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Abstract
It is known that topological conjugacy is a basic equivalence relation in dynamical systems. In this paper we study a class

of piecewise monotone and continuous functions with infinite height. Those functions are topologically conjugate with each
other if and only if they have same sequences describing itineraries of all forts, endpoints, and fixed points. We construct the
topological conjugacy by extension, which partly generalizes previous results. c©2017 All rights reserved.
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1. Introduction

Let X, Y be topological spaces, and f : X → X and g : Y → Y are continuous maps. We say that f is
topologically conjugate to g (denoted by f ∼ g) if there exists a homeomorphism ϕ : X→ Y satisfying the
equation

ϕ ◦ f = g ◦ϕ, (1.1)

ϕ is called topological conjugacy. Topological conjugacy is an equivalent relation, which means the
iterative orbits of f and g have the same dynamical properties. As one of important tools in studying
dynamical systems and functional equations, topological conjugacy often appears in linearization [17, 19],
normal form [2, 7], and iterative functional equations [9, 10, 21].

Let I := [a,b] be a closed interval and f : I → I be a continuous function. An interior point c of
I is called a fort if f is strictly monotone in no neighborhood of c. A continuous function f : I → I is
called piecewise monotonic (abbreviated as PM function) if the number N(f) of forts is finite. Let the least
k ∈ N ∪ {0} satisfying N(fk) = N(fk+1), if such k exists and ∞ otherwise, be the non-monotonicity height
H(f) of f (cf. [20]), abbreviated as height. In general, the larger the number H(f) the more complexity of
the dynamics of f.

It seems that it was Parry [15] who first concerned with the topological conjugacy of PM functions, he
presented sufficient conditions for a PM function to be conjugate to a uniformly piecewise linear function.
In 1990, Baldwin [1] gave a sufficient and necessary condition for the existence of topological conjugacy,
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i.e., PM functions f ∼ g if and only if they have same invariants. Later, Brin and Stuck ([5, Corollary
7.4.8]) considered special PM functions having no wandering intervals, no attracting periodic points and
no intervals of periodic points, and proved that f ∼ g if f and g have the same kneading invariants and
endpoint itineraries. In 2013, Shi et al. [18] considered a class of PM functions with H(f) = 1, they
constructed the topological conjugacy ϕ by extension when there exists a topological conjugacy ϕ0 on
initial subinterval. As a continuation of [18], Ref. [11] investigated the more generally cases H(f) > 1,
i.e., f([a, t1]) ⊂ [a, t1] and f(t) < t for all t ∈ (t1,b) (here, t1 is the smallest fort). Under the assumptions
that f is topologically conjugate to g by ϕ0 on subinterval (a, t1) and has the same sequences of endpoints
and forts as that of g, they proved that f ∼ g by ϕ, an extension of ϕ0. Recently, under the condition
H(f) = H(g) < ∞, Li [12, Lemma 2.1] presented a sufficient and necessary condition for f ∼ g by
using “characteristic interval” and extension method. Besides this, conjugacy or semi-conjugacy is also
investigated for special PM functions, such as linear Markov [4], Collet-Eckmann’s map [14], piecewise
expansive mappings [8], topological semi-conjugacy [6, 13], as well as weakly multimodal mappings [16],
a class of generalized PM functions.

In the present paper, we remain interested in the topological conjugacy of PM functions but we restrict
the study to a class of PM functions with H(f) = ∞, not involved in most of the mentioned references.
What is claimed to be new is a sufficient and necessary condition for the existence of topological conjugacy
ϕ and the construction for ϕ by extension. It is worth mentioning that we need not the assumption on
the existence of the topological conjugacy on a subinterval, which is different from Refs. [11, 18] and Ref.
[12]. Section 2 gives definitions and lemmas. In Section 3, we describe an equivalent condition for the
existence of ϕ and give its construction. Two examples are presented to illustrate our results at the end
of the paper.

2. Preliminaries

A continuous map f : I→ I is said to be an r-modal map if there exists r forts

a := c0 < c1 < · · · < cr < cr+1 := b.

