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Abstract
We establish the criteria for the existence of infinitely many solutions for a class of one-dimensional p-Laplacian equations

with Sturm-Liouville type nonhomogeneous boundary conditions. The nonlinear term has two parameters λ, µ and is dependent
on x and the derivative u ′(x) of the solution to be determined. The main method used for the study is Ricceri’s Variational
Principle. c©2017 All rights reserved.
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1. Introduction

In this paper, we are concerned with the existence of infinitely many solutions to the following Sturm-
Liouville type nonhomogeneous boundary value problem

−(φp(u
′)) ′ =

(
λf(x,u(x)) + µg(x,u(x))

+

∫u ′(x)
0

∂

∂x

(
(p− 1)|τ|p−2

h(x, τ)

)
dτ

)
h(x,u ′(x)), x ∈ (a,b),

αu(a) −βu ′(a) = A, γu(b) + σu ′(b) = B,

(1.1)

where λ > 0 and µ > 0 are parameters, p > 1, φp(t) = |t|p−2t, α,γ,β,σ > 0, and A,B are arbitrary
constants. The function h : [a,b]×R→ R satisfies the following conditions:

(i) 0 < m := inf(x,t)∈[a,b]×R h(x, t) 6M := sup(x,t)∈[a,b]×R h(x, t);

(ii) the function t 7→ h(x, t) is continuous for all x ∈ [a,b] and the function x 7→ h(x, t) is in C1([a,b])
for all t ∈ R.
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It is easy to see the term
∫u ′(x)

0
∂
∂x

(
(p−1)|τ|p−2

h(x,τ)

)
dτ in equation (1.1) will vanish provided h being indepen-

dent of x. We also assume that the functions f,g : [a,b]×R → R are L1-Carathéodary functions. Here, a
function f : [a,b]×R→ R is said to be an L1-Carathéodary function, provided that

(a) the function x 7→ f(x, t) is measurable for every t ∈ R;

(b) the function t 7→ f(x, t) is continuous for almost every x ∈ [a,b];

(c) for every ρ > 0 there exists a function lρ ∈ L1([a,b]) such that

sup
|t|6ρ

|f(x, t)| 6 lρ(x)

for almost every x ∈ [a,b].

According to the critical point theory, the study of the existence of solutions for the problem (1.1) can be
transformed into the study of the existence of critical points for some functional Φ− λΨ associated with
the problem (1.1).

In [24], Ricceri established a famous variational principle for the existence of at least three critical
points of the functional Φ − λΨ when the parameter λ lies in some interval Λ ⊂ R. In [23], Ricceri
established a similar variational principle associated with infinitely many critical points. In the last decade
or so, as a useful method to obtain the existence or multiplicity results, Ricceri’s Variational Principle has
been extended and used widely to study many problems including: Kirchhoff-type problems ([1, 12, 15,
19, 20, 26]), problems with impulsive effect ([6, 11, 21, 29]), fractional differential equations ([27, 32]),
p-Laplacian or p(x)-Laplacian equations ([2–4, 13, 14, 16]), Yamabe equations ([9]), superlinear discrete
problems ([8]), non-differential functionals ([5, 7, 22]), and many other problems (see [17, 25, 30] and the
references therein).

In [17], the authors obtained the existence of at least three classical solutions to the quasilinear elliptic
system{

−(pi − 1)|u ′i(x)|
pi−2u ′′i (x) =

[
λFui(x,u1, . . . ,un) + µGui(x,u1, . . . ,un)

]
hi(x,u ′i(x)), x ∈ (a,b),

ui(a) = ui(b) = 0, for i = 1, 2, . . . ,n,

where pi > 1 (i = 1, . . . ,n), λ > 0 and µ > 0 are parameters, hi : [a,b]×R→ R is a bounded continuous
function such that mi := inf(x,t)∈[a,b]×R hi(x, t) > 0, F : [a,b] ×Rn → R is a function such that the
mapping (t1, t2, . . . , tn) 7→ F(x, t1, t2, . . . , tn) is C1 in Rn for all x ∈ [a,b], Fti (i = 1, . . . ,n) is continuous in
[a,b]×Rn, and F(x, 0, . . . , 0) = 0 for all x ∈ [a,b], G : [a,b]×Rn → R is a function such that the mapping
(t1, t2, . . . , tn) 7→ G(x, t1, t2, . . . , tn) is C1 in Rn for all x ∈ [a,b] and Gti (i = 1, . . . ,n) is continuous in
[a,b]×Rn. But they had a miscalculation in the proof of Lemma 2.2 in [17], since hi was also dependent
on x.

