ and for every $\epsilon>0$ there exists z in $T(y)$ such that

$$
\mathrm{d}(\mathrm{y}, z) \leqslant \mathrm{H}^{+}(\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y}))+\varepsilon
$$

Remark 1.3. Let (X, d) be a metric space. A multivalued mapping $T: X \rightarrow P_{c l}(X)$ is called $\left(H^{+}, \alpha\right)$-Lipschitz if $\alpha>0$ and

$$
\mathrm{H}^{+}(\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y})) \leqslant \alpha \mathrm{d}(\mathrm{x}, \mathrm{y}), \quad \forall x, y \in X
$$

If $0<\alpha<1$, then T is called a multivalued $\left(\mathrm{H}^{+}, \alpha\right)$-contraction.
The purpose of this paper is to study different properties of the Pompeiu functional H^{+}and of the multivalued operators satisfying a Lipschitz condition with respect to H^{+}. The connections with some continuity notions for multivalued operators are also given. The second purpose of this paper is to extend the results given in [13], by presenting several properties of the fixed point set of multivalued H^{+}-contractions. Several other fixed point results and applications of it will be also given.

2. Properties of the Pompeiu type functional

Concerning the functional H^{+}defined above, we have some nice properties.
Lemma 2.1 ([13]). We have the following relations:

$$
\frac{1}{2} H(A, B) \leqslant H^{+}(A, B) \leqslant H(A, B)
$$

(i.e., H and H^{+}are strong equivalent metrics).

Proposition $2.2([13])$. Let $(X,\|\cdot\|)$ be a normed linear space. For any λ (real or complex), $A, B \in P_{b, c l}(X)$

1. $\mathrm{H}^{+}(\lambda A, \lambda B)=|\lambda| \mathrm{H}^{+}(A, B)$;
2. $H^{+}(A+a, B+a)=H^{+}(A, B)$.

Theorem 2.3 ([13]). If $\mathrm{a}, \mathrm{b} \in X$ and $A, B \in \mathrm{P}_{\mathrm{b}, \mathrm{c}}(X)$, then the following relations hold:

1. $d(a, b)=H^{+}(\{a\},\{b\})$;
2. $A \subset \bar{S}\left(B, r_{1}\right), B \subset \bar{S}\left(A, r_{2}\right) \Rightarrow H^{+}(A, B) \leqslant r$ where $r=\frac{r_{1}+r_{2}}{2}$.

Theorem 2.4 ([13]). If the metric space (X, d) is complete, then $\left(\mathrm{P}_{\mathrm{cp}}(\mathrm{X}), \mathrm{H}^{+}\right),\left(\mathrm{P}_{\mathrm{b}, \mathrm{cl}}(\mathrm{X}), \mathrm{H}^{+}\right)$and $\left(\mathrm{P}_{\mathrm{cl}}(\mathrm{X}), \mathrm{H}^{+}\right)$ are complete too.

The following concept was introduced by Nadler jr. as follows.
Definition 2.5. Let (X, d) be a metric space. A mapping $T: X \rightarrow P_{c l}(X)$ is called a multivalued α contraction if $\alpha \in(0,1)$ and

$$
H(T(x), T(y)) \leqslant \alpha d(x, y), \quad \forall x, y \in X
$$

Notice that any multivalued α-contraction is an $\left(\mathrm{H}^{+}, \alpha\right)$-contraction, but the reverse implication does not hold.

We will now introduce a similar concept. For this purpose, we recall now the concept of (strong) comparison function.
Definition 2.6. A mapping $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is said to be a comparison function if it increasing and $\varphi^{\mathrm{k}}(\mathrm{t}) \rightarrow 0$, as $\mathrm{k} \rightarrow+\infty$.

As a consequence, we also have $\varphi(t)<t$, for each $t>0, \varphi(0)=0$ and φ is continuous in 0 .
Definition 2.7. A mapping $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is said to be a strong comparison function if it is a comparison function and $\sum_{k=0}^{\infty} \varphi^{k}(t)<\infty$, for any $t>0$.

With respect to the Pompeiu type functional H^{+}, we define the following concept.
Definition 2.8. Let (X, d) be a metric space. Then, the multivalued operator $T: X \rightarrow P_{b, c l}(X)$ is called a φ-contraction w.r.t. H^{+}, if

1. $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a strong comparison function;
2. for all $x, y \in X$, we have that

$$
H^{+}(T(x), T(y)) \leqslant \varphi(d(x, y))
$$

In particular, if $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is defined by $\varphi(t):=k t$ (for some $k \in[0,1[$), then φ is a strong comparison function and the multivalued operator T is an $\left(\mathrm{H}^{+}, k\right)$-contraction.

We recall now some useful concepts in the theory of multivalued operators.
Definition 2.9 (see, for example, $[1,14])$. Let (X, d) be a metric space and $T: X \rightarrow P_{b, c l}(X)$. Then, T is called upper semi-continuous (briefly u.s.c.) in $x \in X$, if for any open subset U of X with $F(x) \subset U$, there exists $\eta>0$ such that $T(B(x ; \eta)) \subset U$. T is u.s.c. on X if it is u.s.c. in each $x \in X$.

Definition $2.10([1,14])$. Let (X, d) be a metric space and $T: X \rightarrow P_{b, c l}(X)$. Then T is called lower semicontinuous (briefly l.s.c.) in $x \in X$, if for all $\left(x_{n}\right)_{n \in \mathbb{N}^{*}} \subset X$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ and for all $y \in T(x)$, there exists a sequence $\left(y_{n}\right)_{n \in \mathbb{N}^{*}} \subset X$ such that $y_{n} \in T\left(x_{n}\right)$, for all $n \in \mathbb{N}^{*}$ and $\lim _{n \rightarrow \infty} y_{n}=y$. T is l.s.c. on X if it is l.s.c. in each $x \in X$.

Definition $2.11([1,14])$. Let (X, d) be a metric space. $T: X \rightarrow P_{b, c l}(x)$ is called H-upper semi-continuous in $x_{0} \in X$ (H-u.s.c.) respectively H-lower semi-continuous (H-l.s.c.), if for each sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x_{0}
$$

we have

$$
\lim _{n \rightarrow \infty} \rho\left(T\left(x_{n}\right), T\left(x_{0}\right)\right)=0, \text { respectively } \lim _{n \rightarrow \infty} \rho\left(T\left(x_{0}\right), T\left(x_{n}\right)\right)=0 .
$$

It is well-known that if T is u.s.c. in $x \in X$, then T is H-u.s.c. in $x \in X$, while if T is H-l.s.c. in $x \in X$ implies that T is l.s.c. in $x \in X$.
Definition $2.12([1,14])$. Let (X, d) be a metric space and $T: X \rightarrow P(X)$. Then T is said to be with closed graph, if for each $x \in X$ and for all $\left(x_{n}\right)_{n \in \mathbb{N}^{*}} \subset X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

and for all $\left(y_{n}\right)_{n \in \mathbb{N}^{*}} \subset X$ with $y_{n} \in T\left(x_{n}\right)$, for all $n \in \mathbb{N}^{*}$ and

$$
\lim _{n \rightarrow \infty} y_{n}=y
$$

we have $y \in T(x)$.
Some properties of a multivalued $\left(\mathrm{H}^{+}, \alpha\right)$-Lipschitz operators are given now.
Theorem 2.13. Let (X, d) be a metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{b}, \mathrm{cl}}(\mathrm{X})$ be $\left(\mathrm{H}^{+}, \alpha\right)$-Lipschitz. Then

1. T has closed graph in $\mathrm{X} \times \mathrm{X}$;
2. T is $\mathrm{H}-$ l.s.c. on X ;
3. T is $\mathrm{H}-$ u.s.c. on X ;
4. If, additionally T has compact values, then T is l.s.c.

Proof.
(1) Let $\left(x_{n}, y_{n}\right) \subset X \times X$ such that $\left(x_{n}, y_{n}\right) \xrightarrow{d}(x, y)$, when $n \rightarrow \infty$ and $y_{n} \in T\left(x_{n}\right)$, for all $n \in \mathbb{N}$. It follows that

$$
\begin{aligned}
D(y, T(x)) & \leqslant d\left(y, y_{n}\right)+D\left(y_{n}, T(x)\right) \\
& \leqslant d\left(y, y_{n}\right)+H\left(T\left(x_{n}\right), T(x)\right) \\
& \leqslant d\left(y, y_{n}\right)+2 H^{+}\left(T\left(x_{n}\right), T(x)\right) \\
& \leqslant d\left(y, y_{n}\right)+2 k d\left(x_{n}, x\right), \quad n \in \mathbb{N} .
\end{aligned}
$$

Let us consider $n \rightarrow \infty$ and we obtain

$$
D(y, T(x)) \leqslant 0 \Rightarrow y \in \overline{T(x)}=T(x)
$$

(2) Let $x \in X$ such that $x_{n} \rightarrow x$. We have

$$
\begin{aligned}
\rho\left(T(x), T\left(x_{n}\right)\right) & \leqslant H\left(T(x), T\left(x_{n}\right)\right) \\
& \leqslant 2 \cdot H^{+}\left(T(x), T\left(x_{n}\right)\right) \\
& \leqslant 2 k \cdot d\left(x, x_{n}\right) \rightarrow 0
\end{aligned}
$$

In conclusion, T is H -l.s.c. on X .
(3) Using the relation

$$
\begin{aligned}
\rho\left(T\left(x_{n}\right), T(x)\right) & \leqslant H\left(T\left(x_{n}\right), T(x)\right) \\
& \leqslant 2 \cdot H^{+}\left(T\left(x_{n}\right), T(x)\right) \\
& \leqslant 2 k \cdot d\left(x, x_{n}\right) \rightarrow 0
\end{aligned}
$$

we obtain that T is H -u.s.c. on X .
(4) The conclusion follows by the fact that any H-l.s.c. multivalued operator with compact values is l.s.c. (see [11]).

