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Abstract

We establish the criteria for the existence of infinitely many solutions for a class of one-dimensional p-Laplacian equations
with Sturm-Liouville type nonhomogeneous boundary conditions. The nonlinear term has two parameters A, pand is dependent
on x and the derivative u’(x) of the solution to be determined. The main method used for the study is Ricceri’s Variational
Principle. (©2017 All rights reserved.
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1. Introduction

In this paper, we are concerned with the existence of infinitely many solutions to the following Sturm-
Liouville type nonhomogeneous boundary value problem

—(Ppp(u) = (Af(X/u(X)) + ug(x, u(x))

u'(x) g (p—1)|T|p72 / (L.1)
), m(mﬁ'f)h(x,u(x)), x € (ab)

oau(a)—pu’(a) =A, vyu(b)+ou'(b) =B,

where A > 0 and p > 0 are parameters, p > 1, ¢ (t) = [tP~%t, «,v,B,0 > 0, and A,B are arbitrary
constants. The function h : [a, b] x R — RR satisfies the following conditions:

(i) 0 <m:=inf(, ¢)c[qb]xRr (X, t) <M := sup(xlt)e[a,b}xﬁ{h(x, t);

(i) the function t — h(x,t) is continuous for all x € [a, b] and the function x — h(x,t) is in C!([a, b))
forallt € R.
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It is easy to see the term [ ) 2 (w

ox h(x,T)
dent of x. We also assume that the functions f, g : [a,b] x R — R are Ll-Carathéodary functions. Here, a
function f : [a,b] x R — R is said to be an L!-Carathéodary function, provided that

) dt in equation (1.1) will vanish provided h being indepen-

(a) the function x — f(x, t) is measurable for every t € R;
(b) the function t — f(x, t) is continuous for almost every x € [a, b];
(c) for every p > 0 there exists a function 1, € L!([a, b]) such that

sup [f(x, t)] < lp(x)
[tI<p

for almost every x € [a, b].

According to the critical point theory, the study of the existence of solutions for the problem (1.1) can be
transformed into the study of the existence of critical points for some functional ® — AY associated with
the problem (1.1).

In [24], Ricceri established a famous variational principle for the existence of at least three critical
points of the functional ® —AY when the parameter A lies in some interval A C R. In [23], Ricceri
established a similar variational principle associated with infinitely many critical points. In the last decade
or so, as a useful method to obtain the existence or multiplicity results, Ricceri’s Variational Principle has
been extended and used widely to study many problems including: Kirchhoff-type problems ([1, 12, 15,
19, 20, 26]), problems with impulsive effect ([6, 11, 21, 29]), fractional differential equations ([27, 32]),
p-Laplacian or p(x)-Laplacian equations ([2-4, 13, 14, 16]), Yamabe equations ([9]), superlinear discrete
problems ([8]), non-differential functionals ([5, 7, 22]), and many other problems (see [17, 25, 30] and the
references therein).

In [17], the authors obtained the existence of at least three classical solutions to the quasilinear elliptic
system

—(pi — DIuf(x)Pr2uf/(x) = [AFu (x, u1, ..., un) + BGu, (x, U, ..., un) [ hi(x,u/(x)), x € (a,b),
ui(a) =uy(b) =0, fori=1,2,...,n,

wherep; >1(1=1,...,n), A >0and p > 0 are parameters, h; : [a,b] x R — R is a bounded continuous
function such that m; := inf(, {)c(qpjxr Mi(x,t) > 0, F : [a,b] x R™ — R is a function such that the
mapping (t1,ta,...,tn) = F(x, t1,t2,...,tn) is Clin R™ for all x € [a, b], Ft, A =1,...,n) is continuous in
[a,b] x R™, and F(x,0,...,0) =0 for all x € [a,b], G : [a,b] x R™ — R is a function such that the mapping
(t1,t2,...,tn) = G(x,t1,t2,...,tn) is Cl in R™ for all x € [a,b] and G, i =1,...,n) is continuous in
[a, b] x R™. But they had a miscalculation in the proof of Lemma 2.2 in [17], since h; was also dependent
on x.