In [28], the authors obtained the existence of at least three generalized solutions for the following
second-order Sturm-Liouville boundary value problem:{

(φp(u
′)) ′ + λf(t,u)h(u ′) = 0, x ∈ (a,b),

αu(a) −βu ′(a) = 0, γu(b) + σu ′(b) = 0,

where λ > 0 is a parameter, p > 1, α,γ > 0, β,σ > 0, f : [a,b]×R→ R is an L1-Carathéodary function, and
h : R → R is a bounded continuous function such that inft∈R h(t) > 0. In [18], the authors obtained the
existence of infinitely many classical solutions to the following pi-Laplacian systems with Sturm-Liouville
boundary conditions {

− (φpi(u
′
i))
′ = λFui(x,u1, . . . ,un)hi(u ′i(x)), x ∈ (a,b),

αiui(a) −βiu
′
i(a) = 0, γiui(b) + σiu

′
i(b) = 0,

where λ > 0 is a parameter, αi,γi > 0, βi,σi > 0 (i = 1, 2, . . . ,n).
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The purpose of the present paper is to extend the boundary value problems in [17, 18, 28] to a more
general case. In addition, to overcome the difficulty caused by the dependence of h(x, t) on x, we add an
extra term (i.e.

∫u ′(x)
0

∂
∂x

(
(p−1)|τ|p−2

h(x,τ)

)
dτ ) in the nonlinearity, then the form of the functional Φ in [17]

can still be used here and the classical and weak solutions to problem (1.1) coincide, see (2.2) and Lemma
2.4.

The present paper is built up as follows. In Section 2, we give some notations, the definitions of
functionals, classical solutions, weak solutions, and the relationship between them. We also prove some
estimates and regularity assumptions for the functionals Φ and Ψ. We recall the variational principle at
the end of this section. In Section 3, we give the main results of the existence of infinitely many solutions
in Theorem 3.1 and Theorem 3.5, with some corollaries. In Section 4, we give an example to illustrate the
application of our results.

2. Preliminaries and lemmas

Let X be the Sobolev space W1,p([a,b]) endowed with the norm

‖u‖ :=

(∫b
a

|u(t)|p + |u ′(t)|pdt

) 1
p

, ∀u ∈ X.

It is easy to see that the space (X, ‖ · ‖) is a real reflexive Banach space and max{‖u‖Lp , ‖u ′‖Lp} 6 ‖u‖ for
each u ∈ X. By the Sobolev embedding theorem (see [10]), X is compactly embedded into C([a,b]). We
also denote ‖ · ‖∞ as the usual norm of L∞([a,b]).

Next, define the functions

Jx(s) = J(x, s) :=
∫s

0

(p− 1)|δ|p−2

h(x, δ)
dδ, ∀x ∈ [a,b], s ∈ R

and

Hx(s) = H(x, s) :=
∫s

0
J(x, τ)dτ, ∀x ∈ [a,b], s ∈ R.

For any fixed x ∈ [a,b], the fact that H ′′x (s) = J ′x(s) =
(p−1)|s|p−2

h(x,s) > 0 implies that Hx is a strictly convex
C2 function and Jx is a strictly increasing C1 function. Simple calculation shows that

|s|p−1

M
6 |J(x, s)| 6

|s|p−1

m
,

|s|p

pM
6 H(x, s) 6

|s|p

pm
, ∀x ∈ [a,b], s ∈ R. (2.1)

For each u ∈ X, define the functionals Φ : X→ R and Ψ : X→ R by

Φ(u) =

∫b
a

H(x,u ′(x))dx+
β

α
H

(
a,
α

β
u(a) −

1
β
A

)
+
σ

γ
H

(
b,−

γ

σ
u(b) +

1
σ
B

)
(2.2)

and

Ψ(u) =

∫b
a

F(x,u(x))dx+
µ

λ

∫b
a

G(x,u(x))dx, (2.3)

where F(x, t) :=
∫t

0 f(x, s)ds, G(x, t) :=
∫t

0 g(x, s)ds. In view of (2.1), simple calculation shows that

1
Mp

(
‖u ′‖pLp +

αp−1

βp−1

∣∣∣∣u(a) − 1
α
A

∣∣∣∣p + γp−1

σp−1

∣∣∣∣u(b) − 1
γ
B

∣∣∣∣p)
6 Φ(u) 6

1
mp

(
‖u ′‖pLp +

αp−1

βp−1

∣∣∣∣u(a) − 1
α
A

∣∣∣∣p + γp−1

σp−1

∣∣∣∣u(b) − 1
γ
B

∣∣∣∣p) .
(2.4)
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Lemma 2.1. Assume that u ∈ X and there exists r > 0 such that Φ(u) 6 r, then

‖u‖∞ 6 (Mpr)
1
p

((
β

α

) 1
q

+ (b− a)
1
q

)
+

1
α
|A|,

where q is the conjugate of p, i.e., 1
p + 1

q = 1.