Lemma 2.14. Let (X, d) be a metric space and $T: X \rightarrow P_{c p}(X)$ such that

$$
\mathrm{H}^{+}(\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y}))<\mathrm{d}(\mathrm{x}, \mathrm{y}), \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}, \quad \mathrm{x} \neq \mathrm{y}
$$

Then T is u.s.c. on X .

Proof. Let $Z \subset Y$ be a closed set. We will prove that $T^{-}(Z)$ is closed in X. Let $x \in \overline{T^{-}(Z)} \backslash T^{-}(Z)$ and $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ such that $x_{n} \rightarrow x$, when $n \rightarrow \infty, x_{n} \neq x$, for all $n \in \mathbb{N}$ and $x_{n} \in T^{-}(Z)$, for all $n \in \mathbb{N}$. It follows $T\left(x_{n}\right) \cap H \neq \emptyset$, for all $n \in \mathbb{N}$. Let $\left(y_{n}\right)_{n \in \mathbb{N}} \in T\left(x_{n}\right) \cap Z, n \in \mathbb{N}$. Then

$$
\mathrm{D}\left(y_{n}, T(x)\right) \leqslant H_{d}\left(T\left(x_{n}\right), T(x)\right) \leqslant 2 H^{+}\left(T\left(x_{n}\right), T(x)\right)<2 d\left(x_{n}, x\right) .
$$

If $n \rightarrow \infty$ we get that

$$
\lim _{n \rightarrow \infty} D\left(y_{n}, T(x)\right)=0
$$

But

$$
\left.D\left(y_{n}, T(x)\right)=\inf _{y \in T} d\left(y_{n}, y\right)=d\left(y_{n}, x_{n}^{\prime}\right), \quad \text { (using the compactness of the set } T(x)\right) .
$$

When $n \rightarrow \infty$ we have $d\left(y_{n}, x_{n}^{\prime}\right) \rightarrow 0$. Because $\left(x_{n}^{\prime}\right)_{n \in \mathbb{N}} \subset T(x)$, we obtain that there exists a subsequence $\left(x_{n_{k}}^{\prime}\right)_{k \in \mathbb{N}}$ which converges to an element $\bar{x} \in T(x)$. Then

$$
d\left(y_{n_{k}}, \bar{x}\right) \leqslant d\left(y_{n_{k}}, x_{n_{k}}^{\prime}\right)+d\left(x_{n_{k}}^{\prime}, \bar{x}\right) \text { when } k \rightarrow \infty \text {. }
$$

Hence, $y_{n_{k}}^{\prime} \rightarrow \bar{x} \in T(x), n \rightarrow \infty$.
Because $\left(y_{n_{k}}^{\prime}\right)_{k \in \mathbb{N}} \subset Z$ and Z is closed, we obtain that $\bar{x} \in Z$. So $T(x) \cap Z \neq \emptyset$, which implies $x \in T^{-}(Z)$, a contradiction. In conclusion, $\overline{T^{-}(Z)}=T^{-}(Z)$ and hence $T^{-}(Z)$ is closed in X.

3. MWP operators and multivalued α-contractions w.r.t. H^{+}

The following concepts appeared in [15].
Definition 3.1. Let (X, d) be a metric space. Then, $T: X \rightarrow P(X)$ is called a multivalued weakly Picard operator (briefly MWP operator) if for each $x \in X$ and each $y \in T(x)$ there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X such that:

1. $x_{0}=x, x_{1}=y ;$
2. $x_{n+1} \in T\left(x_{n}\right)$, for all $n \in \mathbb{N}$;
3. the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent and its limit is a fixed point of T.

Definition 3.2. Let (X, d) be a metric space and $T: X \rightarrow P(X)$ be an MWP operator. Then we define the multivalued operator $T^{\infty}: \operatorname{Graph}(T) \rightarrow P\left(F_{T}\right)$ by the formula $T^{\infty}(x, y)=\left\{z \in F_{T} \mid\right.$ there exists a sequence of successive approximations of T starting from (x, y) that converges to $z\}$.
Definition 3.3. Let (X, d) be a metric space and $T: X \rightarrow P(X)$ an MWP operator. Then T is said to be a c-multivalued weakly Picard operator (briefly c-MWP operator) if and only if there exists a selection t^{∞} of T^{∞} such that

$$
d\left(x, t^{\infty}(x, y)\right) \leqslant \operatorname{cd}(x, y), \quad \forall(x, y) \in \operatorname{Graph}(T)
$$

We recall now the notion of multivalued Picard operator.
Definition 3.4. Let (X, d) be a complete metric space and $T: X \rightarrow P(X)$. By definition, T is called a multivalued Picard operator (briefly MP operator) if and only if

1. $(\mathrm{SF})_{\mathrm{T}}=\mathrm{F}_{\mathrm{T}}=\left\{\mathrm{x}^{*}\right\}$;
2. $T^{n}(x) \xrightarrow{H}\left\{x^{*}\right\}$ as $n \rightarrow \infty$, for each $x \in X$.

Recall that, by definition, for $\left(A_{n}\right)_{n \in \mathbb{N}} \in P_{c l}(X)$, we will write $A_{n} \xrightarrow{H} A^{*}$ as $n \rightarrow \infty$ if and only if $H\left(A_{n}, A^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$. Notice also that

$$
A_{n} \xrightarrow{H} A^{*} \in P_{c l}(X) \text { as } n \rightarrow \infty \text { if and only if } A_{n} \xrightarrow{\mathrm{H}^{+}} A^{*} \in P_{c l}(X) \text { as } n \rightarrow \infty .
$$

The purpose of this section is to study some properties of the fixed point set of H^{+}-contraction with constant α from the MWP operator theory point of view.

We will start by presenting some auxiliary results.
Lemma 3.5 (see, for example, [14]). Let (X, d) be a metric space and $A, B \in P_{c l}(X)$. Suppose that there exists $\eta>0$ such that for each $a \in A$ there exists $b \in B$ such that $d(a, b) \leqslant \eta$ and for each $b \in B$ there exists $a \in A$ such that $\mathrm{d}(\mathrm{a}, \mathrm{b}) \leqslant \eta$. Then $\mathrm{H}(A, B) \leqslant \eta$.

Lemma 3.6 ([14]). Let (X, d) be a metric space, $A, B \in P(X)$ and $q>1$. Then, for every $a \in A$ there exists $b \in B$ such that $d(a, b) \leqslant q H(A, B)$.

Lemma 3.7 ([11]). Let (X, d) be a metric space and $A, B \in P_{c p}(X)$. Then for every $a \in A$ there exists $b \in B$ such that $\mathrm{d}(\mathrm{a}, \mathrm{b}) \leqslant \mathrm{H}(\mathrm{A}, \mathrm{B})$.

Lemma 3.8 ([16]). Let (X, d) be a metric space. If $A, B \in P(X)$ and $\epsilon>0$ then for every $a \in A$ there exists $b \in B$ such that

$$
d(a, b) \leqslant H(A, B)+\epsilon
$$

Lemma 3.9. Let (X, d) be a metric space, $A, B \in P_{c l}(X)$ and $\varepsilon>0$. If $H^{+}(A, B)<\varepsilon$, then

1. for all $a \in A$ there exists $b \in B$ such that $d(a, b)<\varepsilon$; or
2. for all $b \in B$ there exists $a \in A$ such that $d(a, b)<\varepsilon$.

Proof. Suppose, by reductio ad absurdum, that
(i) there exists $a_{0} \in A$, for all $b \in B$ such that $d\left(a_{0}, b\right) \geqslant \varepsilon$;
(ii) there exists $b_{0} \in B$, for all $a \in A$ such that $d\left(a, b_{0}\right) \geqslant \varepsilon$.

Then, taking $\inf _{b \in B}$ in (i) and $\inf _{a \in A}$ in (ii), we obtain $D\left(a_{0}, B\right) \geqslant \varepsilon$. Since $\rho(A, B) \geqslant D\left(a_{0}, B\right)$, we get

$$
\rho(A, B) \geqslant \varepsilon
$$

On the other hand, we also have $D\left(b_{0}, A\right) \geqslant \varepsilon$. Since $\rho(B, A) \geqslant D\left(b_{0}, A\right)$, we get

$$
\rho(B, A) \geqslant \varepsilon
$$

Adding the above relations and then dividing by 2 , we obtain $\mathrm{H}^{+}(A, B) \geqslant \varepsilon$, which is a contradiction with $\mathrm{H}^{+}(\mathrm{A}, \mathrm{B})<\varepsilon$.