In [28], the authors obtained the existence of at least three generalized solutions for the following
second-order Sturm-Liouville boundary value problem:

(pp(u')) +Af(t, wh(u') =0, x€(ab),
ou(a)—pu’(a) =0, yu(b)+ou'(b)=0,

where A > 0 is a parameter,p > 1, «,y > 0,3,0>0,f:[a,b] xR — Risan Ll-Carathéodary function, and
h: R — R is a bounded continuous function such that inficg h(t) > 0. In [18], the authors obtained the
existence of infinitely many classical solutions to the following pi-Laplacian systems with Sturm-Liouville
boundary conditions

- ((bpl(u{)), = )\FU—i(X/ull' . .,un)hi(u{(X)), X € (a/b)r
aiui(a) = Biui(a) =0, vyiui(b) +oiui(b) =0,

where A > 0 is a parameter, i, vi >0, Bi,00 >0(1=1,2,...,n).
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The purpose of the present paper is to extend the boundary value problems in [17, 18, 28] to a more
general case. In addition, to overcome the difficulty caused by the dependence of h(x, t) on x, we add an

! _ -2
extra term (ie. [; (x) % (%

can still be used here and the classical and weak solutions to problem (1.1) coincide, see (2.2) and Lemma
24.

The present paper is built up as follows. In Section 2, we give some notations, the definitions of
functionals, classical solutions, weak solutions, and the relationship between them. We also prove some
estimates and regularity assumptions for the functionals ® and ¥. We recall the variational principle at
the end of this section. In Section 3, we give the main results of the existence of infinitely many solutions
in Theorem 3.1 and Theorem 3.5, with some corollaries. In Section 4, we give an example to illustrate the
application of our results.

) dt ) in the nonlinearity, then the form of the functional @ in [17]

2. Preliminaries and lemmas

Let X be the Sobolev space WP ([a, b]) endowed with the norm

b g
Jul| := (J u(t)P +|u’(t)|Pdt> , YueX

a

It is easy to see that the space (X, || - ||) is a real reflexive Banach space and max{|[u||», |[w'||r} < [Ju|| for
each u € X. By the Sobolev embedding theorem (see [10]), X is compactly embedded into C([a, b]). We
also denote || - || as the usual norm of L*°([a, b]).

Next, define the functions

S(p—1BP2

Jx(s) =J(x,8) = JO (x,0) dd, Vxela,b]l,seR

and

H.(s) = H(x,s) := JS J(x,T)dt, Vx€la,b],s€R.
0

For any fixed x € [a, b], the fact that H(s) = J/(s) = % > 0 implies that Hy is a strictly convex

C? function and Jy is a strictly increasing C! function. Simple calculation shows that

|s|P—1 s~ sP

< < —_—
Vi <J(x,s)] < m oM

P
< H(x, s) < ﬂ, Vx € [a,b], s € R. (2.1)
pm

For each u € X, define the functionals ® : X - R and ¥ : X — R by

b
o) = | Hixu()dx+ EH (a, *i(a) - 1A) +%H (b,_%(b) ; 13) 22)
a x B B Y o (&
and . .
Y(u) = J F(x, u(x))dx + % J G(x, u(x))dx, (2.3)

where F(x, t) fo x,s)ds, G(x,t) fo g(x, s)ds. In view of (2.1), simple calculation shows that

R ~A b)—=3B
Mp (H IIE» Bp gp1 W) = AL+ o ulb) Y (2.4)
<O(u) < mp (H I Bp apot (M@ - AL+ op—1 (b) - ;B ) .
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Lemma 2.1. Assume that u € X and there exists v > 0 such that ®(u) < v, then

e < (Mpr)? ((i) +(b- a)é> +oIAL

where q is the conjugate of p, i.e., % + % =1
Proof. Since u € X, by Theorem 8.2 of [10] and Holder’s inequality, we have

X b

lu(x)| = ‘u(a) —i—J u’(s)ds

a

o=

a
Since ®(u) < 1, from (2.4), we can get

1 oP 1
Mp (Hu/HEp + =t

u(a) — %A

so |[u[i» < (Mpr)? and

Hence,

lul|o = max |u(x)| < (Mpr)% <<B> ‘ +(b— a)}:) + 1|A|.
x€[a,b] x x

The proof is complete.