Clearly, fi+1 := f|[ci,ci+1] is alternately strictly increasing and strictly decreasing for all i = 0, 1, . . . , r. Let
Af := {ci, f(ci), f2(ci), i = 0, 1, . . . , r+ 1} and PMr(I, I) be the set of r-modal maps. Suppose that f has fixed
points F(f) := {s1, s2, . . . , sk}, it is clear that F(f) is nonempty since f is a self-mapping on compact interval.
As we all know, an isolated fixed point c is the simplest non-trivial invariant set. In a neighborhood U(c)
of the point c, there are those patterns of dynamical behavior: an attractor, a repeller, an overflow from
left to right, and an overflow from right to left ([3, pp 23]). In addition, the point c maybe be a 2-period
point. We say that f ∈ PMr(I, I) and g ∈ PMr(J, J) are of the same type if f and g have the same type of
fixed points and the same monotonicity in subintervals in ascending order.

Let
M (f) := Af ∪ F(f) and #M (f) := p,

in which #A denotes the cardinality of the set A. Rewritten those p different points as µf,i(i = 0, 1, . . . ,p−
1), then

a := µf,0 < µf,1 < · · · < µf,p−2 < µf,p−1 := b

gives a partition Tp of I. Now we define a sequence which plays an important role in our result. The
itinerary of t ∈ I with respect to f ∈ PMr(I, I) is a sequence of nonnegative integers If(t) = (in(t))n∈N

defined by

in(t) :=

{
k, if fn(t) = µf,k, k ∈ {0, 1, . . . ,p− 1},
h̃, if fn(t) ∈ (µf,h,µf,h+1), h ∈ {0, 1, . . . ,p− 2}.

We remark that, the sequence (in(t))n∈N is different from (ik(x))k∈N0 in Ref. [11] since the set Af is not
equal to S(f) in there. In fact, the sequence (in(t))n∈N is not necessarily monotone, now we present two
examples to describe the monotone and non-monotone cases, respectively.
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Example 2.1. Consider the map f : [0, 1]→ [0, 1] defined by

f(t) :=



5
3t+

1
10 , t ∈ [0, 3

10),
−t+ 9

10 , t ∈ [ 3
10 , 2

5),
1
2t+

3
10 , t ∈ [ 2

5 , 4
5),

−1
3t+

29
30 , t ∈ [ 4

5 , 19
20),

6t− 101
20 , t ∈ [ 19

20 , 1].

We see that
Af := {c, f(c), f2(c)}, F(f) = {

3
5
}

for all c ∈ { 3
10 , 2

5 , 4
5 , 19

20 , 1}. By simple calculation

f(t) 6 f2(t) 6 · · · 6 fn(t) 6 · · · 6 3
5

for t ∈ {0,
3

10
,

2
5
},

and
f(t) > f2(t) > · · · > fn(t) > · · · > 3

5
for t ∈ {

4
5

,
19
20

, 1}.

Thus, the sequence (in(t))n∈N is increasing for all t ∈ [0, 3
5) and decreasing for all t ∈ ( 3

5 , 1].

Example 2.2. Consider the map g : [0, 1]→ [0, 1] defined by

g(t) :=


2t+ 1

5 , t ∈ [0, 3
10),

−11
6 t+

27
20 , t ∈ [ 3

10 , 3
5),

t− 7
20 , t ∈ [ 3

5 , 7
10),

−1
6t+

7
15 , t ∈ [ 7

10 , 1].

Note that
Ag := {d, f(d), f2(d)}, F(g) = {

81
170

}

for all d ∈ {0, 3
10 , 3

5 , 7
10 , 1}. By simple calculation

g(0) =
1
5

, g2(0) =
3
5

, g3(0) =
1
4

.

The inequality g(0) < g3(0) < g2(0) shows that the sequence (in(0))n∈N is non-monotone. By this
manner we can prove the sequence (in(d))n∈N is non-monotone for all d ∈ {0, 3

10 , 3
5 , 7

10 , 1}. However,
the sequence (in(

81
170))n∈N is monotone as gn( 81

170) =
81
170 for all integers n.