Lemma 3.10 (Cauchy, see [17]). Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be two sequences of non-negative real numbers, such that

$$
\sum_{k=0}^{+\infty} a_{k}<+\infty, \quad \text { and } \lim _{n \rightarrow+\infty} b_{n}=0
$$

Then,

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{n-k} b_{k}=0
$$

Theorem 3.11. Let (X, d) be a complete metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ be a multivalued H^{+}-contraction with constant α. Then we have
(i) $\mathrm{F}_{\mathrm{T}} \neq \emptyset$.
(ii) T is a $\frac{1}{1-\alpha}-M W P$ operator.
(iii) Let $\mathrm{S}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ be an H^{+}-contraction with constant α and $\eta>0$ such that $\mathrm{H}^{+}(\mathrm{S}(\mathrm{x}), \mathrm{T}(\mathrm{x})) \leqslant \eta$, for each $x \in X$. Then $\mathrm{H}^{+}\left(\mathrm{F}_{\mathrm{S}}, \mathrm{F}_{\mathrm{T}}\right) \leqslant \frac{2 \cdot \eta}{1-\alpha}$.
(iv) Let $\mathrm{T}_{\mathrm{n}}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X}), \mathrm{n} \in \mathbb{N}$ be a sequence of multivalued H^{+}-contraction with constant α such that $\mathrm{T}_{\mathrm{n}}(\mathrm{x}) \xrightarrow{\mathrm{H}^{+}} \mathrm{T}(\mathrm{x})$ as $\mathrm{n} \rightarrow \infty$, uniformly with respect to $\mathrm{x} \in \mathrm{X}$. Then, $\mathrm{F}_{\mathrm{T}_{\mathrm{n}}} \xrightarrow{\mathrm{H}^{+}} \mathrm{F}_{\mathrm{T}}$ as $\mathrm{n} \rightarrow \infty$.
If, additionally $\mathrm{T}(\mathrm{x}) \in \mathrm{P}_{\mathrm{cp}}(\mathrm{X})$ for each $\mathrm{x} \in \mathrm{X}$, then we also have
(v) (Ulam-Hyers stability of the inclusion $x \in T(x))$ Let $\epsilon>0$ and $x \in X$ be such that $D(x, T(x)) \leqslant \epsilon$. Then there exists $x^{*} \in \mathrm{~F}_{\mathrm{T}}$ such that $\mathrm{d}\left(x, x^{*}\right) \leqslant \frac{\epsilon}{1-\alpha}$.
(vi) The fractal operator $\hat{\mathrm{T}}: \mathrm{P}_{\mathrm{cp}}(\mathrm{X}) \rightarrow \mathrm{P}_{\mathrm{cp}}(\mathrm{X}), \hat{\mathrm{T}}(\mathrm{Y}):=\bigcup_{\mathrm{x} \in \mathrm{Y}} \mathrm{T}(\mathrm{x})$ is a 2α-contraction.
(vii) If, additionally, $\alpha \in\left[0, \frac{1}{2}\left[\right.\right.$, then $\mathrm{F}_{\hat{\mathrm{T}}}=\left\{\mathrm{A}_{\mathrm{T}}^{*}\right\}$ and $\mathrm{T}^{\mathrm{n}}(\mathrm{x}) \xrightarrow{\mathrm{H}^{+}} \mathrm{A}_{\mathrm{T}}^{*}$ as $\mathrm{n} \rightarrow \infty$, for each $\mathrm{x} \in \mathrm{X}$. Moreover, $\mathrm{F}_{\mathrm{T}} \subset A_{\mathrm{T}}^{*}, \mathrm{~F}_{\mathrm{T}}$ is compact and

$$
A_{\mathrm{T}}^{*}=\bigcup_{\mathrm{n} \in \mathbb{N}^{*}} \mathrm{~T}^{\mathrm{n}}(\mathrm{x}), \quad \forall x \in \mathrm{~F}_{\mathrm{T}}
$$

Proof.
(i) Let $\epsilon>0$ be given. Let $x_{0} \in X$ be arbitrary. Fix an element $x_{1} \in T\left(x_{0}\right)$. From the definition of H^{+}-contraction with constant α it follows that we can choose $x_{2} \in T\left(x_{1}\right)$ such that

$$
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leqslant \mathrm{H}^{+}\left(\mathrm{T}\left(\mathrm{x}_{0}\right), \mathrm{T}\left(\mathrm{x}_{1}\right)\right)+\epsilon
$$

In general, if x_{n} is chosen, then we choose $x_{n+1} \in T\left(x_{n}\right)$ such that

$$
d\left(x_{n}, x_{n+1}\right) \leqslant H^{+}\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)+\epsilon
$$

Suppose $\mathrm{H}^{+}\left(\mathrm{T}\left(\mathrm{x}_{\mathrm{n}-1}\right), \mathrm{T}\left(\mathrm{x}_{\mathrm{n}}\right)\right)>0$ for each $\mathrm{n} \in \mathbb{N}^{*}$ (if not, i.e., if there is $k \in \mathbb{N}^{*}$ such that

$$
\mathrm{H}^{+}\left(\mathrm{T}\left(\mathrm{x}_{\mathrm{k}-1}\right), \mathrm{T}\left(\mathrm{x}_{\mathrm{k}}\right)\right)=0
$$

then $x_{k} \in T\left(x_{k-1}\right)=T\left(x_{k}\right)$ is a fixed point for T and we are done). Let $1<q<\frac{1}{\alpha}$ and set

$$
\epsilon_{n}:=(q-1) H^{+}\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)
$$

Then, from the above relation it follows that

$$
d\left(x_{n}, x_{n+1}\right) \leqslant q H^{+}\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)
$$

Thus, if we set $\beta:=\mathrm{q} \alpha<1$, we have

$$
d\left(x_{n}, x_{n+1}\right) \leqslant q H^{+}\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right) \leqslant q \alpha d\left(x_{n-1}, x_{n}\right)=\beta d\left(x_{n-1}, x_{n}\right)
$$

for all $n \in \mathbb{N}$. Repeating the same argument n-times we get a sequence of successive approximations for T starting from $\left(x_{0}, x_{1}\right) \in \operatorname{Graph}(T)$ such that, for each $n \in \mathbb{N}$, we have

$$
d\left(x_{n}, x_{n+1}\right) \leqslant \beta^{n} d\left(x_{0}, x_{1}\right)
$$

Then,

$$
\begin{equation*}
d\left(x_{n}, x_{n+p}\right) \leqslant \beta^{n} \frac{1-\beta^{p}}{1-\beta} d\left(x_{0}, x_{1}\right), \quad \forall n \in \mathbb{N}^{*}, \quad p \in \mathbb{N}^{*} \tag{3.1}
\end{equation*}
$$

This implies that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy and hence convergent in (X, d) to some $x^{*} \in X$. Notice that, by the contraction condition, we immediately get that $\operatorname{Graph}(T)$ is closed in $X \times X$. Hence $x^{*} \in F_{T}$.
(ii) By (3.1), letting $p \rightarrow \infty$, we get that

$$
d\left(x_{n}, x^{*}\right) \leqslant \beta^{n} \frac{1}{1-\beta} d\left(x_{0}, x_{1}\right), \quad \forall n \in \mathbb{N}^{*}
$$

For $n=1$ we get

$$
d\left(x_{1}, x^{*}\right) \leqslant \frac{\beta}{1-\beta} d\left(x_{0}, x_{1}\right)
$$

Then

$$
d\left(x_{0}, x^{*}\right) \leqslant d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x^{*}\right) \leqslant \frac{1}{1-\beta} d\left(x_{0}, x_{1}\right)=\frac{1}{1-q \alpha} d\left(x_{0}, x_{1}\right)
$$

Letting $q \searrow 1$ we get that for each $\left(x_{0}, x_{1}\right) \in \operatorname{Graph}(T)$, there exists $x^{*}:=t^{\infty}\left(x_{0}, x_{1}\right) \in F_{T}$ such that

$$
d\left(x_{0}, t^{\infty}\left(x_{0}, x_{1}\right)\right) \leqslant \frac{1}{1-\alpha} d\left(x_{0}, x_{1}\right)
$$

proving that T is a $\frac{1}{1-\alpha}$-multivalued weakly Picard operator.
(iii) Let $x_{0} \in S\left(x_{0}\right)$ and $q>1$. Then, by Lemma 3.6, there exists $x_{1} \in T\left(x_{0}\right)$ such that

$$
d\left(x_{0}, x_{1}\right) \leqslant q H\left(S\left(x_{0}\right), T\left(x_{0}\right)\right) \leqslant 2 q H^{+}\left(S\left(x_{0}\right), T\left(x_{0}\right)\right) \leqslant 2 q \eta .
$$

Then, by (ii) and the above relation, we have proved that for each $x_{0} \in F_{S}$ there exists $t^{\infty}\left(x_{0}, x_{1}\right) \in F_{T}$ such that

$$
d\left(x_{0}, t^{\infty}\left(x_{0}, x_{1}\right)\right) \leqslant \frac{1}{1-\alpha} d\left(x_{0}, x_{1}\right) \leqslant \frac{1}{1-\alpha} 2 q \eta .
$$

Now Lemma 3.5 tells us that

$$
\begin{equation*}
\rho\left(F_{S}, F_{T}\right) \leqslant \frac{2 q \eta}{1-\alpha} \tag{3.2}
\end{equation*}
$$

By a similar procedure we can prove that for each $y_{0} \in T\left(y_{0}\right)$ there exists $y_{1} \in S\left(y_{0}\right)$ such that

$$
d\left(y_{0}, y_{1}\right) \leqslant q H\left(T\left(y_{0}\right), S\left(y_{0}\right)\right) \leqslant 2 q H^{+}\left(T\left(y_{0}\right), S\left(y_{0}\right)\right) \leqslant 2 q \eta
$$

Thus, we have proved that for each $y_{0} \in F_{T}$ there exists $s^{\infty}\left(y_{0}, y_{1}\right) \in F_{S}$ such that

$$
d\left(y_{0}, s^{\infty}\left(y_{0}, y_{1}\right)\right) \leqslant \frac{1}{1-\alpha} 2 q \eta
$$

Again, Lemma 3.5 gives that

$$
\begin{equation*}
\rho\left(F_{S}, F_{T}\right) \leqslant \frac{2 q \eta}{1-\alpha} \tag{3.3}
\end{equation*}
$$