< |u(a)|+j W ()ldx < fu(a) + u/flir (b — a)¥.

(2.5)

O

Definition 2.2. We say that u is a classical solution to (1.1) if u € Cl([a,b]), (/[P2u’ € ACY([a,b]),

aar(a) — pu’(a) = [2 E(x)u(x)dx, yu(b) + ou’(b) = [ n(x)u(x)dx, and

0 ox h(x, T)

u’(x) o -2
(pw () = (Af(x,u(x)) Sughout)+ [ 2 <(p”'T'p) oh) R, (%))

for almost every x € [a, b].

Definition 2.3. We say that u is a weak solution to (1.1) if u € X and

b
L](x,u/(x))v’(x)dx +] (a, %u(a) — ;A) v(a)—] (b,—Zu(b) + iB) v(b)

b b
= J f(x, u(x))v(x)dx + uJ g(x, u(x))v(x)dx

a a

for any v € X.

The proofs of the next two lemmas are similar to the argument in [28] with minor changes. For the

readers’ convenience, we present the proofs in detail.

Lemma 2.4. The classical and weak solutions to (1.1) coincide.
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Proof. Assume that u is a classical solution to (1.1), it is obvious that uw € WP ([a, b]).
Since inf(y ()c[q,b]xR (X, 1) > 0, we have

/ / u'(x) — -
O N (= PRV AR

h(x, u/(x)) 0 0x h(x, T)
d u’(x) (p—1)[t[P—2 (2.6)
=4 L WdT — AMf(x,u(x)) — png(x, u(x)).

Multiplying (2.6) by any v € W'P([a, b]), and then integrating it over [a, b], we have

b u’(x) . — b b
0=-— L (i( (L Wd’t) v(x)dx — ?\L f(x, u(x))v(x)dx — uL g(x, u(x))v(x)dx

b
= J Jix, u/(x))v'(x)dx + ] (a,u’(a)) v(a) =] (b,u'(b)) v(b)

b b
— AJ f(x, u(x))v(x)dx — uJ g(x, u(x))v(x)dx,

a

_ Jj T, w (x))v' (x)dx + ] (a, %u(a) — [15A> v(a)—] (b,—:Yy (b) + iB) v(b)

b b
A ubvidx - | gl utvindx
a a
which means that u is a weak solution to (1.1). On the other hand, if u is a weak solution to (1.1), by
integration by parts on [a, b], we have

b
0= L J(x, w/ () (x)dx + ] (a, %u(a) — ;A> v(a)—] (b —Eu(b) + iB) v(b)

b b
— ?\J f(x,u(x))v(x)dx — uj g(x,u(x))v(x)dx,

¢ b
= J(b,u’(b))v(b) —J(a,u'(a))v(a) —J 4 (T ' (x))) v(x)dx

o dx

+] (a, %u(a) - éA) v(a)—] (b,—Zu(b) + iB) v(b)
b

b
— AJ f(x,u(x))v(x)dx — uj g(x, u(x))v(x)dx,

a

ie.,

_ [ ep () W o <(P—1)|T|p2>
0= Ja { h(x, 1/ (x)) + M (x,u(x)) + pngx, u(x)) +J0 < (x,T) dt p v(x)dx .

7)
X [](b,u’(b)) -] <b,—Zu(b) + iB)} v(b) + [—](a,u’(a)) +] <a, %u(a) — éA)] v(a)

holds for any v € W%4([a, b]), and hence holds for any v € C{([a,b]). By the fundamental lemma of
variational, u satisfies equation (2.6) for a.e. x € [a, b], and therefore (2.7) becomes

0= 1o,/ -7 (b, ~uto)+ 18) [ vio) + [ 1@ (@) +7 (@ Futa) - 54) i)
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for any v € WP ([q,b]). We claim that u satisfies the boundary conditions in (1.1). Otherwise, without
loss of generality, assume that
yu(b) + ou’(b) > B.