Suppose that f ∈ PMrf(I, I) and g ∈ PMrg(J, J) together with M (f) and M (g), respectively, in which

Af := {ci, f(ci), f2(ci), i = 0, 1, . . . , rf + 1}, F(f) := {s1, s2, . . . , skf},

Ag := {di,g(di),g2(di), i = 0, 1, . . . , rg + 1}, F(g) := {s̄1, s̄2, . . . , s̄kg}.

In the sequel we give two lemmas.

Lemma 2.3. Suppose that f ∈ PMrf(I, I) and g ∈ PMrg(J, J). If f is topologically conjugate to g via a homeomor-
phism ϕ : I→ J, then rf = rg and #F(f) = #F(g).

Proof. The proof of equality rf = rg comes from Lemma 3.1 in [11], we briefly repeat it here. The
topological conjugacy ϕ is strictly monotone since it is a homeomorphism. For arbitrary subinterval
(α,β) ⊂ [ci, ci+1] for all i ∈ {0, 1, . . . , rf}, the function

g|ϕ(α,β) = ϕ|f(α,β) ◦ f|(α,β) ◦ϕ−1|ϕ(α,β)
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is strictly monotone from the strict monotonicity of ϕ and f. Thus ϕ(α,β) contains no forts of g. Con-
versely, given any (γ,η) ⊂ [dj,dj+1] for all j ∈ {0, 1, . . . , rg}, then ϕ−1(γ,η) has no forts of f as the same
reason. Hence, ϕ maps [ci, ci+1] into [dj,dj+1] and maps Af onto Ag, implying rf = rg.

For any fixed point s ∈ F(f), from the conjugacy equation (1.1) we have

g(ϕ(s)) = ϕ(s),

which shows that ϕ(s) is a fixed point of g, thus #F(f) 6 #F(g). By the same argument we see that #F(g)
is no more than #F(f), thus

#F(f) = #F(g).

This completes the proof.

Lemma 2.4. Suppose that f ∈ PMr(I, I), g ∈ PMr(J, J). If f is topologically conjugate to g via an orientation-
preserving homeomorphism ϕ : I→ J, then

(i) f and g have the same type;
(ii) If(µf,i) = Ig(µg,i) for all µf,i ∈M (f), µg,i ∈M (g).

Proof.

(i). Without loss of generality, assume that s ∈ [ci, ci+1] is an attractive fixed point of f. From conjugacy
equation (1.1) we have

ϕ ◦ fn = gn ◦ϕ, (2.1)

then for a small enough neighborhood U(s) of s and any t ∈ U(s), we get

lim
n→∞ϕ ◦ fn(t) = ϕ ◦ lim

n→∞ fn(t) = ϕ(s). (2.2)

We see that (2.1) and (2.2) yield
lim
n→∞gn ◦ϕ(t) = ϕ(s),

which implies that g has an attractive fixed point ϕ(s). That is to say, ϕ maps an attractive fixed point s
of f to an attractive fixed point ϕ(s) of g. By this manner, we can prove ϕ maps the remainder kinds of
fixed points to the corresponding ones. Note that ϕ : I→ J is an orientation-preserving homeomorphism,
then f and g are of the same type of fixed points.

Lemma 2.3 shows that the homeomorphism ϕ maps [ci, ci+1] to [dj,dj+1], where i, j = 0, 1, . . . , r. Thus
we have

ϕ(ci) = di

asϕ : I→ J is orientation-preserving. In view ofϕ◦ f|[ci,ci+1] and g◦ϕ|[ci,ci+1] having the same monotonic-
ity from (1.1), consequently, f|[ci,ci+1] and g|[di,di+1] are increasing or decreasing simultaneously. Thus, we
prove that f and g have the same type.

(ii). In view of (i), it is reasonable to assume that

Af := {ci, f(ci), f2(ci), i = 0, 1, . . . , r+ 1}, F(f) := {s1, s2, . . . , sk},

Ag := {di,g(di),g2(di), i = 0, 1, . . . , r+ 1}, F(g) := {s̄1, s̄2, . . . , s̄k}.