Proof. Since u ∈ X, by Theorem 8.2 of [10] and Hölder’s inequality, we have

|u(x)| =

∣∣∣∣u(a) + ∫x
a

u ′(s)ds
∣∣∣∣ 6 |u(a)|+

∫b
a

|u ′(x)|dx 6 |u(a)|+ ‖u ′‖Lp(b− a)
1
q . (2.5)

Since Φ(u) 6 r, from (2.4), we can get

1
Mp

(
‖u ′‖pLp +

αp−1

βp−1

∣∣∣∣u(a) − 1
α
A

∣∣∣∣p + γp−1

σp−1

∣∣∣∣u(b) − 1
γ
B

∣∣∣∣p) 6 r,

so ‖u ′‖Lp 6 (Mpr)
1
p and

|u(a)| 6

(
β

α

) 1
q

(Mpr)
1
p +

1
α
|A| .

Then in view of (2.5), we have

|u(x)| 6 (Mpr)
1
p

((
β

α

) 1
q

+ (b− a)
1
q

)
+

1
α
|A|.

Hence,

‖u‖∞ = max
x∈[a,b]

|u(x)| 6 (Mpr)
1
p

((
β

α

) 1
q

+ (b− a)
1
q

)
+

1
α
|A|.

The proof is complete.

Definition 2.2. We say that u is a classical solution to (1.1) if u ∈ C1([a,b]), |u ′|p−2u ′ ∈ AC1([a,b]),
αu(a) −βu ′(a) =

∫b
a ξ(x)u(x)dx, γu(b) + σu ′(b) =

∫b
a η(x)u(x)dx, and

−(φp(u
′(x))) ′ =

(
λf(x,u(x)) + µg(x,u(x)) +

∫u ′(x)
0

∂

∂x

(
(p− 1)|τ|p−2

h(x, τ)

)
dτ

)
h(x,u ′(x))

for almost every x ∈ [a,b].

Definition 2.3. We say that u is a weak solution to (1.1) if u ∈ X and∫b
a

J(x,u ′(x))v ′(x)dx+ J
(
a,
α

β
u(a) −

1
β
A

)
v(a) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)
v(b)

= λ

∫b
a

f(x,u(x))v(x)dx+ µ
∫b
a

g(x,u(x))v(x)dx

for any v ∈ X.

The proofs of the next two lemmas are similar to the argument in [28] with minor changes. For the
readers’ convenience, we present the proofs in detail.

Lemma 2.4. The classical and weak solutions to (1.1) coincide.
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Proof. Assume that u is a classical solution to (1.1), it is obvious that u ∈W1,p([a,b]).
Since inf(x,t)∈[a,b]×R h(x, t) > 0, we have

0 = −
(φp(u

′(x))) ′

h(x,u ′(x))
−

∫u ′(x)
0

∂

∂x

(
(p− 1)|τ|p−2

h(x, τ)

)
dτ− λf(x,u(x)) − µg(x,u(x))

= −
d

dx

(∫u ′(x)
0

(p− 1)|τ|p−2

h(x, τ)
dτ

)
− λf(x,u(x)) − µg(x,u(x)).

(2.6)

Multiplying (2.6) by any v ∈W1,p([a,b]), and then integrating it over [a,b], we have

0 = −

∫b
a

d
dx

(∫u ′(x)
0

(p− 1)|τ|p−2

h(x, τ)
dτ

)
v(x)dx− λ

∫b
a

f(x,u(x))v(x)dx− µ
∫b
a

g(x,u(x))v(x)dx

=

∫b
a

J(x,u ′(x))v ′(x)dx+ J
(
a,u ′(a)

)
v(a) − J

(
b,u ′(b)

)
v(b)

− λ

∫b
a

f(x,u(x))v(x)dx− µ
∫b
a

g(x,u(x))v(x)dx,

=

∫b
a

J(x,u ′(x))v ′(x)dx+ J
(
a,
α

β
u(a) −

1
β
A

)
v(a) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)
v(b)

− λ

∫b
a

f(x,u(x))v(x)dx− µ
∫b
a

g(x,u(x))v(x)dx,

which means that u is a weak solution to (1.1). On the other hand, if u is a weak solution to (1.1), by
integration by parts on [a,b], we have

0 =

∫b
a

J(x,u ′(x))v ′(x)dx+ J
(
a,
α

β
u(a) −

1
β
A

)
v(a) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)
v(b)

− λ

∫b
a

f(x,u(x))v(x)dx− µ
∫b
a

g(x,u(x))v(x)dx,

= J(b,u ′(b))v(b) − J(a,u ′(a))v(a) −
∫b
a

d
dx
(
J(x,u ′(x))

)
v(x)dx

+ J

(
a,
α

β
u(a) −

1
β
A

)
v(a) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)
v(b)

− λ

∫b
a

f(x,u(x))v(x)dx− µ
∫b
a

g(x,u(x))v(x)dx,

i.e.,

0 = −

∫b
a

{
(φp(u

′(x))) ′

h(x,u ′(x))
+ λf(x,u(x)) + µg(x,u(x)) +

∫u ′(x)
0

∂

∂x

(
(p− 1)|τ|p−2

h(x, τ)