Adding (3.2) and (3.3), and then dividing by 2 , we get

$$
\mathrm{H}^{+}\left(\mathrm{F}_{\mathrm{S}}, \mathrm{~F}_{\mathrm{T}}\right) \leqslant \frac{2 \mathrm{q} \eta}{1-\alpha}, \quad \forall \mathrm{q}>1
$$

Letting $q \searrow 1$, we get the conclusion.
(iv) Let $\epsilon>0$ be given and choose $N_{\epsilon} \in \mathbb{N}$ such that for $n \geqslant N_{\epsilon}$ we have

$$
\sup _{x \in X} H^{+}\left(T_{n}(x), T(x)\right)<\epsilon, \quad n \geqslant N_{\epsilon}
$$

Then, from (iii), we have

$$
\mathrm{H}^{+}\left(\mathrm{F}_{\mathrm{T}_{n}}, \mathrm{~F}_{\mathrm{T}}\right)<\frac{2 \epsilon}{1-\alpha}, \text { for all } \mathrm{n} \geqslant \mathrm{~N}_{\epsilon}
$$

Thus, $\mathrm{F}_{\mathrm{T}} \xrightarrow{\mathrm{H}^{+}} \mathrm{F}_{\mathrm{T}}$ as $\mathrm{n} \rightarrow \infty$.
(v) Let $\epsilon>0$ and $x \in X$ be such that $D(x, T(x)) \leqslant \epsilon$. Then, since $T(x)$ is compact, there exists $y \in T(x)$ such that $d(x, y) \leqslant \epsilon$. By the proof of (i), we have that

$$
d\left(x, t^{\infty}(x, y)\right) \leqslant \frac{1}{1-\alpha} d(x, y)
$$

Since $x^{*}:=t^{\infty}(x, y) \in F_{T}$, we get the conclusion $d\left(x, x^{*}\right) \leqslant \frac{\epsilon}{1-\alpha}$.
(vi) By the contraction condition with respect to H^{+}, one obtains (see Theorem 2.13) that the operator T is H-u.s.c. Since $T(x)$ is compact, for each $x \in X$, we obtain that T is upper semicontinuous. Thus T is u.s.c.

We will prove now that

$$
H^{+}(T(A), T(B)) \leqslant 2 \alpha H^{+}(A, B)
$$

For this purpose, let $u \in T(A)$. Then there exists $a \in A$ such that $u \in T(a)$. From Lemma 3.7 there exists $b \in T(B)$ such that

$$
d(a, b) \leqslant H_{d}(A, B)
$$

Since

$$
D(u, T(B)) \leqslant D(u, T(b)) \leqslant \rho(T(a), T(b))
$$

taking $\sup _{u \in T(A)}$, we get

$$
\rho(T(A), T(B)) \leqslant \rho(T(a), T(b))
$$

Interchanging the roles of A and B, we get

$$
\rho(T(B), T(A)) \leqslant \rho(T(b), T(a))
$$

Adding the above relations and then dividing by 2, we get

$$
\mathrm{H}^{+}(\mathrm{T}(\mathrm{~A}), \mathrm{T}(\mathrm{~B})) \leqslant \mathrm{H}^{+}(\mathrm{T}(\mathrm{a}), \mathrm{T}(\mathrm{~b}))
$$

Thus,

$$
H(T(A), T(B)) \leqslant 2 H^{+}(T(A), T(B)) \leqslant 2 \alpha d(a, b) \leqslant 2 \alpha H(A, B), \quad \forall A, B \in P_{c p}(X)
$$

(vii) By (vi) it follows that \hat{T} is a self-contraction (with constant $2 \alpha<1$) on the complete metric space ($\left.\mathrm{P}_{\mathrm{cp}}(\mathrm{X}), \mathrm{H}\right)$. By the contraction principle, we obtain that

$$
\mathrm{F}_{\hat{\top}}=\left\{\mathcal{A}_{\mathrm{T}}^{*}\right\} \text { and } \hat{\mathrm{T}}^{n}(A) \xrightarrow{H} A_{T}^{*}, \text { as } n \rightarrow \infty, \quad \text { for each } A \in P_{c p}(X) .
$$

As a consequence of Lemma 2.1, we also get that $\hat{T}^{n}(A) \xrightarrow{H^{+}} A_{T}^{*}$ as $n \rightarrow \infty$, for each $A \in P_{c p}(X)$. In particular, if $A:=\{x\}$, we get that $T^{n}(x)=\hat{T}^{n}(x) \xrightarrow{H^{+}} A_{T}^{*}$ as $n \rightarrow+\infty$, for each $x \in X$. Let $x \in F_{T}$ be arbitrary. Then $x \in T(x) \subset T^{2}(x) \subset \cdots \subset T^{n}(x) \subset \cdots$. Hence $x \in T^{n}(x)$, for each $n \in \mathbb{N}^{*}$. Moreover, $\lim _{n \rightarrow+\infty} T^{n}(x)=\bigcup_{n \in \mathbb{N}^{*}} T^{n}(x)$. By (vi), we immediately get that $A_{T}^{*}=\bigcup_{n \in \mathbb{N}^{*}} T^{n}(x)$. Hence

$$
\mathrm{F}_{\mathrm{T}} \subset \bigcup_{\mathrm{n} \in \mathbb{N}^{*}} \mathrm{~T}^{\mathrm{n}}(\mathrm{x})=A_{\mathrm{T}}^{*}
$$

Since F_{T} is closed subset of the compact A_{T}^{*}, it follows that F_{T} is compact, too.
Some new conclusions with respect to the fixed point and the strict fixed point sets are given in our next result.

Theorem 3.12. Let (X, d) be a complete metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ be a multivalued $\left(\mathrm{H}^{+}, \alpha\right)$-contraction with $(\mathrm{SF})_{\mathrm{T}} \neq \emptyset$. Then, the following assertions hold:
(i) $(S F)_{T}=\left\{x^{*}\right\}$.

If additionally, $\alpha \in\left[0, \frac{1}{2}[\right.$, then
(ii) $\mathrm{F}_{\mathrm{T}}=(\mathrm{SF})_{\mathrm{T}}=\left(\mathrm{SF}_{\mathrm{T}^{n}}\right)=\left\{\chi^{*}\right\}$, for $\mathrm{n} \in \mathbb{N}^{*}$.
(iii) $\mathrm{T}^{\mathrm{n}}(\mathrm{x}) \xrightarrow{\mathrm{H}^{+}}\left\{\mathrm{x}^{*}\right\}$ as $\mathrm{n} \rightarrow \infty$, for each $\mathrm{x} \in \mathrm{X}$.
(iv) Let $S: X \rightarrow P_{c l}(X)$ be a multivalued operator such that $F_{S} \neq \emptyset$ and suppose there exists $\eta>0$ such that

$$
\mathrm{H}^{+}(\mathrm{S}(x), \mathrm{T}(x)) \leqslant \eta, \quad \forall x \in X
$$

Then

$$
H^{+}\left(F_{S}, F_{T}\right) \leqslant \frac{2 \eta}{1-2 \alpha} .
$$

(v) (Well-posedness of the fixed point problem w.r.t. to H^{+}) If $\left(\mathrm{x}_{\mathrm{n}}\right)_{\mathrm{n} \in \mathbb{N}}$ is a sequence in X such that

$$
\mathrm{H}^{+}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{~T}\left(\mathrm{x}_{\mathrm{n}}\right)\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

then $x_{n} \xrightarrow{\mathrm{~d}} \mathrm{x}^{*}$ as $\mathrm{n} \rightarrow \infty$.
(vi) (Limit shadowing property of the multivalued operator) If $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a sequence in X such that

$$
\mathrm{D}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{~T}\left(\mathrm{y}_{\mathrm{n}}\right)\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

then there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ of successive approximations for T, such that $d\left(x_{n}, y_{n}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.

Proof.
(i) Let $x^{*} \in(S F)_{T}$. Notice first that $(S F)_{T}=\left\{x^{*}\right\}$. Indeed, if $z \in(S F)_{T}$ with $z \neq x^{*}$, then $0<d\left(x^{*}, z\right)=$ $\mathrm{H}^{+}\left(\mathrm{T}\left(\chi^{*}\right), \mathrm{T}(z)\right) \leqslant \alpha \mathrm{d}\left(\chi^{*}, z\right)$, which is a contradiction. Thus $(\mathrm{SF})_{\mathrm{T}}=\left\{\chi^{*}\right\}$.
(ii) Suppose that $y \in F_{T}$. Then,

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{y}, \mathrm{x}^{*}\right) & =\mathrm{D}\left(\mathrm{y}, \mathrm{~T}\left(\mathrm{x}^{*}\right)\right) \\
& \leqslant \rho\left(\mathrm{T}(\mathrm{y}), \mathrm{T}\left(\mathrm{x}^{*}\right)\right) \\
& \leqslant \mathrm{H}\left(\mathrm{~T}(\mathrm{y}), \mathrm{T}\left(\mathrm{x}^{*}\right)\right) \\
& \leqslant 2 \mathrm{H}^{+}\left(\mathrm{T}(\mathrm{y}), \mathrm{T}\left(x^{*}\right)\right) \\
& \leqslant 2 \alpha \mathrm{~d}\left(\mathrm{y}, \mathrm{x}^{*}\right)
\end{aligned}
$$