Since 0 > 0 and Jy(s) = J(b, s) is strictly increasing, we get that

J(b, u/(b)) — 1( —Gu(b)+(1TB> -0,

Let v(x) = x — a, then v € C*®([a,b]) € W'P([a,b]) and

:[](b,u( ) — ]( p (b)+1B>}(b—a)+0>0,

which is a contradiction. Therefore, u is a classical solution to (1.1). O
Lemma 2.5. Assume that the functionals ¥, ® : X — R are defined by (2.2) and (2.3), respectively. Then

(a) O is sequentially weakly lower semicontinuous, continuous, | ﬁim ®(u) = +oo and its Giteaux derivative
ujj—4o0

at the point w € X is the functional ®'(u) given by

, b , , x 1 1
D' (u)(v) :J J(x, u'(x))v'(x)dx +] (a, Eu(a) — BA> v(ia)—] (b —Gu(b) + GB) v(b)

for every v € X;

(b) ¥ is sequentially weakly lower continuous and its Giteaux derivative at the point w € X is the functional

Y'(u) given by

b b

f(x, u(x))v(x)dx + %L J g(x, u(x))v(x)dx

a

W (u)(v) = J

a

for every v € X.

Proof. Assume that {u,,} C Xand un, — win WP ([a,b]) as n — oo, then max{ |[wn — /|1, [Juf —u'||1r } <
[un —u| — 0 as n — oco. Since the Sobolev space W'P([q, b]) is compactly embedded into C([a, b]), we
have un(a) — u(a), un(b) — u(b) asn — co. So

b
D (un) — D(w) < J H(x, wl (x)) — Hx, u/(x))] dx

§) o 1 o4 1
+ « H (a, Eun(a) — BA) —H <a, Bu(a) — BA> ‘
+2|H <b,—yun(b) + 1B> —H (b,—yu(b) + 113)’
Y o o o) o)
=1L +L+I.

By the mean value theorem, there exists a function 6(x) such that 0 < 8(x) < 1 and

b b
L = J [H(x, up, (x)) — H(x, u’(x))| dx = J 1T (x,w/(x) 4+ 0(x) (ur (x) —u'(x))) (up(x) —u'(x))]dx,

a

then in view of (2.1) we have

1 (° / p—1y ’
I1<mJ () + 000) (wh () — /()P () — /()] dx
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zp—l b
< mJ (/)P +180) P~ gy (x) =/ (X)P7T) Juy, (x) =/ (x)] dx

op—1 b
< mJ (R ()P, (x) —u/ (%) + [u (x) —u/ (x)[P) dx

2v—1 / % / / / np
e Ty PR e A

—0 asn — oco.

N

By the continuity of H(x,s) and un(a) — u(a), un(b) — u(b), |[un —ullrr — 0 as n — oo, we have
I, I3 — 0 as n — oo. Thus we have shown that @ is continuous.

Since Hy(s) is a strictly convex function for any x € [a,b], it is easy to verify that @ is a strictly
convex functional, so from Proposition 25.20 of [31], we obtain that ® is a sequentially weakly lower
semicontinuous functional.

To prove the coercivity of @, we assume that |[u|| — 400 and consider the two cases: (i) ||u/||Lr — +o0,
(ii) |Ju|[Lr — 400 while |[u/|Lr A +o0.

(i) By the estimate (2.4), we obtain that ®(u) > N%pHu’H& — 400 as |[u|| = +oo.

(ii) Since W'P([a,b]) is continuously embedded into C([a,b]), we have u € L*([a,b]) and |ju/r <

(b— a)% |l , hence ||ufjoo — +00 as |[u|/Lr — oo. From the proof of Lemma 2.1, we can infer that
1
w(a)l = [ufleo — W[l (b —a)d = 400

as |[uljoo = 400, [[u'||Lr & +oo. In view of the estimate (2.4), we have

1 ot
O(u) > W gr—1

P
— +00,

u(a) — %{A

as [ufleo = 400, [[u'f[Lr # oo

In conclusion, @ is coercive.
By the definition of the Gateaux derivative, it is easy to verify that

b
O/ (u)(v) = J T(x, 1 (x))v' (x)dx + ] (a, %u(a) - éA) v(a)—J <b, —%u(b) + iB) v(b)
for every v € X. The proof of part (a) is complete.
Part (b) follows from standard arguments, and thus we omit the details. O

Remark 2.6. Following from Definition 2.3, Lemma 2.4, and Lemma 2.6, we get that u € X is a critical point
of I := ® —AVY if and only if u is a classical solution to BVP (1.1) for some A >0, pu > 0.