)
dτ

}
v(x)dx

×
[
J(b,u ′(b)) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)]
v(b) +

[
−J(a,u ′(a)) + J

(
a,
α

β
u(a) −

1
β
A

)]
v(a)

(2.7)

holds for any v ∈ W1,q([a,b]), and hence holds for any v ∈ C∞0 ([a,b]). By the fundamental lemma of
variational, u satisfies equation (2.6) for a.e. x ∈ [a,b], and therefore (2.7) becomes

0 =

[
J(b,u ′(b)) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)]
v(b) +

[
−J(a,u ′(a)) + J

(
a,
α

β
u(a) −

1
β
A

)]
v(a)



F. Sun, L. Liu, Y. Wu, J. Nonlinear Sci. Appl., 10 (2017), 6020–6034 6025

for any v ∈ W1,p([a,b]). We claim that u satisfies the boundary conditions in (1.1). Otherwise, without
loss of generality, assume that

γu(b) + σu ′(b) > B.

Since σ > 0 and Jb(s) = J(b, s) is strictly increasing, we get that

J(b,u ′(b)) − J
(
b,−

γ

σ
u(b) +

1
σ
B

)
> 0.

Let v(x) = x− a, then v ∈ C∞([a,b]) ⊂W1,p([a,b]) and

0 =

[
J(b,u ′(b)) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)]
v(b) +

[
−J(a,u ′(a)) + J

(
a,
α

β
u(a) −

1
β
A

)]
v(a)

=

[
J(b,u ′(b)) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)]
(b− a) + 0 > 0,

which is a contradiction. Therefore, u is a classical solution to (1.1).

Lemma 2.5. Assume that the functionals Ψ,Φ : X→ R are defined by (2.2) and (2.3), respectively. Then

(a) Φ is sequentially weakly lower semicontinuous, continuous, lim
‖u‖→+∞Φ(u) = +∞ and its Gâteaux derivative

at the point u ∈ X is the functional Φ ′(u) given by

Φ ′(u)(v) =

∫b
a

J(x,u ′(x))v ′(x)dx+ J
(
a,
α

β
u(a) −

1
β
A

)
v(a) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)
v(b)

for every v ∈ X;

(b) Ψ is sequentially weakly lower continuous and its Gâteaux derivative at the point u ∈ X is the functional
Ψ ′(u) given by

Ψ ′(u)(v) =

∫b
a

f(x,u(x))v(x)dx+
µ

λ

∫b
a

g(x,u(x))v(x)dx

for every v ∈ X.

Proof. Assume that {un} ⊂ X and un → u inW1,p([a,b]) as n→∞, then max{ ‖un−u‖Lp , ‖u ′n−u ′‖Lp } 6
‖un − u‖ → 0 as n → ∞. Since the Sobolev space W1,p([a,b]) is compactly embedded into C([a,b]), we
have un(a)→ u(a), un(b)→ u(b) as n→∞. So

|Φ(un) −Φ(u)| 6
∫b
a

∣∣H(x,u ′n(x)) −H(x,u ′(x))
∣∣dx

+
β

α

∣∣∣∣H(a,
α

β
un(a) −

1
β
A

)
−H

(
a,
α

β
u(a) −

1
β
A

)∣∣∣∣
+
σ

γ

∣∣∣∣H(b,−
γ

σ
un(b) +

1
σ
B

)
−H

(
b,−

γ

σ
u(b) +

1
σ
B

)∣∣∣∣
=: I1 + I2 + I3.

By the mean value theorem, there exists a function θ(x) such that 0 < θ(x) < 1 and

I1 =

∫b
a

∣∣H(x,u ′n(x)) −H(x,u ′(x))
∣∣dx = ∫b

a

∣∣J (x,u ′(x) + θ(x)(u ′n(x) − u
′(x))

) (
u ′n(x) − u

′(x)
)∣∣dx,

then in view of (2.1) we have

I1 6
1
m

∫b
a

∣∣u ′(x) + θ(x)(u ′n(x) − u ′(x))∣∣p−1 ∣∣u ′n(x) − u ′(x)∣∣dx
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6
2p−1

m

∫b
a

(
|u ′(x)|p−1 + |θ(x)|p−1|u ′n(x) − u

′(x)|p−1) ∣∣u ′n(x) − u ′(x)∣∣dx
6

2p−1

m

∫b
a

(
|u ′(x)|p−1|u ′n(x) − u

′(x)|+ |u ′n(x) − u
′(x)|p

)
dx

6
2p−1

m

(
‖u ′‖

p
q

Lp‖u
′
n − u ′‖Lp + ‖u ′n − u ′‖pLp

)
→ 0 as n→∞.

By the continuity of H(x, s) and un(a) → u(a), un(b) → u(b), ‖un − u‖Lp → 0 as n → ∞, we have
I2, I3 → 0 as n→∞. Thus we have shown that Φ is continuous.