Hence, $y=x^{*}$ and $F_{T} \subset(S F)_{T}$. Since $(S F)_{T} \subset F_{T}$, we get that $(S F)_{T}=F_{T}$.
Notice now that $x^{*} \in(S F)_{T^{n}}$, for each $n \in \mathbb{N}^{*}$. Consider $y \in(S F)_{T^{n}}$, for arbitrary $n \in \mathbb{N}^{*}$. Then

$$
\begin{aligned}
d\left(x^{*}, y\right)= & H\left(T^{n}\left(x^{*}\right), T^{n}(y)\right) \\
\leqslant & 2 \alpha H\left(T^{n-1}\left(x^{*}\right), T^{n-1}(y)\right) \\
\leqslant & (2 \alpha)^{2} H\left(T^{n-2}\left(x^{*}\right), T^{n-2}(y)\right) \\
& \vdots \\
\leqslant & (2 \alpha)^{n} d\left(x^{*}, y\right)
\end{aligned}
$$

Thus, $y=x^{*}$ and hence (SF) $)_{T}^{n}=\left\{x^{*}\right\}$.
(iii) Let $x \in X$ be arbitrarily chosen. Then we have

$$
\begin{aligned}
\mathrm{H}^{+}\left(\mathrm{T}^{n}(x), x^{*}\right)= & \mathrm{H}^{+}\left(\mathrm{T}^{\mathrm{n}}(x), \mathrm{T}^{\mathrm{n}}\left(x^{*}\right)\right) \\
\leqslant & H\left(\mathrm{~T}^{n}(x), \mathrm{T}^{n}\left(x^{*}\right)\right) \\
\leqslant & (2 \alpha) \mathrm{H}\left(\mathrm{~T}^{\mathrm{n}-1}(x), \mathrm{T}^{\mathrm{n}-1}\left(x^{*}\right)\right) \\
& \vdots \\
\leqslant & (2 \alpha)^{n} \mathrm{~d}\left(x, x^{*}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty .
\end{aligned}
$$

(iv) Let $y \in F_{S}$. Then

$$
\begin{aligned}
d\left(y, x^{*}\right) & \leqslant H\left(S(y), x^{*}\right) \\
& \leqslant 2 H^{+}\left(S(y), x^{*}\right) \\
& \leqslant 2\left(H^{+}(S(y), T(y))+H^{+}\left(T(y), x^{*}\right)\right) \\
& \leqslant 2\left(\eta+\alpha d\left(y, x^{*}\right)\right)
\end{aligned}
$$

Thus, $d\left(y, x^{*}\right) \leqslant \frac{2 \eta}{1-2 \alpha}$. The conclusion follows by the relations

$$
H^{+}\left(F_{S}, F_{T}\right) \leqslant \sup _{y \in F_{S}} d\left(y, x^{*}\right) \leqslant \frac{2 \eta}{1-2 \alpha}
$$

(v) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X such that $H^{+}\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. Then,

$$
\begin{aligned}
d\left(x_{n}, x^{*}\right) & \leqslant D\left(x_{n}, T\left(x_{n}\right)\right)+H_{d}\left(T\left(x_{n}\right), T\left(x^{*}\right)\right) \\
& \leqslant H_{d}\left(x_{n}, T\left(x_{n}\right)\right)+2 H^{+}\left(T\left(x_{n}\right), T\left(x^{*}\right)\right) \\
& \leqslant 2 H^{+}\left(x_{n}, T\left(x_{n}\right)\right)+2 k d\left(x_{n}, x^{*}\right)
\end{aligned}
$$

Then

$$
\mathrm{d}\left(x_{n}, x^{*}\right) \leqslant \frac{2}{1-2 k} \mathrm{H}^{+}\left(x_{n}, T\left(x_{n}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

(vi) Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X such that

$$
\mathrm{D}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{~T}\left(\mathrm{y}_{\mathrm{n}}\right)\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

Then, there exists $u_{n} \in T\left(y_{n}\right), n \in \mathbb{N}$ such that

$$
\mathrm{d}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{u}_{\mathrm{n}}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

We shall prove that $d\left(y_{n}, x^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$.
We successively have

$$
\begin{aligned}
& d\left(x^{*}, y_{n+1}\right) \leqslant H\left(x^{*}, T\left(y_{n}\right)\right)+D\left(y_{n+1}, T\left(y_{n}\right)\right) \\
& \leqslant 2 H^{+}\left(x^{*}, T\left(y_{n}\right)\right)+D\left(y_{n+1}, T\left(y_{n}\right)\right) \\
& \leqslant 2 \alpha d\left(x^{*}, y_{n}\right)+D\left(y_{n+1}, T\left(y_{n}\right)\right) \\
& \leqslant 2 \alpha\left[2 \alpha d\left(x^{*}, y_{n-1}\right)+D\left(y_{n}, T\left(y_{n-1}\right)\right)\right]+D\left(y_{n+1}, T\left(y_{n}\right)\right) \\
& \vdots \\
& \leqslant(2 \alpha)^{n+1} d\left(x^{*}, y_{0}\right)+(2 \alpha)^{n} D\left(y_{1}, T\left(y_{0}\right)\right)+\cdots+D\left(y_{n+1}, T\left(y_{n}\right)\right)
\end{aligned}
$$

By Lemma 3.10, the right hand side tends to 0 as $n \rightarrow \infty$. Thus, $d\left(x^{*}, y_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$.

On the other hand, by the fact that T is an MWP operator, we know that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of successive approximations for T starting from arbitrary $\left(x_{0}, x_{1}\right) \in \operatorname{Graph}(T)$ which converges to a fixed point $x^{*} \in X$ of the operator T. Since the fixed point is unique, we get that $d\left(x_{n}, x^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence, for such a sequence $\left(x_{n}\right)_{n} \in \mathbb{N}$, we have

$$
d\left(y_{n}, x_{n}\right) \leqslant d\left(y_{n}, x^{*}\right)+d\left(x^{*}, x_{n}\right) \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Remark 3.13. Similar results can be given for the case of multivalued φ-contraction w.r.t. H^{+}. The results of this type can be viewed as generalizations of some theorems given in [7].

We now give an application of the above results to the continuous dependence of the solution set for a Cauchy problem associated to a differential inclusion, with respect to the initial condition. The existence of a solution to the initial value problem

$$
\left\{\begin{array}{l}
\dot{x}(\mathrm{t}) \in \mathrm{T}(\mathrm{t}, x(\mathrm{t})), \tag{3.4}\\
x(0)=\mathrm{b},
\end{array}\right.
$$

was proved by Filippov [3] and Castaing [2] under certain conditions on T.
In [10], Markin proved a stability theorem on the set of solutions to (3.4) using the L^{2} norm, while Lim [9] proved a stability result in terms of the Hausdorff-Pompeiu functional. We will prove now a similar theorem using the sup norm and the Pompeiu functional generated by it.

We recall first the concept of solution.
Definition 3.14. Let $D=[0, a] \times \mathbb{R}^{n}$ and $T: D \rightarrow P\left(\mathbb{R}^{n}\right)$ be a continuous operator. Then, a mapping $x:[0, a] \rightarrow \mathbb{R}^{n}$ is said to be a solution of the differential inclusion (3.4), if x is an absolutely continuous mapping and $x^{\prime}(t) \in T(t, x(t))$, a.e. on $[0, a]$.

Let B be an origin-centered closed ball in R^{n} and $\mathrm{P}_{\mathrm{cl}, \mathrm{cv}}(\mathrm{B})$ endowed with the H^{+}metric generated by the Euclidean norm $\|\cdot\|$ of R^{n}. Let $C[0, a]$ be the set of the continuous maps of $[0, a]$ into R^{n} with the sup norm $\|\cdot\|_{C}$.

Assume that T is a continuous map of $[0, a] \times B$ into $P_{c l, c v}(B)$ satisfying, for some $k>0$, the condition

$$
\mathrm{H}^{+}(\mathrm{T}(\mathrm{t}, \mathrm{u}), \mathrm{T}(\mathrm{t}, v)) \leqslant \mathrm{k}\|\mathrm{u}-v\|_{\mathrm{C}}, \quad \forall \mathrm{t} \in[0, \mathrm{a}], \quad \mathrm{u}, v \in \mathrm{~B} .
$$

For $b \in B$, we will denote $S(b)$ the set of solutions of (3.4) on [0, a]. $S(b)$ is nonempty and compact, by [3] and [2].
Theorem 3.15. If the following conditions hold:

1. $\mathrm{T}:[0, \mathrm{a}] \times \mathrm{B} \rightarrow \mathrm{P}_{c l, c v}(\mathrm{~B})$ is continuous;
2. there exists $\mathrm{k}>0$ such that

$$
\mathrm{H}^{+}(\mathrm{T}(\mathrm{t}, \mathrm{u}), \mathrm{T}(\mathrm{t}, v)) \leqslant \mathrm{k}\|\mathrm{u}-v\|_{\mathrm{C}}, \quad \forall \mathrm{t} \in[0, \mathrm{a}], \quad \forall \mathrm{u}, v \in \mathrm{~B} \subseteq \mathbb{R}^{\mathrm{n}} ;
$$

3. $2 \mathrm{ka}<1$,
then $\mathrm{S}(\mathrm{b})$ is continuous from B into the family of nonempty compact subsets of $\mathrm{C}[0, \mathrm{a}]$ equipped with the H^{+}metric.
Proof. Suppose $b_{n} \rightarrow b_{0}$. For $x \in C[0, a]$, define

$$
F(b, x)=\left\{y \in[0, a]: y(t)=b+\int_{0}^{t} z(s) d s, z(s) \in T(s, x(s))\right\} .
$$

Let $F_{n}(x)=F\left(b_{n}, x\right), n=0,1,2, \cdots$. Since $F_{0}(x)=b_{n}-b_{0}+F_{n}(x)$ it is obvious that $F_{n}(x)$ converges uniformly to $F_{0}(x) . F_{n}(x)$ is compact convex for each x and n. Given any pair $x_{1}, x_{2} \in C[0, a]$ and $y_{1} \in F\left(b, x_{1}\right)$, let

$$
y_{1}(t)=b+\int_{0}^{t} r_{1}(s) d s, r_{1}(s) \in T\left(s, x_{1}(s)\right) .
$$

Define $r_{2}(s)$ to be the point in $T\left(s, x_{2}(s)\right)$ nearest to $r_{1}(s)$, i.e., $r_{2} \in T\left(s, x_{2}(s)\right)$ and

$$
\left\|r_{1}(s)-r_{2}(s)\right\|=\min \left\{\left\|r_{1}(s)-z\right\| \mid z \in T\left(s, x_{2}(s)\right)\right\}
$$

It follows from the measurability of $r_{1}(s)$ and the continuity of $T\left(s, x_{2}(s)\right)$ and the nearest point projection that $r_{2}(s)$ is measurable.