Now we recall Ricceri’s Variational Principle.
Lemma 2.7 ([23]). Let X be a real reflexive Banach space and let ¥, ® : X — R be two Gateaux differentiable

functionals such that ¥ is sequentially weakly lower semicontinuous, strongly continuous and coercive, and ¥ is
sequentially weakly continuous. For every v > infx @, let

SUPep1(—oor) (V) —¥(1)

d)(T) = uE@EﬂEoo,r) T— (D(u)
and
= liminf , 6:= liminf .
¢:=liminf (r) fiminf | ¢(r)
Then

(a) for every v > infx @ and every A € (O, ﬁ), the restriction of the functional Iy := ® —AY to ®~!(—c0,)
admits a global minimum, which is a critical point (local minima) of I\ in X;
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(b) if ¢ < +o0, then for each A € (0, %) the following alternative holds: either

(b1) Ix possesses a global minimum, or

(bp) there is a sequence {un} of critical points (local minima) of I such that limn_, o ©(urn) = oo;
(c) if & < +oo, then for each A € (0, 1) the following alternative holds: either

(c1) there is a global minimum of ® which is a local minimum of I, or

(c2) there is a sequence {un } of pairwise distinct critical points (local minima) of I that converges weakly to
a global minimum of @.

3. Main result

For any v > 0, we define

Q(v) = {te]R < v ((B>q +(ba)(14> +1|A}.
o o

Theorem 3.1. Assume that

(H1)
b
su v Flx, t)dx b ,t)d
Ao = 1ir_r)1+inf Ja ylitiQ]\(/[ )(D(O) <% lim sup = [o Flxt)dx " : (3.1)
P t—+o0 (%) |t—A|p + (%)P* |t—B|p
Then for every A € A, where
1 1
A= 5 , 5 , (32
mp lim sup o F(x, t)dx Mop liminf 1N SUPcq(v) F(x, t)dx
t—+o00 <%>p—1 it—AJP + (%)P*l It — B[P v—r+o00 vP — Mp®(0)

and for every L1-Carathéodary function g : [a,b] x R — R satisfying:

(H2)

b
0 < Boo := liminf Jasupieq(v) Glx tdx

v—+o00 vP — Mp®(0) < Foo;

(Hsz) .
limian G(x,t)dx > —oo,

t—=+00 Jo

there exists b4 \ = i (ﬁp — )\AOO) > 0, such that for any n € [0, 84 2), the boundary value problem (1.1) has

an unbounded sequence of classical solutions in X.

Proof. Let the functionals ® and ¥ be defined by (2.2) and (2.3), respectively. From Lemma 2.5 we obtain
that @ and V¥ satisfy all the regularity assumptions given in Lemma 2.7. In addition, by (2.3) and (2.4) it
is easy to verify that ®(0) = %H(a,—%/\) + %H(b, %B) > 0 and ¥Y(0) =0 for any A > 0 and pn > 0. For
any A € A, we have MLP — AN > 0.
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First, we claim that ¢ < +o0o0. To prove this, let {vy} be a sequence of positive numbers such that
vk — +oo as k — oo and

IZ SUPL ) (v,.) (F(x,t) + ¥G(x, 1)) dx fz SUPL ) (v) (F(x, t) + £G(x, 1)) dx

lim inf — liminf
P YP — Mp®(0) o VP — Mp®(0)
Let 1y = 1\%9 for each k € IN, then
.. .. .. . supved)*l(foo,rk)w(v) —ly(u)
g < —
C=lminfo(r) < Hpinfolnd =liminf il =S
SUPLCg 1oy YY)~ ¥(0)
<1 f 3.3
min - 000) .
.. supve(l)*l(—oo,rk) W(V)
<1 f
Pt e — @(0)

By Lemma 2.1, we have

O (=00, 1) ={ueX: du) <y}

o=

C {u eX: |ulleo < (Mprk)% <<§>q +(b—a)

1
)* oc|A|} (3.4)

= {u e X: max Ju(x) € Q <(Mprk)g’>}.

x€la,b]

Then in view of (3.1), (3.3), (3.4), (H1), and (H;), we obtain that

fz SUP ) (vy) (F(x, t) + £G(x, 1)) dx

¢ < Mp liminf

i VP — Mp®(0)
fz SUPicq(v) Fx, tidx fz SUP ¢ (v) G(x, t)dx (3.5)
o . oo .
s Mp (lvlri‘iﬂ‘f VP oMpd(0) A T T 0 (0)

— Mp (Aoo + %Bw> < +00.