Using (2.1), we have
ϕ ◦ fn(ci) = gn ◦ϕ(ci) = gn(di), i = 0, 1, . . . , r+ 1, (2.3)

and
ϕ ◦ fn(sj) = gn ◦ϕ(sj) = gn(s̄j), j = 1, 2, . . . , k. (2.4)

Since ϕ is an orientation-preserving homeomorphism, (2.3) and (2.4) lead to

If(µf,i) = Ig(µg,i)

for all µf,i ∈M (f) and µg,i ∈M (g). This completes the proof.
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In this paper we consider the following r-modal maps

Λr(I) := {f ∈ PMr(I, I) : f(c0)=c0, f(c1)>c1, f(c2)<c2, f([c1, cr+1])⊆(c1, c2)},

where [c1, c2] belongs to the basin of attraction of the fixed point s2 ∈ (c1, c2).
Suppose that f ∈ Λr(I). According to Λr(I), we say that {f−n(c1)}n∈N is an infinite sequence. Thus,

fn+1 has a new fort f−n(c1) than that of fn at least. Therefore, we get H(f) =∞ for each f ∈ Λr(I).

3. Main result

Theorem 3.1. Let f ∈ Λr(I) and g ∈ Λr(J). Then f is topologically conjugate to g via an orientation-preserving
homeomorphism ϕ : I→ J if and only if If(µf,i) = Ig(µg,i) for all µf,i ∈M (f),µg,i ∈M (g).

Proof. The necessity directly follows from (ii) of Lemma 2.4.

Sufficiency. It suffices to construct an orientation-preserving homeomorphism ϕ : I → J satisfying (1.1).
In order to investigate the construction method of ϕ and avoid complicated statement, we only consider
f ∈ Λ2(I) and g ∈ Λ2(J) in detail. Our method can be generalized to the cases 2 < r < ∞ without
essential difficulty. The construction of ϕ goes by three steps: we first define an orientation-preserving
homeomorphism ϕ2 : [c1, c2] → [d1,d2], that is a critical step for ϕ, then give ϕ1 : [c0, c1] → [d0,d1] and
ϕ3 : [c2, c3] → [d2,d3] by extension from ϕ2, respectively. Finally, we link ϕi(i = 1, 2, 3) as orientation-
preserving homeomorphism ϕ : I→ J and show that ϕ is a topological conjugacy from f to g. Let

Af := {ci, f(ci), f2(ci), i = 0, 1, 2, 3}, F(f) := {sf},

Ag := {di,g(di),g2(di), i = 0, 1, 2, 3}, F(g) := {sg}.

Then, there are four cases of f(c3) that are possible, in the following we construct ϕ for them, respectively:

(i) f(c3) = f(c1), (ii) f(c3) = sf,
(iii) f(c3) ∈ (f(c2), sf), (iv) f(c3) ∈ (sf, f(c1)).

Case (i). Note that

c1 < f(c2) < f
2(c1) < sf < f(c1) < c2, d1 < g(d2) < g

2(d1) < sg < g(d1) < d2.

Let ϕ2,2,1 : [c1, f2(c1)]→ [d1,g2(d1)] be an arbitrary orientation-preserving homeomorphism satisfying

ϕ2,2,1(f(c2)) = g(d2),

then we define orientation-preserving homeomorphism ϕ2 : [c1, c2]→ [d1,d2] as follows

ϕ2(t) :=



sg, t = sf,
ϕ2,2,1(t), c1 6 t 6 f2(c1),
ϕ2,2,2i(t) := g2 ◦ϕ2,2,2i−1 ◦ f−1

2 (t), f2i+1(c1) 6 t 6 f2i−1(c1),
ϕ2,2,2i+1(t) := g2 ◦ϕ2,2,2i ◦ f−1

2 (t), f2i(c1) 6 t 6 f2i+2(c1),
ϕ2,3(t) := g

−1
2 ◦ϕ2,2,1 ◦ f2(t), f(c1) 6 t 6 c2,

(3.1)

where i = 1, 2, . . .. Next, define ϕ1 : [c0, c1]→ [d0,d1] such as

ϕ1(t) :=


d0, t = c0,
ϕ1,1(t) := g

−1
1 ◦ϕ2 ◦ f1(t), f−1

1 (sf) 6 t 6 c1,
ϕ1,i+1(t) := g

−1
1 ◦ϕ1,i ◦ f1(t), f−i−1(sf) 6 t 6 f−i(sf)