Setting

$$
y_{2}(t)=b+\int_{0}^{t} r_{2}(s) d s, \quad r_{2}(s) \in T\left(s, x_{2}(s)\right)
$$

we have

$$
\begin{aligned}
\left\|y_{2}-y_{1}\right\| & \leqslant \int_{0}^{a}\left\|r_{1}(s)-r_{2}(s)\right\| d s \\
& =\int_{0}^{a} \min \left\{\left\|r_{1}(s)-z\right\|, z \in T\left(s, x_{2}(s)\right)\right\} \\
& =\int_{0}^{a} D_{\|\cdot\|}\left(r_{1}(s), T\left(s, x_{2}(s)\right)\right) d s \\
& \leqslant \int_{0}^{a} H_{d}\left(T\left(s, x_{1}(s)\right), T\left(s, x_{2}(s)\right)\right) d s \\
& \leqslant \int_{0}^{a} 2 H^{+}\left(T\left(s, x_{1}(s)\right), T\left(s, x_{2}(s)\right)\right) d s \leqslant 2 k \int_{0}^{a}\left\|x_{1}(s)-x_{2}(s)\right\| d s \\
& \leqslant 2 k a\left\|x_{1}-x_{2}\right\|_{C} .
\end{aligned}
$$

Thus F_{n} are λ-contraction with $\lambda=2 \mathrm{ka}<1$.
By (iv) of Theorem 3.11, $F\left(\mathrm{~T}_{\mathrm{n}}\right) \xrightarrow{\mathrm{H}^{+}} \mathrm{F}\left(\mathrm{T}_{0}\right)$ i.e., $\mathrm{S}\left(\mathrm{b}_{\mathrm{n}}\right) \xrightarrow{\mathrm{H}^{+}} \mathrm{S}\left(\mathrm{b}_{0}\right)$.
More generally, we have the following result.
Theorem 3.16. For each $n=0,1,2, \cdots$, let T_{n} be a continuous map of $[0, a] \times B$ into $C(B)$ satisfying, for some $k>0$, the condition

$$
\mathrm{H}^{+}\left(\mathrm{T}_{\mathrm{n}}(\mathrm{t}, \mathrm{u}), \mathrm{T}_{\mathrm{n}}(\mathrm{t}, v)\right) \leqslant \mathrm{k}\|\mathrm{u}-v\|_{\mathrm{C}}, \quad \forall \mathrm{t} \in[0, \mathrm{a}], \quad \forall \mathrm{u}, v \in \mathrm{~B}
$$

Assume that $\mathrm{T}_{\mathrm{n}} \rightarrow \mathrm{T}_{0}$ uniformly on $[0, \mathrm{a}] \times \mathrm{B}$. For each $\mathrm{b} \in \mathrm{B}$ and $\mathrm{n}=0,1,2, \cdots$. Let $\mathrm{S}_{\mathrm{n}}(\mathrm{b})$ be the set of solutions of

$$
\left\{\begin{array}{l}
\dot{x}(t) \in T_{n}(t, x(t)) \\
x(0)=b
\end{array}\right.
$$

If $2 \mathrm{ka}<1$ and $\mathrm{b}_{\mathrm{n}} \rightarrow \mathrm{b}_{0}$ in B , then $\mathrm{S}_{\mathrm{n}}\left(\mathrm{b}_{\mathrm{n}}\right) \rightarrow \mathrm{S}_{0}\left(\mathrm{~b}_{0}\right)$.
Proof. Let $b_{n} \rightarrow b_{0}$. For $x_{n} \in C[0, a]$, define

$$
F\left(b, x_{n}\right)=\left\{y_{n} \in[0, a]: y_{n}(t)=b+\int_{0}^{t} z_{n}(s) d s, z_{n}(s) \in T_{n}(s, x(s))\right\}
$$

Let $F_{n}\left(x_{n}\right)=F\left(b_{n}, x_{n}\right), n=0,1,2, \cdots$. Since $F_{0}(x)=b_{n}-b_{0}+F_{n}(x)$ it is obvious that $F_{n}(x)$ converges uniformly to $F_{0}(x) . F_{n}(x)$ is compact convex for each x_{n} and n.

Given any pair $x_{n}^{(1)}, x_{n}^{(2)} \in C[0, a]$ and $y_{n}^{(1)} \in F\left(b, x_{n}^{(1)}\right)$, let

$$
y_{n}^{(1)}(t)=b+\int_{0}^{t} r_{n}^{(1)}(s), r_{n}^{(1)}(s) \in T_{n}\left(s, x_{n}^{(1)}(s)\right) d s
$$

Define $r_{n}^{(2)}(s)$ to be the point in $T_{n}\left(s, x_{n}^{(2)}(s)\right)$ nearest to $r_{n}^{(1)}(s)$, i.e., $r_{n}^{(2)} \in T_{n}\left(s, x_{n}^{(2)}(s)\right)$ and

$$
\left\|r_{n}^{(1)}(s)-r_{n}^{(2)}(s)\right\|=\min \left\{\left\|r_{n}^{(1)}(s)-z_{n}\right\| \mid z_{n} \in T_{n}\left(s, x_{n}^{(2)}(s)\right)\right\}
$$

It follows from the measurability of $r_{n}^{(1)}(s)$ and the continuity of $T_{n}\left(s, x_{n}^{2}(s)\right)$ and the nearest point pro-
jection that $r_{n}^{(2)}(s)$ is measurable.
Setting

$$
y_{n}^{(2)}(t)=b+\int_{0}^{t} r_{n}^{(2)}(s) d s, \quad r_{n}^{(2)}(s) \in T_{n}\left(s, x_{n}^{(2)}(s)\right)
$$

we have

$$
\left\|y_{n}^{(2)}-y_{n}^{(1)}\right\| \leqslant 2 k a\left\|x_{n}^{(1)}-x_{n}^{(2)}\right\|_{C}
$$

Thus F_{n} are λ-contraction with $\lambda=2 \mathrm{ka}<1$.
By (iv) of Theorem 3.11, we have $F\left(T_{n}\right) \xrightarrow{H^{+}} F\left(T_{0}\right)$, i.e., $S_{n}\left(b_{n}\right) \xrightarrow{H^{+}} S_{n}\left(b_{0}\right)$.
Next, an application to Ulam-Hyers stability of the inclusion $x \in T(x)((v)$ of Theorem 3.11) is given. The notion of Ulam-Hyers stability for a differential inclusion is defined as follows.

Definition 3.17. Let

$$
\begin{equation*}
x^{\prime} \in \mathrm{T}(\mathrm{t}, \mathrm{x}(\mathrm{t})), \quad \mathrm{t} \in[0, \mathrm{a}] \tag{3.5}
\end{equation*}
$$

and $\mathrm{T}:[0, a] \times \mathbb{R}^{n} \rightarrow \mathrm{P}_{\mathrm{cl}, \mathrm{cv}}\left(\mathbb{R}^{n}\right)$ be a continuous operator. We say that (3.5) is Ulam-Hyers stable if for any $\epsilon>0$, any $y \in C[0, a]$ and any ϵ-solution of (3.5) (which means that

$$
\left.D\left(y(t), y(0)+\int_{0}^{t} T(s, y(s)) d s\right) \leqslant \epsilon, \quad t \in[0, a]\right)
$$

there exists a solution x^{*} of (3.5) and $c>0$ such that $\left\|x^{*}-y\right\| \leqslant c \cdot \epsilon$.
Definition 3.18. Let $F:[0, a] \rightarrow P_{c} l\left(\mathbb{R}^{n}\right)$ be a measurable multivalued operator. If $L^{1}\left([0, a], \mathbb{R}^{n}\right)$ denotes the set of all measurable and integrable mappings from $[0, a]$ to \mathbb{R}^{n}, then S_{F} will denote the set of all integrable selections of F, i.e.,

$$
S_{F}:=\left\{f \in L^{1}\left([0, a], \mathbb{R}^{n}\right) \mid f(t) \in F(t) \text {, a.e. } t \in[0, a]\right\} .
$$

Remark 3.19. In particular, if $x:[0, a] \rightarrow \mathbb{R}^{n}$ and $T:[0, a] \times \mathbb{R}^{n} \rightarrow P_{c l}\left(\mathbb{R}^{n}\right)$, then the set of all integrable selections of T will be denoted by

$$
S_{T(\cdot, x(\cdot))}:=\left\{f \in L^{1}\left([0, a], \mathbb{R}^{n}\right) \mid f(t) \in T(t, x(t)) \text { a.e. } t \in[0, a]\right\}
$$

Theorem 3.20. Let us consider the inclusion (3.5). We assume:
(a) $\mathrm{T}:[0, \mathrm{a}] \times \mathbb{R}^{n} \rightarrow \mathrm{P}_{c l, c v}\left(\mathbb{R}^{n}\right)$ is a continuous, measurable and integrably bounded multivalued operator.
(b) There exists L >0 such that

$$
H^{+}\left(T\left(t, u_{1}\right), T\left(t, u_{2}\right)\right) \leqslant L\left\|u_{1}-u_{2}\right\|, \quad \forall\left(t, u_{1}\right),\left(t, u_{2}\right) \in[0, a] \times \mathbb{R}^{n}
$$

Then the differential inclusion (3.5) with initial condition $x(0)=x^{0}$ has at least one solution. Moreover the differential inclusion (3.5) is Ulam-Hyers stable.