Since p € [0,84,)), in view of (3.5), we have { < Mp (Aoo + %Boo) < %, ie, A< % Hence A C (0, %). For
any fixed A € A, by Lemma 2.7 (b), one of the following alternatives holds:

(b1) I) possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of I such that lim, o @ (un) = oco.

Now we show that the functional I, is unbounded from below, hence the alternative (b;) does not hold.
Let {dx} be a sequence of positive numbers such that dix — 400, as k = oo, and define a sequence of
functions {wy} such that wy (x) = dy for all x € [qa, b], then wy € X. From (2.3) and (2.4) we have

Li(wk) = ©(wy) — A¥(wy)
—1 _ b b
! ((“)p e AP+ (1) 1|dk—B|P>—A [P aax [ G aoa. O

Smp \ \ B o a

Since A € A, (3.2) implies that

- P Fx, t)dx
< mp lim sup

p—1 -1 ’
t—+o0 (%) |t_A‘P+(%)P [t —B|P)

> =
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Then there exist ¢ > 0 and N € N, such that

b
1 F(x, dy)d
X<£< p—1 Jo P diex 1
-~ ((“) die— AP + (1) - B|P>
for every k > N, hence 1 —Ae < 0 and
Ae— (“) ldy — AP + (X)p di — B | < ?\J F(x, dic)dx (3.7)
mp \ \B o a
for every k > N. In view of (Hz), we have
b
ulimian G(x, dx)dx > —oo. (3.8)
k—oo Jq

From (3.6)-(3.8) we obtain that
1 p—1 1 b
T (wi) < (1 —Ae)— <°‘) d — AP + (X)p dy — BJP _“J G(x, dy)dx — —o0
mp \ \ B o a

as k — oo, that is, the functional I, is unbounded from below. Therefore, by (by) in Lemma 2.7, there
exists a sequence {uy} of critical points of I such that klim ®d(uy) = +oo. In view of (2.4), we have
— 00

|luk|| = +oo. Finally, taking Remark 2.6 into account completes the proof of the theorem. O

Let h(x,t) = h(t) and A = B =0, then % (%) =0 and ®(0) = 0, and we have the following
special case of Theorem 3.1.

Corollary 3.2. Assume that

b
su F(x,t)dx b 1d
Aco = lim inf Jo ptteg) < %limsup ]{al (x, t)dx ,
v oo — B
v t—+4o00 ((%) +(%)‘p 1> P
where
1
q
Qi(v) = {telR <y <<§> +(b_a)é>}.
Then for each
1 1
he mp limsu [q Fixt)dx ' Mbp lim i f.rzsuptte(V)F(X/t)dX
PRSP ) e e Mplminf =

and for every L'-Carathéodary function g : la,b] x R — R satisfying (Hp) and (Hs), there exists g :=
i (ﬁp — }\AOO) > 0, such that for any u € [0, d4,7), the problem

—(pp(u')) = (Mfx,u(x)) + ngx, u(x))) h(u'(x)), xe (a,b),
ou(a)—pu’(a) =0, yu(b)+ou’'(b)=0

has an unbounded sequence of classical solutions in X.

Remark 3.3. Let g(x,t) = 0, by Corollary 3.2, we can obtain the scalar case of Theorem 3.1 of [18].