Since Hx(s) is a strictly convex function for any x ∈ [a,b], it is easy to verify that Φ is a strictly
convex functional, so from Proposition 25.20 of [31], we obtain that Φ is a sequentially weakly lower
semicontinuous functional.

To prove the coercivity of Φ, we assume that ‖u‖ → +∞ and consider the two cases: (i) ‖u ′‖Lp → +∞,
(ii) ‖u‖Lp → +∞ while ‖u ′‖Lp 6→ +∞.

(i) By the estimate (2.4), we obtain that Φ(u) > 1
Mp‖u

′‖pLp → +∞ as ‖u‖ → +∞.

(ii) Since W1,p([a,b]) is continuously embedded into C([a,b]), we have u ∈ L∞([a,b]) and ‖u‖Lp 6

(b− a)
1
p ‖u‖∞ , hence ‖u‖∞ → +∞ as ‖u‖Lp →∞. From the proof of Lemma 2.1, we can infer that

|u(a)| > ‖u‖∞ − ‖u ′‖Lp(b− a)
1
q → +∞

as ‖u‖∞ → +∞, ‖u ′‖Lp 6→ +∞. In view of the estimate (2.4), we have

Φ(u) >
1
Mp

αp−1

βp−1

∣∣∣∣u(a) − 1
α
A

∣∣∣∣p → +∞,

as ‖u‖∞ → +∞, ‖u ′‖Lp 6→∞.

In conclusion, Φ is coercive.
By the definition of the Gâteaux derivative, it is easy to verify that

Φ ′(u)(v) =

∫b
a

J(x,u ′(x))v ′(x)dx+ J
(
a,
α

β
u(a) −

1
β
A

)
v(a) − J

(
b,−

γ

σ
u(b) +

1
σ
B

)
v(b)

for every v ∈ X. The proof of part (a) is complete.
Part (b) follows from standard arguments, and thus we omit the details.

Remark 2.6. Following from Definition 2.3, Lemma 2.4, and Lemma 2.6, we get that u ∈ X is a critical point
of Iλ := Φ− λΨ if and only if u is a classical solution to BVP (1.1) for some λ > 0, µ > 0.

Now we recall Ricceri’s Variational Principle.

Lemma 2.7 ([23]). Let X be a real reflexive Banach space and let Ψ,Φ : X → R be two Gâteaux differentiable
functionals such that Ψ is sequentially weakly lower semicontinuous, strongly continuous and coercive, and Ψ is
sequentially weakly continuous. For every r > infXΦ, let

φ(r) := inf
u∈Φ−1(−∞,r)

supv∈Φ−1(−∞,r) Ψ(v) −Ψ(u)

r−Φ(u)

and
ζ := lim inf

r→+∞ φ(r), δ := lim inf
r→(infXΦ)+

φ(r).

Then

(a) for every r > infXΦ and every λ ∈
(

0, 1
φ(r)

)
, the restriction of the functional Iλ := Φ− λΨ to Φ−1(−∞, r)

admits a global minimum, which is a critical point (local minima) of Iλ in X;
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(b) if ζ < +∞, then for each λ ∈
(

0, 1
ζ

)
the following alternative holds: either

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that limn→∞Φ(un) =∞;

(c) if δ < +∞, then for each λ ∈
(
0, 1
δ

)
the following alternative holds: either

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ that converges weakly to
a global minimum of Φ.

3. Main result

For any ν > 0, we define

Q(ν) :=

{
t ∈ R : |t| 6 ν

((
β

α

) 1
q

+ (b− a)
1
q

)
+

1
α
|A|

}
.

Theorem 3.1. Assume that

(H1)

A∞ := lim inf
ν→+∞

∫b
a supt∈Q(ν) F(x, t)dx

νp −MpΦ(0)
<
m

M
lim sup
t→+∞

∫b
a F(x, t)dx(

α
β

)p−1
|t−A|p +

(
γ
σ

)p−1
|t−B|p

. (3.1)

Then for every λ ∈ Λ, where

Λ =


1

mp lim sup
t→+∞

∫b
a F(x, t)dx(

α
β

)p−1
|t−A|p +

(
γ
σ

)p−1
|t−B|p

,
1

Mp lim inf
ν→+∞

∫b
a supt∈Q(ν) F(x, t)dx

νp −MpΦ(0)

 , (3.2)

and for every L1-Carathéodary function g : [a,b]×R→ R satisfying:

(H2)

0 6 B∞ := lim inf
ν→+∞

∫b
a supt∈Q(ν)G(x, t)dx

νp −MpΦ(0)
< +∞;

(H3)

lim inf
t→+∞

∫b
a

G(x, t)dx > −∞,

there exists δg,λ := 1
B∞
(

1
Mp − λA∞) > 0, such that for any µ ∈ [0, δg,λ), the boundary value problem (1.1) has

an unbounded sequence of classical solutions in X.