(3.2)
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for i = 1, 2, . . . and ϕ3 : [c2, c3]→ [d2,d3] as

ϕ3(t) := g
−1
3 ◦ϕ2 ◦ f3(t). (3.3)

Joining (3.1) and (3.2) with (3.3) we get ϕ : I → J. We say that ϕ is orientation-preserving from its
definition. It remains to prove that ϕ is a topological conjugacy from f to g. For subinterval [c1, c2], from
(3.1) we have

ϕ ◦ f(sf) = g ◦ϕ(sf), (3.4)
ϕ ◦ f(t) = ϕ2,2,2i+1 ◦ f2(t)

= g2 ◦ϕ2,2,2i ◦ f−1
2 ◦ f2(t)

= g2 ◦ϕ2,2,2i(t) = g ◦ϕ(t), ∀t ∈ [f2i+1(c1), f2i−1(c1)],
ϕ ◦ f(t) = ϕ2,2,2i+2 ◦ f2(t)

= g2 ◦ϕ2,2,2i+1 ◦ f−1
2 ◦ f2(t)

= g2 ◦ϕ2,2,2i+1(t) = g ◦ϕ(t), ∀t ∈ [f2i−2(c1), f2i(c1)], i = 1, 2, 3 . . . ,

and

g ◦ϕ(t) = g2 ◦ϕ2,3(t)

= g2 ◦ g−1
2 ◦ϕ2,2,1 ◦ f2(t) = ϕ2,2,1 ◦ f2(t) = ϕ ◦ f(t), ∀t ∈ [f(c1), c2)],

(3.5)

which imply that
ϕ ◦ f(t) = g ◦ϕ(t), ∀t ∈ [c1, c2]. (3.6)

For [c0, c1], in view of (3.2) we have

g ◦ϕ(c0) = ϕ ◦ f(c0),

and

g ◦ϕ(t) = g1 ◦ϕ1,1(t) = g1 ◦ g−1
1 ◦ϕ2 ◦ f1(t) = ϕ2 ◦ f1(t) = ϕ ◦ f(t), ∀t ∈ [f−1

1 (sf), c1],
g ◦ϕ(t) = g1 ◦ϕ1,i+1(t)

= g1 ◦ g−1
1 ◦ϕ1,i ◦ f1(t) = ϕ1,i ◦ f1(t) = ϕ ◦ f(t), ∀t ∈ [f−i−1

1 (sf), f−i1 (sf)], i =1, 2, . . . ,

implying
ϕ ◦ f(t) = g ◦ϕ(t), ∀t ∈ [c0, c1]. (3.7)

For subinterval [c2, c3], we have

g ◦ϕ(t) = g3 ◦ϕ3(t) = g3 ◦ g−1
3 ◦ϕ2 ◦ f3(t) = ϕ2 ◦ f3(t) = ϕ ◦ f(t), ∀t ∈ [c2, c3]. (3.8)

Thus, we show that ϕ is a topological conjugacy from f to g by (3.6), (3.7), and (3.8).

Case (ii). The construction of ϕ is same as that of Case (i).

Case (iii). Without loss of generality, assume that f2(c1) < f(c3) < sf (the remainder cases are discussed
similarly). That is

c1 < f(c2) < f
2(c1) < f(c3) < sf < f(c1) < c2, d1 < g(d2) < g

2(d1) < g(d3) < sg < g(d1) < d2.