Moreover, assume that f(x,t) = f(t), g(x,t) = g(t), « = B =y =1 = 1, we have the following special
case of Corollary 3.2.
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Corollary 3.4. Assume that

max F(t F(t
llm lnf t€EQa(v) ( ) = 0’ hm sup Q = —|—oo’
V—++o00 vP t—s 00

where Qa(v) = {t eR: [t/ (1 +(b— a)%)}. Then for every A € (0,400), u € [0,400) and for every
continuous function g : R — R which satisfies

max G(t
lim inf teQuv G
V—+o00 vP

=0 and liminfG(t) > —oo,
t——+o0

the boundary value problem
—(dp(u))" = (Af(u(x)) + pg(ulx))) h(u'(x)), x € (a,b),
u(a)—u'(a) =0, u(b)+u'(b)=0,

has an unbounded sequence of classical solutions in X.

Since X is a real reflexive Banach space, ® is a strictly convex and coercive functional on X and
infx ® > 0, we know that ® has a unique global minimum 1y € X such that ®(uy) = infx @ > 0. Using
(c) in Lemma 2.7 and the argument as in the proof of Theorem 3.1, we can obtain the following result.
Theorem 3.5. Assume that
SUPeq(v) F(x, t)dx

vP — Mp®(0)

Ag = lim inf .
V—)((Mp infyx d))%>

2 Fx, w(x))dx
hu(a) — AP + (X)P " hu(b) — B

m..
< — limsup =
u—ug ”u/HEP + (%)

Then, for each A € A’, where

A = !

b
mp lim sup - o F(x, t)dx 1
o P+ (&) (@) — AP+ (¥)7 " (o) — B

(3.9)

1
SUPteq(v) F(x, t)dx

Mp lim inf P = Mp®(0)
v%((Mpinfxd))ﬁ>

and for every L1-Carathéodary function g : [a,b] x R — R satisfying:
(Hy) )
Ja SUP ¢ () G(x, t)dx

0<By:= liminf
0 imin VP — Mp®(0)

v—><(Mp infyx CD)%)

< +o00;

(H3)
b
liminfj G(x,u(x))dx > —ig(\f Q,

u—1ug a
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there exists 8 \ = Bio (ﬁp — )\Ao) > 0, such that for any p € (0,5 ), the boundary value problem (1.1) has a

sequence of classical solutions in X converging uniformly to uy.

Proof. Let the functionals ® and ¥ be defined by (2.2) and (2.3), respectively. From Lemma 2.5 we obtain
that ® and V¥ satisfy all the regularity assumptions given in Lemma 2.7. In addition, by (2.3) and (2.4) it is
easy to verify that ®(0) = %H(a,—%A) + %H(b, %B) > infx ® > 0 and ¥(0) =0 forany A > 0 and p > 0.
For any A € A/, we have ML —AAg > 0.

First, we claim that 8 < 4o00. To prove this, let {vy} be a sequence of positive numbers such that

1\ T
Vi = ((Mpinfx ®)? ) as k — oo and
P

fz SUPcq(v) (F(x, 1) + £G(x, 1)) dx
vP — Mp®(0)

fz SUP{eQ (vy) (F(x,t) + £G(x, 1)) dx
lim inf ‘; = lim inf
k—o0 Vi, —Mp®(0) ] 1\ *
'v—><(Mp1an (D)P>

Let r¢ = ,\\% for each k € IN, then 1 — (infx ®)" as k — oo. Using the similar method in the proof of
Theorem 3.1, we get

0= liminf ¢(r) <liminfd(ry)
r—(infx @)+ k—o00

SUPy 1 (—o0,my) Y(v)

s
S 000
b
Mo Timing e S Preqiv (FOu 1) + XG(x, 1) dx
b
=M lim inf Ja SUPteQ(v) (F(x,t) + §G(x, 1)) dx
o vP — Mp®(0)

1\ +
v—><(Mpian d))f>

< Mp (Ao + %BO) < +00.

On the other hand, since u € [0, 6’9,}\), we have

5! 1
o< Mp (Ao + ;Bo) <Mp (Ao + S;\'}\Bo> =5

hence A’ C (0, %). Then for any fixed A € A/, by Lemma 2.7 (c), one of the following alternatives holds:
(c1) there is a global minimum of ® which is a local minimum of I, or

(c2) thereis a sequence {un} of pairwise distinct critical points (local minima) of I, that converges weakly
to a global minimum of ®.