Proof. Let the functionals Φ and Ψ be defined by (2.2) and (2.3), respectively. From Lemma 2.5 we obtain
that Φ and Ψ satisfy all the regularity assumptions given in Lemma 2.7. In addition, by (2.3) and (2.4) it
is easy to verify that Φ(0) = β

αH(a,− 1
βA) +

σ
γH(b, 1

σB) > 0 and Ψ(0) = 0 for any λ > 0 and µ > 0. For
any λ ∈ Λ, we have 1

Mp − λA∞ > 0.
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First, we claim that ζ < +∞. To prove this, let {νk} be a sequence of positive numbers such that
νk → +∞ as k→∞ and

lim inf
k→∞

∫b
a supt∈Q(νk)

(
F(x, t) + µ

λG(x, t)
)

dx

ν
p
k −MpΦ(0)

= lim inf
ν→+∞

∫b
a supt∈Q(ν)

(
F(x, t) + µ

λG(x, t)
)

dx

νp −MpΦ(0)
.

Let rk =
ν
p
k

Mp for each k ∈N, then

ζ = lim inf
r→+∞ φ(r) 6 lim inf

k→∞ φ(rk) = lim inf
k→∞ inf

u∈Φ−1(−∞,rk)

supv∈Φ−1(−∞,rk) Ψ(v) −Ψ(u)

rk −Φ(u)

6 lim inf
k→∞

supv∈Φ−1(−∞,rk) Ψ(v) −Ψ(0)

rk −Φ(0)

6 lim inf
k→∞

supv∈Φ−1(−∞,rk) Ψ(v)

rk −Φ(0)
.

(3.3)

By Lemma 2.1, we have

Φ−1(−∞, rk) = {u ∈ X : Φ(u) 6 rk}

⊂

{
u ∈ X : ‖u‖∞ 6 (Mprk)

1
p

((
β

α

) 1
q

+ (b− a)
1
q

)
+

1
α
|A|

}

=

{
u ∈ X : max

x∈[a,b]
|u(x)| ∈ Q

(
(Mprk)

1
p

)}
.

(3.4)

Then in view of (3.1), (3.3), (3.4), (H1), and (H2), we obtain that

ζ 6Mp lim inf
k→∞

∫b
a supt∈Q(νk)

(
F(x, t) + µ

λG(x, t)
)

dx

ν
p
k −MpΦ(0)

6Mp

lim inf
ν→+∞

∫b
a supt∈Q(ν) F(x, t)dx

νp −MpΦ(0)
+
µ

λ
lim inf
ν→+∞

∫b
a supt∈Q(ν)G(x, t)dx

νp −MpΦ(0)


=Mp

(
A∞ +

µ

λ
B∞) < +∞.

(3.5)

Since µ ∈ [0, δg,λ), in view of (3.5), we have ζ 6Mp
(
A∞ + µ

λB∞) < 1
λ , i.e., λ < 1

ζ . Hence Λ ⊂ (0, 1
ζ). For

any fixed λ ∈ Λ, by Lemma 2.7 (b), one of the following alternatives holds:

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that limn→∞Φ(un) =∞.

Now we show that the functional Iλ is unbounded from below, hence the alternative (b1) does not hold.
Let {dk} be a sequence of positive numbers such that dk → +∞, as k → ∞, and define a sequence of

functions {wk} such that wk(x) ≡ dk for all x ∈ [a,b], then wk ∈ X. From (2.3) and (2.4) we have

Iλ(wk) = Φ(wk) − λΨ(wk)

6
1
mp

((
α

β

)p−1

|dk −A|
p +

(γ
σ

)p−1
|dk −B|

p

)
− λ

∫b
a

F(x,dk)dx− µ
∫b
a

G(x,dk)dx.
(3.6)

Since λ ∈ Λ, (3.2) implies that

1
λ
< mp lim sup

t→+∞
∫b
a F(x, t)dx(

α
β

)p−1
|t−A|p +

(
γ
σ

)p−1
|t−B|p)

.
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Then there exist ε > 0 and N ∈N, such that

1
λ
< ε <

∫b
a F(x,dk)dx

1
mp

((
α
β

)p−1
|dk −A|

p +
(
γ
σ

)p−1
|dk −B|

p

)
for every k > N, hence 1 − λε < 0 and

λε
1
mp

((
α

β

)p−1

|dk −A|
p +

(γ
σ

)p−1
|dk −B|

p

)
< λ

∫b
a

F(x,dk)dx (3.7)

for every k > N. In view of (H3), we have

µ lim inf
k→∞

∫b
a

G(x,dk)dx > −∞. (3.8)

From (3.6)-(3.8) we obtain that

Ik(wk) < (1 − λε)
1
mp

((
α

β

)p−1

|dk −A|
p +

(γ
σ

)p−1
|dk −B|

p

)
− µ

∫b
a

G(x,dk)dx→ −∞
as k → ∞, that is, the functional Iλ is unbounded from below. Therefore, by (b2) in Lemma 2.7, there
exists a sequence {uk} of critical points of Iλ such that lim

k→∞Φ(uk) = +∞. In view of (2.4), we have

‖uk‖ → +∞. Finally, taking Remark 2.6 into account completes the proof of the theorem.