Proof. Let us define $\mathrm{U}: \mathrm{C}[0, \mathrm{a}] \rightarrow \mathrm{P}(\mathrm{C}[0, \mathrm{a}]), \mathrm{u} \rightarrow \mathrm{Ux}$ and $\mathrm{Ux}(\mathrm{t}):=\mathrm{b}+\int_{0}^{\mathrm{t}} \mathrm{T}(\mathrm{s}, \mathrm{x}(\mathrm{s})) \mathrm{ds}, \mathrm{t} \in[0, \mathrm{a}]$. We notice that, since T is u.s.c., (3.5) is equivalent with the fixed point problem

$$
\begin{equation*}
x \in \mathbb{U} x \tag{3.6}
\end{equation*}
$$

We will show that the fixed point problem (3.6) is Ulam-Hyers stable.
Let $y, z \in C[a, b]$ and $u_{1} \in U x$. Then $u_{1} \in C[0, a]$ and

$$
u_{1}(t) \in x(0)+\int_{0}^{t} T(s, x(s)) d s \text { a.e. on }[0, a]
$$

It follows that there is a mapping $k_{y} \in S_{T(\cdot, y(\cdot))}$ such that

$$
u_{1}(t)=x(0)+\int_{0}^{t} k_{x}(s) d s \text { a.e. on }[0, a]
$$

Since

$$
\mathrm{H}^{+}(\mathrm{T}(\mathrm{t}, \mathrm{x}(\mathrm{t})), \mathrm{T}(\mathrm{t}, \mathrm{y}(\mathrm{t}))) \leqslant \mathrm{L}\|x(\mathrm{t})-\mathrm{y}(\mathrm{t})\|
$$

one obtains that there exists $w \in T(t, y(t))$ such that

$$
\left\|k_{x}(t)-w\right\| \leqslant H(T(t, x(t)), T(t, y(t))) \leqslant 2 H^{+}(T(t, x(t)), T(t, y(t))) \leqslant 2 L\|x(t)-y(t)\|
$$

Thus the multivalued operator G defined by $G(t)=T_{y}(t) \cup K(t)\left(\right.$ where $T_{y}(t)=T(t, y(t))$ and

$$
K(t)=\left\{w \mid\left\|k_{x}(t)-w\right\| \leqslant 2 L\|x(t)-y(t)\|\right\}
$$

has nonempty values and is measurable.
Let k_{z} be a measurable selection for G (which exists by Kuratowski and Ryll Nardzewski's selection theorem). Then $k_{y}(t) \in T(t, y(t))$ and

$$
\left\|k_{x}(t)-k_{y}(t)\right\| \leqslant 2 L\|x(t)-y(t)\|, \text { a.e. on }[0, a]
$$

Define $u_{2}=x(0)+\int_{0}^{t} k_{y}(s) d s$. It follows that $u_{2} \in U y$ and

$$
\begin{aligned}
\left\|u_{1}(t)-u_{2}(t)\right\| & \leqslant \int_{0}^{t}\left\|k_{x}(s)-k_{y}(s)\right\| d s \\
& \leqslant 2 L \int_{0}^{t}\|x(s)-y(s)\| d s \\
& =2 L \int_{0}^{t}\|x(s)-y(s)\| \cdot e^{-\tau(s-a)} \cdot e^{\tau(s-a)} d s \\
& \leqslant 2 L\|x-y\|_{B} \int_{0}^{t} e^{\tau(s-a)} d s \\
& \leqslant \frac{2 L}{\tau} e^{\tau(s-a)}\|x-y\|_{B}
\end{aligned}
$$

Here $\|\cdot\|_{B}$ denotes the Bielecki-type norm on $C[0, a]$. Finally, we have that

$$
\left\|u_{1}-u_{2}\right\|_{B} \leqslant \frac{2 L}{\tau}\|x-y\|_{B}
$$

From this and the analogous inequality obtained by interchanging the roles x and y and adding them and then dividing by 2 we get that

$$
\mathrm{H}^{+}(\mathrm{Ux}, \mathrm{U} y) \leqslant \frac{2 \mathrm{~L}}{\tau}\|x-y\|_{\mathrm{B}}, \quad \forall x, y \in \mathrm{C}[0, \mathrm{a}]
$$

Taking $\tau>2 \mathrm{~L}$, it follows that U is multivalued $\left(\mathrm{H}^{+}, \alpha\right)$-contraction.

4. Continuation results for multivalued $\left(\mathrm{H}^{+}, \alpha\right)$-contractions

In this section, we present a local result and a continuation result for a special kind of multivalued $\left(\mathrm{H}^{+}, \alpha\right)$-contractions. Following Kirk and Shahzad ([6]), we will replace the second condition of the Definition 1.2:
$(*)$ for every $x \in X, y \in T(x)$ and for every $\epsilon>0$ there exists z in $T(y)$ such that

$$
\mathrm{d}(\mathrm{y}, \mathrm{z}) \leqslant \mathrm{H}^{+}(\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y}))+\varepsilon
$$

with the following one:
$(* *)$ for every $x \in X$ and every $y \in T(x)$ we have that

$$
\mathrm{D}(\mathrm{y}, \mathrm{~T}(\mathrm{y})) \leqslant \mathrm{H}^{+}(\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y})) .
$$

Notice that $(* *)$ implies $(*)$. Moreover if we consider the following condition:
$(* * *)$ for every $\epsilon>0$, for every $x \in X, y \in T(x)$ there exists z in $T(y)$ such that

$$
\mathrm{d}(\mathrm{y}, \mathrm{z}) \leqslant \mathrm{H}^{+}(\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y}))+\varepsilon
$$

Then it is easy to see that $(* *)$ is equivalent with $(* * *)$. In this last case, we also notice that for each $x \in X$ and every $y \in T(x)$ we have $\rho(T(x), T(y)) \leqslant H^{+}(T(x), T(y))$. As a consequence, $\rho(T(x), T(y)) \leqslant$ $\rho(T(y), T(x))$ and so

$$
H^{+}(T(x), T(y)) \leqslant \rho(T(y), T(x)), \quad \forall x \in X, \quad y \in T(x)
$$

Homotopy results for multivalued operators of contractive types are well-known in the literature, see $[4,5,8]$. This approach is applied in all cases on a local fixed point theorem. The first result of this section is the following local fixed point theorem.

Theorem 4.1. Let (X, d) be a complete metric space, $\mathrm{x}_{0} \in \mathrm{X}, \mathrm{r}>0$ and $\mathrm{T}: \tilde{\mathrm{B}}\left(\mathrm{x}_{0}, \mathrm{r}\right) \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ is a multivalued operator. We suppose that:
(i) T is a multivalued $\left(\mathrm{H}^{+}, \alpha\right)$-contraction, i.e., $\left.\alpha \in\right] 0,1[$ and

$$
\mathrm{H}^{+}(\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y})) \leqslant \alpha \mathrm{d}(\mathrm{x}, \mathrm{y}), \quad \forall x, y \in X
$$

(ii) for every $x \in X$ and every $y \in T(x)$ we have that $D(y, T(y)) \leqslant H^{+}(\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y}))$;
(iii) $\mathrm{D}\left(\mathrm{x}_{0}, \mathrm{~T}\left(\mathrm{x}_{0}\right)\right)<(1-\alpha) \mathrm{r}$.

Then, there exists $x^{*} \in \tilde{B}\left(x_{0}, r\right)$ such that $\chi^{*} \in T\left(x^{*}\right)$.
Proof. Notice first that, by (iii), we can find an element $x_{1} \in T\left(x_{0}\right)$ such that $d\left(x_{0}, x_{1}\right)<(1-\alpha) r$. Clearly $x_{1} \in \tilde{B}\left(x_{0}, r\right)$. Now, for arbitrary $\epsilon>0$, by (ii) and (i), it follows that we can choose $x_{2} \in T\left(x_{1}\right)$ such that

$$
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)<\mathrm{D}\left(\mathrm{x}_{1}, \mathrm{~T}\left(\mathrm{x}_{1}\right)\right)+\epsilon \leqslant \mathrm{H}^{+}\left(\mathrm{T}\left(\mathrm{x}_{0}\right), \mathrm{T}\left(\mathrm{x}_{1}\right)\right)+\epsilon \leqslant \alpha \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\epsilon
$$

If we take $\epsilon:=\alpha\left[(1-\alpha) r-d\left(x_{0}, x_{1}\right)\right]>0$, then we get that

$$
\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)<\alpha(1-\alpha) \mathrm{r}
$$

Moreover $d\left(x_{2}, x_{0}\right) \leqslant d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)<(1-\alpha) r+\alpha(1-\alpha) r=\left(1-\alpha^{2}\right) r$, proving that $x_{2} \in \tilde{B}\left(x_{0}, r\right)$. Using this procedure (taking at each step $k \geqslant 2$, for the construction of x_{k}, the value of ϵ as $\left.\epsilon_{k}:=\alpha\left[\alpha^{k-2}(1-\alpha) r-d\left(x_{k-2}, x_{k-1}\right)\right]\right)$, we obtain a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ having the properties:
(1) $d\left(x_{0}, x_{n}\right)<\left(1-\alpha^{n}\right) r$, for each $n \in \mathbb{N}^{*}$ (i.e., $x_{n} \in \tilde{B}\left(x_{0}, r\right)$, for each $n \in \mathbb{N}^{*}$);
(2) $x_{n+1} \in T\left(x_{n}\right)$, for each $n \in \mathbb{N}$;
(3) $d\left(x_{n}, x_{n+1}\right)<\alpha^{n}(1-\alpha) r$, for each $n \in \mathbb{N}$.