Now we show that ug is not a local minimum of the functional I, hence the alternative (c;) does not
hold.
Choose {uy} C X such that ux — up in X as k — oo, from (2.3) and (2.4) we have

p—1 —
[y (W) = @ (we) = A¥W(aw) < ﬂip (Hump + <g> i) = AP + ()7 huv) —B|P>

) (3.10)

b
— AJ F(x, ux(x))dx — HJ G(x, wi(x))dx.

a a
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Since A € A, (3.9) implies that

T2 Flx,ulx))dx

1
N <mp lim sup b
u—ug ”u/HEP + (%)

Then there exist ¢’ > 0 and N’ € N such that

(@) — AP + (X)P " ju(b) — B

T2 Fx, wie(x))dx

e (Hu'HEp #(3)7 ula) - AP + ()7 i) - B|P>

<e <

for every k > N/, hence 1 —Ae’ < 0 and

P it (Y i AP (Y ) B Jb
re W+ () @ —A +(G) u(®) =B | <A| Floudt)dx @11
for every k > N’. In view of (H3), (3.10), and (3.11), there exists k > N’ such that
TR S R 2 L G AL _v—Jb
D) < (=AW + () (@) = AP+ (3)7 hu(b) =B )~ | Glx o)

< I (up).

Hence ug is not a minimum of I,.

Therefore, by Lemma 2.7 (c2), there exists a sequence {un,} of pairwise distinct critical points of I, that
converges weakly to ug. Since X is compactly embedded into C([a, b]), uy, — up uniformly. Finally, taking
Remark 2.6 into account completes the proof of the theorem. O

4. Example
Leta=0,b=1,a=1p=2v=20=3h(xt)=1+x>+lsint, A =4, B=-5, then
1424

1= (i)’

and h: [0,1] x R — R satisfies the assumptions (a), (b), and (c) with m =inf(, 1)c011xr h(X, 1) = %, M=
SUP (y ¢)ef01)xR MX ) = 2. The boundary value problem (1.1) turns to be

Qv)={teR:tI< v+4dy,

u’(x) o -2
—(dp () = <7\f(x,u(x)) + ug(x, u(x)) +JO % ((127;(12 fiwp )2> dT)
x*+5sinT

X <1+x2+;sinu’(x)> , x€(0,1),

u(0) —2u’(0) =4, 2u(l)+3u’(1) =-5.

For the function f : [0,1] x R — R, we use the assumption in Example 3.1 of [18] directly, that is, we
assume that f(x,t) = (x? + 1)fy(t), where

b3/1—-(1—t)2+1, t € [0,bq],

(an —b3)/1—(an —1—1)2+1, t e U®_ lan —2, anl,
(B 1 —an)y/1—(bny1—1—1)241, te€ UL [bni1—2,bniil,
1, otherwise,

fo(t) =
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with by =2,by 1 =18, an, = b} forn € N. It is obvious that f is an Ll-Carathéodary function. According
to the argument of Example 3.1 of [18], we know that

F F
lim 0((21n) =0 and lim 0(12911) = 400,
n—oo aTl. n—oo n

where Fy(t) = f; fo(s)ds. Then

1 Ly
su v 142 +1)d
A = liminf Jo PreQvFootidx _ lim inf Fy +7ql\/+4 M =0
V—+00 vP v—r+00 1 \4a vP
“\1+q
and ) 1
F(x,t)d 24+ 1)d Folt

limsup Jo Flx, dx = Job” + 1)dx lim sup olt) = o0

oo ((%)P—13p+(§)1@*16p>tp ((%)P—13p+(§)P*16p> tstoo P

Hence the function f satisfies the assumption (H;) in Theorem 3.1. On the other hand, assume that
g(x,t) = (1+x2)(2 +sint), then

! 1
su v G(x,t)dx su v (1+2t—cost) (1+X2)dx
Vo vP V—+o00 VP

=0

and

1 1
lim ian G(x,t)dx = lim infj (1+x%)(1+2t—cost)dx = +oo.
t—+o00 Jo t—+o00 Jo

Hence g : [0,1] x R — R satisfies the assumptions (Hy) and (H3) in Theorem 3.1. According to Theorem
3.1, for every A € (0, +00) and every p € [0,+00), the boundary value problem (4.1) has an unbounded
sequence of classical solutions in C([0,1]).
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