Let h(x, t) ≡ h(t) and A = B = 0, then ∂
∂x

(
(p−1)|τ|p−2

h(x,τ)

)
= 0 and Φ(0) = 0, and we have the following

special case of Theorem 3.1.

Corollary 3.2. Assume that

A∞ = lim inf
ν→+∞

∫b
a supt∈Q1(ν)

F(x, t)dx

νp
<
m

M
lim sup
t→+∞

∫b
a F(x, t)dx((

α
β

)p−1
+
(
γ
σ

)p−1
)
tp

,

where

Q1(ν) =

{
t ∈ R : |t| 6 ν

((
β

α

) 1
q

+ (b− a)
1
q

)}
.

Then for each

λ ∈

 1

mp lim sup
t→+∞

∫b
a F(x,t)dx(

(αβ)
p−1

+(γσ)
p−1

)
tp

,
1

Mp lim inf
ν→+∞

∫b
a supt∈Q1(ν)

F(x,t)dx
νp


and for every L1-Carathéodary function g : [a,b] × R → R satisfying (H2) and (H3), there exists δg,λ :=

1
B∞
(

1
Mp − λA∞) > 0, such that for any µ ∈ [0, δg,λ), the problem{

− (φp(u
′)) ′ = (λf(x,u(x)) + µg(x,u(x)))h(u ′(x)), x ∈ (a,b),

αu(a) −βu ′(a) = 0, γu(b) + σu ′(b) = 0

has an unbounded sequence of classical solutions in X.

Remark 3.3. Let g(x, t) ≡ 0, by Corollary 3.2, we can obtain the scalar case of Theorem 3.1 of [18].

Moreover, assume that f(x, t) ≡ f(t), g(x, t) ≡ g(t), α = β = γ = η = 1, we have the following special
case of Corollary 3.2.
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Corollary 3.4. Assume that

lim inf
ν→+∞

maxt∈Q2(ν) F(t)

νp
= 0, lim sup

t→+∞
F(t)

tp
= +∞,

where Q2(ν) =
{
t ∈ R : |t| 6 ν

(
1 + (b− a)

1
q

)}
. Then for every λ ∈ (0,+∞), µ ∈ [0,+∞) and for every

continuous function g : R→ R which satisfies

lim inf
ν→+∞

maxt∈Q2(ν)G(t)

νp
= 0 and lim inf

t→+∞ G(t) > −∞,

the boundary value problem{
− (φp(u

′)) ′ = (λf(u(x)) + µg(u(x)))h(u ′(x)), x ∈ (a,b),
u(a) − u ′(a) = 0, u(b) + u ′(b) = 0,

has an unbounded sequence of classical solutions in X.

Since X is a real reflexive Banach space, Φ is a strictly convex and coercive functional on X and
infXΦ > 0, we know that Φ has a unique global minimum u0 ∈ X such that Φ(u0) = infXΦ > 0. Using
(c) in Lemma 2.7 and the argument as in the proof of Theorem 3.1, we can obtain the following result.

Theorem 3.5. Assume that

A0 := lim inf
ν→

(
(Mp infXΦ)

1
p

)+

supt∈Q(ν) F(x, t)dx

νp −MpΦ(0)

<
m

M
lim sup
u→u0

∫b
a F(x,u(x))dx

‖u ′‖pLp +
(
α
β

)p−1
|u(a) −A|p +

(
γ
σ

)p−1
|u(b) −B|p

.

Then, for each λ ∈ Λ ′, where

Λ ′ =


1

mp lim sup
u→u0

∫b
a F(x, t)dx

‖u ′‖pLp +
(
α
β

)p−1
|u(a) −A|p +

(
γ
σ

)p−1
|u(b) −B|p

,

1

Mp lim inf
ν→

(
(Mp infXΦ)

1
p

)+

supt∈Q(ν) F(x, t)dx

νp −MpΦ(0)



(3.9)

and for every L1-Carathéodary function g : [a,b]×R→ R satisfying:

(H ′2)

0 6 B0 := lim inf
ν→

(
(Mp infXΦ)

1
p

)+

∫b
a supt∈Q(ν)G(x, t)dx

νp −MpΦ(0)
< +∞;

(H ′3)

lim inf
u→u0

∫b
a

G(x,u(x))dx > − inf
X
Φ,
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there exists δ ′g,λ := 1
B0

(
1
Mp − λA0

)
> 0, such that for any µ ∈ [0, δ ′g,λ), the boundary value problem (1.1) has a

sequence of classical solutions in X converging uniformly to u0.