Denote ϕ2,2,1 : [c1, f(c3)]→ [d1,g(d3)] an arbitrary orientation-preserving homeomorphism satisfying{
ϕ2,2,1(f(c2)) = g(d2),

ϕ2,2,1(f
2(c1)) = g

2(d1).
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On the basis of ϕ2,2,1, we define orientation-preserving homeomorphism ϕ2 : [c1, c2]→ [d1,d2] as

ϕ2(t) :=



sg, t = sf,
ϕ2,2,1(t), c1 6 t 6 f(c3),
ϕ2,2,2i(t) := g2 ◦ϕ2,2,2i−1 ◦ f−1

2 (t), f2i(c3) 6 t 6 f2i−1(c1),
ϕ2,2,2i+1(t) := g2 ◦ϕ2,2,2i ◦ f−1

2 (t), f2i(c1) 6 t 6 f2i+1(c3),
ϕ2,3(t) := g

−1
2 ◦ϕ2,2,1 ◦ f2(t), f(c1) 6 t 6 c2,

(3.9)

where i = 1, 2, . . .. Consequently, define homeomorphism ϕ1 : [c0, c1]→ [d0,d1] as (3.2) and ϕ3 : [c2, c3]→
[d2,d3] as (3.3).

Connecting (3.9) and (3.2) with (3.3) asϕ : I→ J, thenϕ is orientation-preserving from the construction
process. We only need to prove ϕ is a topological conjugacy from f to g. For subinterval [c1, c2], from (3.9)
we have

ϕ ◦ f(t) = ϕ2,2,2i+1 ◦ f2(t)

= g2 ◦ϕ2,2,2i ◦ f−1
2 ◦ f2(t) = g2 ◦ϕ2,2,2i(t) = g ◦ϕ(t), ∀t ∈ [f2i(c3), f2i−1(c1)],

ϕ ◦ f(t) = ϕ2,2,2i+2 ◦ f2(t)

= g2 ◦ϕ2,2,2i+1 ◦ f−1
2 ◦ f2(t)

= g2 ◦ϕ2,2,2i+1(t) = g ◦ϕ(t), ∀t ∈ [f2i−2(c1), f2i−1(c3)], i = 1, 2, 3 . . . ,

and (3.4), (3.5), which imply that

ϕ ◦ f(t) = g ◦ϕ(t), ∀t ∈ [c1, c2]. (3.10)

Thus, we prove that ϕ is an orientation-preserving topological conjugacy from f to g by (3.10), (3.7),
and (3.8).

Case (iv). Without loss of generality, assume that f2(c1) < f2(c3) < sf (the remainder cases can be dis-
cussed similarly). That is

c1 < f(c2) < f
2(c1) < f

2(c3) < sf < f(c3) < f(c1) < c2,

d1 < g(d2) < g
2(d1) < g

2(d3) < sg < g(d3) < g(d1) < d2.

Let ϕ2,2,1 : [c1, f2(c3)]→ [d1,g2(d3)] be an arbitrary orientation-preserving homeomorphism satisfying{
ϕ2,2,1(f(c2)) = g(d2),

ϕ2,2,1(f
2(c1)) = g

2(d1).

On the basis of ϕ2,2,1, we define orientation-preserving homeomorphism ϕ2 : [c1, c2]→ [d1,d2] as

ϕ2(t) :=



sg, t = sf,
ϕ2,2,1(t), c1 6 t 6 f2(c3),
ϕ2,2,2i(t) := g2 ◦ϕ2,2,2i−1 ◦ f−1

2 (t), f2i+1(c3) 6 t 6 f2i−1(c1),
ϕ2,2,2i+1(t) := g2 ◦ϕ2,2,2i ◦ f−1

2 (t), f2i(c1) 6 t 6 f2i+2(c3),
ϕ2,3(t) := g

−1
2 ◦ϕ2,2,1 ◦ f2(t), f(c1) 6 t 6 c2,

(3.11)

where i = 1, 2, . . .. Consequently, define ϕ1 : [c0, c1]→ [d0,d1] as (3.2) and ϕ3 : [c2, c3]→ [d2,d3] as (3.3).
Connecting (3.11) and (3.2) with (3.3) as orientation-preserving homeomorphism ϕ : I → J, we again

prove ϕ is a topological conjugacy from f to g. For subinterval [c1, c2], in view of (3.9) we have