Then, by (3), we get that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy in (X, d) and hence it converges in (X, d) to some $x^{*} \in \tilde{B}\left(x_{0}, r\right)$. By Theorem 2.13, we have that $T: \tilde{B}\left(x_{0}, r\right) \rightarrow P_{c l}(X)$ has closed graph, thus we immediately get, by (2), that $x^{*} \in T\left(x^{*}\right)$ as $n \rightarrow \infty$.

Theorem 4.2. Let (X, d) be a complete metric space. Let U be an open subset of (X, d). Let $\mathrm{G}: \mathrm{U} \times[0,1] \rightarrow \mathrm{P}(\mathrm{X})$ be a multivalued operator such that the following conditions are satisfied:

1. $x \neq G(x, t)$ for each $x \in \partial B$ and each $t \in[0,1]$;
2. there exists $\alpha \in[0,1[$ such that for each $t \in[0,1]$ and each $x, y \in U$ we have

$$
H^{+}(G(x, t), G(y, t)) \leqslant \alpha d(x, y)
$$

3. there exists a continuous increasing function $\phi:[0,1] \rightarrow \mathbb{R}$ such that

$$
\mathrm{H}^{+}(\mathrm{G}(\mathrm{x}, \mathrm{t}), \mathrm{G}(\mathrm{x}, \mathrm{~s}))<|\phi(\mathrm{t})-\phi(\mathrm{s})|, \quad \forall \mathrm{t}, \mathrm{~s} \in[0,1], \quad \mathrm{t} \neq \mathrm{s}, \quad \forall \mathrm{x} \in \mathrm{U} ;
$$

4. $\mathrm{G}: \mathrm{U} \times[0,1] \rightarrow \mathrm{P}((\mathrm{X}, \mathrm{d}))$ is closed.

Then $\mathrm{G}(\cdot, 0)$ has a fixed point if and only if $\mathrm{G}(\cdot, 1)$ has a fixed point.
Proof. Let us consider the set $\mathrm{Q}=\{(\mathrm{t}, \mathrm{x}) \in[0,1] \times \mathrm{U}: x \in \mathrm{G}(x, \mathrm{t})\}$. Clearly $\mathrm{Q} \neq \emptyset$, since $(0, z) \in \mathrm{Q}$ where $z \in G(z, 0)$. On Q we define the partial order

$$
(t, x) \leqslant(s, y) \text { if and only if } t \leqslant s \text { and } d(x, y) \leqslant \frac{2}{1-\alpha}(\phi(s)-\phi(t))
$$

Let P be a totally ordered subset of Q. Define $t^{*}=\sup \{t:(t, x) \in P\}$.
Taking a sequence $\left\{\left(t_{n}, x_{n}\right)\right\}$ in P such that

$$
\left(t_{n}, x_{n}\right) \leqslant\left(t_{n+1}, x_{n+1}\right) \text { and } t_{n} \rightarrow t^{*} \text { as } n \rightarrow \infty
$$

We have

$$
d\left(x_{m}, x_{n}\right) \leqslant \frac{2}{1-\alpha}\left(\phi\left(t_{m}\right)-\phi\left(t_{n}\right)\right), \quad \text { for } m>n, \quad m, n \in \mathbb{N}^{*}
$$

Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence, and hence converges to some $x \in \tilde{U}$. Since $x_{n} \in G\left(x_{n}, t_{n}\right), n \in \mathbb{N}^{*}$ and G is closed, we have $x^{*} \in G\left(x^{*}, t^{*}\right)$. Thus $\left(t^{*}, x^{*}\right) \in Q$.

Since P is totally ordered we get $(t, x) \leqslant\left(t^{*}, x^{*}\right)$ for each $(t, x) \in P$. That means that $\left(t^{*}, x^{*}\right)$ is a bound of P. It follows from Zorn's Lemma that Q admits a maximal element $\left(t_{0}, x_{0}\right) \in Q$.

To complete the proof, we have to show that $t_{0}=1$. Suppose this is false. Then, we can choose $r>0$ and $t \in\left(t_{0}, 1\right]$ such that $\tilde{B}\left(x_{0}, r\right)$ and $r:=\frac{2}{1-\alpha}\left(\phi(t)-\phi\left(t_{0}\right)\right)$. It follows that

$$
\begin{aligned}
\mathrm{D}\left(x_{0}, \mathrm{G}\left(x_{0}, \mathrm{t}\right)\right) & \leqslant \rho\left(\mathrm{G}\left(x_{0}, \mathrm{t}_{0}\right), \mathrm{G}\left(x_{0}, \mathrm{t}\right)\right) \\
& \leqslant \mathrm{H}\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{t}_{0}\right), \mathrm{G}\left(x_{0}, \mathrm{t}\right)\right) \\
& \leqslant 2 \mathrm{H}^{+}\left(\mathrm{G}\left(x_{0}, \mathrm{t}_{0}\right), \mathrm{G}\left(x_{0}, \mathrm{t}\right)\right) \\
& <\phi(\mathrm{t})-\phi\left(\mathrm{t}_{0}\right)=(1-\alpha) r .
\end{aligned}
$$

Since $\tilde{B}\left(x_{0}, r\right) \subset U$, the multivalued operator $G(\cdot, t): \tilde{B}\left(x_{0}, r\right) \rightarrow P_{c l}(X)$ satisfies, for all $t \in[0,1]$ the assumptions of Theorem 4.1. Hence, for all $t \in[0,1]$, there exists $x \in \tilde{B}\left(x_{0}, r\right)$ such that $x \in G(x, t)$. Thus $(\mathrm{t}, \mathrm{x}) \in \mathrm{Q}$.

Since $d\left(x_{0}, x\right) \leqslant r=\frac{2}{1-\alpha}\left(\phi(t)-\phi\left(t_{0}\right)\right)$ we immediately get $\left(t_{0}, x_{0}\right)<(t, x)$. This is a contradiction with the maximality of $\left(t_{0}, x_{0}\right)$.

Conversely, if $G(\cdot, 1)$ has a fixed point, then putting $t:=1-t$ and using the first part of the proof we get the conclusion.

Acknowledgment

This paper is a result of a doctoral research made possible by the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project POSDRU/159/1.5/S/137750 - " Doctoral and postdoctoral programs support for increasing research competitiveness in the field of exact sciences ".

References

[1] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, (1990). 2.9, 2.10, 2.11, 2.12
[2] C. Castaing, Sur les equations differentielles multivoques, C. R. Acad. Sci. Paris, 263 (1966), 63-66. 3, 3
[3] A. F. Filippov, Classical solutions of differential equations with multivalued right-hand side, SIAM J. Control, 5 (1967), 609-621. 3, 3
[4] M. Frigon, On continuation methods for contractive and nonexpansive mappings.Recent advances on metric fixed point theory, Univ. Sevilla, Seville, (1996). 4
[5] M. Frigon, A. Granas, Résultats de type Leray-Schauder pour des contractions sur des espaces de Frchet, Ann. Sci. Math. Qubec, 22 (1998), 161-168. 4
[6] W. A. Kirk, N. Shahzad, Remarks on metrics transform and fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 11 pages. 4
[7] V. L. Lazăr, Fixed point theory for multivalued ϕ-contractions, Fixed Point Theory Appl., 2011 (2011), 12 pages. 3.13
[8] T. Lazăr, D. O'Regan, A. Petruşel, Fixed points and homotopy results for Ćirić-type multivalued operators on a set with two metrics, Bull. Korean Math. Soc., 45 (2008), 67-73. 4
[9] T.-C. Lim, On fixed point stability for se-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., 110 (1985), 436-441. 3
[10] J. T. Markin, Stability of solution sets for generalized differential equations, J. Math. Anal. Appl., 46 (1974), 289-291. 3
[11] G. Moţ, A. Petruşel, G. Petruşel, Topics in Nonlinear Analysis and Applications to Mathematical Economics, Casa Căŗ̧ii de Ştiinţă, Cluj-Napoca, (2007). 2, 3.7
[12] H. K. Pathak, N. Shahzad, A new fixed point result and its application to existence theorem for nonconvex Hammerstein type integral inclusions, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 13 pages. 1
[13] H. K. Pathak, N. Shahzad, A generalization of Nadler's fixed point theorem and its application to nonconvez integral inclusions, Topol. Methods Nonlinear Anal., 41 (2013), 207-227. 1.1, 1, 1.2, 1, 2.1, 2.2, 2.3, 2.4
[14] A. Petruşel, Multivalued weakly Picard operators and applications, Sci. Math. Jpn., 59 (2004), 169-202. 2.9, 2.10, 2.11, 2.12, 3.5, 3.6
[15] A. Petruşel, I. A. Rus, The theory of a metric fixed point theorem for multivalued operators, Yokohama Publ., Yokohama, (2010). 3
[16] I. A. Rus, Generalized Contraction and Applications, Cluj Univ. Press, Cluj-Napoca, (2001). 3.8
[17] I. A. Rus, M.-A. Şerban, Some generalizations of a Cauchy lemma and applications, Presa Univ. Clujeană, Cluj-Napoca, (2008). 3.10