ϕ ◦ f(t) = ϕ2,2,2 ◦ f2(t) = g2 ◦ϕ2,2,1 ◦ f−1
2 ◦ f2(t) = g2 ◦ϕ2,2,1(t) = g ◦ϕ(t), ∀t ∈ [c1, f2(c3)],
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ϕ ◦ f(t) = ϕ2,2,2i+1 ◦ f2(t)

= g2 ◦ϕ2,2,2i ◦ f−1
2 ◦ f2(t) = g2 ◦ϕ2,2,2i(t) = g ◦ϕ(t), ∀t ∈ [f2i+1(c3), f2i−1(c1)],

ϕ ◦ f(t) = ϕ2,2,2i+2 ◦ f2(t)

= g2 ◦ϕ2,2,2i+1 ◦ f−1
2 ◦ f2(t)

= g2 ◦ϕ2,2,2i+1(t) = g ◦ϕ(t), ∀t ∈ [f2i(c1), f2i+2(c3)], i = 1, 2, 3 . . . ,

and (3.4), (3.5), which imply that

ϕ ◦ f(t) = g ◦ϕ(t), ∀t ∈ [c1, c2]. (3.12)

Thus, we show that ϕ is an orientation-preserving topological conjugacy from f to g by (3.12), (3.7),
and (3.8).

In the sequel we present some examples to illustrate our result.

Example 3.2. Consider f1 ∈ Λ2([0, 1]) and g1 ∈ Λ2([0, 1]) defined by

f1(t) =


7
2t, t ∈ [0, 1

4),
−1

5t+
37
40 , t ∈ [ 1

4 , 7
8),

t− 1
8 , t ∈ [ 7

8 , 1],
and g1(t) =


3
2t, t ∈ [0, 1

2),
−1

3t+
11
12 , t ∈ [ 1

2 , 7
8),

t− 1
4 , t ∈ [ 7

8 , 1],

respectively. By simple calculation, we know that

F(f1) = {
37
72

}, F(g1) = {
11
16

}.

Since

If1(0) = Ig1(0) = {0, 0, 0, 0, 0, 0, . . .},

If1(
1
4
) = Ig1(

1
2
) = {4, 2, 3̃, 2̃, 3̃, 2̃, . . .},

If1(
37
72

) = Ig1(
11
16

) = {3, 3, 3, 3, 3, 3, . . .},

If1(
3
4
) = Ig1(

3
4
) = {2, 3̃, 2̃, 3̃, 2̃, 3̃, 2̃, . . .},

If1(1) = Ig1(1) = {4, 2, 3̃, 2̃, 3̃, 2̃, . . .},

we have f1 ∼ g1 from Theorem 3.1.

Example 3.3. Consider f2 ∈ Λ2([0, 1]) and g2 ∈ Λ2([0, 1]) defined by

f2(t) =


3t, t ∈ [0, 1

4),
−1

2t+
7
8 , t ∈ [ 1

4 , 3
4),

1
3t+

1
4 , t ∈ [ 3

4 , 1],
and g2(t) =


5
3t, t ∈ [0, 3

8),
−1

2t+
13
16 , t ∈ [ 3

8 , 5
8),

1
3t+

7
24 , t ∈ [ 5

8 , 1],

respectively. Note that

F(f2) = {
37
72

}, F(g2) = {
11
16

}

and

If2(0) = Ig2(0) = {0, 0, 0, 0, 0, 0, . . .},
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If2(
1
4
) = Ig2(

3
8
) = {4, 2, 3̃, 2̃, 3̃, 2̃, . . .},

If2(
7

12
) = Ig2(

13
24

) = {3, 3, 3, 3, 3, 3, . . .},

If2(
3
4
) = Ig2(

5
8
) = {2, 3̃, 2̃, 3̃, 2̃, 3̃, 2̃, . . .},

If2(1) = Ig2(1) = {3, 3, 3, 3, 3, 3, . . .},

we get f2 ∼ g2 by Theorem 3.1.
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