Proof. Let the functionals Φ and Ψ be defined by (2.2) and (2.3), respectively. From Lemma 2.5 we obtain
that Φ and Ψ satisfy all the regularity assumptions given in Lemma 2.7. In addition, by (2.3) and (2.4) it is
easy to verify that Φ(0) = β

αH(a,− 1
βA) +

σ
γH(b, 1

σB) > infXΦ > 0 and Ψ(0) = 0 for any λ > 0 and µ > 0.
For any λ ∈ Λ ′, we have 1

Mp − λA0 > 0.
First, we claim that δ < +∞. To prove this, let {νk} be a sequence of positive numbers such that

νk →
(
(Mp infXΦ)

1
p

)+
as k→∞ and

lim inf
k→∞

∫b
a supt∈Q(νk)

(
F(x, t) + µ

λG(x, t)
)

dx

ν
p
k −MpΦ(0)

= lim inf
ν→

(
(Mp infXΦ)

1
p

)+

∫b
a supt∈Q(ν)

(
F(x, t) + µ

λG(x, t)
)

dx

νp −MpΦ(0)
.

Let rk =
ν
p
k

Mp for each k ∈ N, then rk → (infXΦ)+ as k → ∞. Using the similar method in the proof of
Theorem 3.1, we get

δ = lim inf
r→(infXΦ)+

φ(r) 6 lim inf
k→∞ φ(rk)

6 lim inf
k→∞

supv∈Φ−1(−∞,rk) Ψ(v)

rk −Φ(0)

6Mp lim inf
k→∞

∫b
a supt∈Q(νk)

(
F(x, t) + µ

λG(x, t)
)

dx

ν
p
k −MpΦ(0)

=Mp lim inf
ν→

(
(Mp infXΦ)

1
p

)+

∫b
a supt∈Q(ν)

(
F(x, t) + µ

λG(x, t)
)

dx

νp −MpΦ(0)

6Mp
(
A0 +

µ

λ
B0

)
< +∞.

On the other hand, since µ ∈ [0, δ ′g,λ), we have

δ 6Mp
(
A0 +

µ

λ
B0

)
< Mp

(
A0 +

δ ′g,λ

λ
B0

)
=

1
λ

,

hence Λ ′ ⊂ (0, 1
δ). Then for any fixed λ ∈ Λ ′, by Lemma 2.7 (c), one of the following alternatives holds:

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ that converges weakly
to a global minimum of Φ.

Now we show that u0 is not a local minimum of the functional Iλ, hence the alternative (c1) does not
hold.

Choose {uk} ⊂ X such that uk → u0 in X as k→∞, from (2.3) and (2.4) we have

Iλ(uk) = Φ(uk) − λΨ(uk) 6
1
mp

(
‖u ′k‖

p
Lp +

(
α

β

)p−1

|uk(a) −A|
p +

(γ
σ

)p−1
|uk(b) −B|

p

)

− λ

∫b
a

F(x,uk(x))dx− µ
∫b
a

G(x,uk(x))dx.

(3.10)
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Since λ ∈ Λ ′, (3.9) implies that

1
λ
< mp lim sup

u→u0

∫b
a F(x,u(x))dx

‖u ′‖pLp +
(
α
β

)p−1
|u(a) −A|p +

(
γ
σ

)p−1
|u(b) −B|p

.

Then there exist ε ′ > 0 and N ′ ∈N such that

1
λ
< ε ′ <

∫b
a F(x,uk(x))dx

1
mp

(
‖u ′‖pLp +

(
α
β

)p−1
|u(a) −A|p +

(
γ
σ

)p−1
|u(b) −B|p

)
for every k > N ′, hence 1 − λε ′ < 0 and

λε ′
1
mp

(
‖u ′‖pLp +

(
α

β

)p−1

|u(a) −A|p +
(γ
σ

)p−1
|u(b) −B|p

)
< λ

∫b
a

F(x,uk(x))dx (3.11)

for every k > N ′. In view of (H ′3), (3.10), and (3.11), there exists k > N ′ such that

Iλ(uk) < (1 − λε ′)
1
mp

(
‖u ′‖pLp +

(
α

β

)p−1

|u(a) −A|p +
(γ
σ

)p−1
|u(b) −B|p

)
− µ

∫b
a

G(x,uk(x))dx

6 Iλ(u0).

Hence u0 is not a minimum of Iλ.
Therefore, by Lemma 2.7 (c2), there exists a sequence {un} of pairwise distinct critical points of Iλ that

converges weakly to u0. Since X is compactly embedded into C([a,b]), un → u0 uniformly. Finally, taking
Remark 2.6 into account completes the proof of the theorem.

4. Example

Let a = 0, b = 1, α = 1, β = 2, γ = 2, σ = 3, h(x, t) = 1 + x2 + 1
2 sin t, A = 4, B = −5, then

Q(ν) =

t ∈ R : |t| 6
1 + 2

1
q

1 −
(

1
1+q

) 1
q

ν+ 4

 ,

and h : [0, 1]×R→ R satisfies the assumptions (a), (b), and (c) with m = inf(x,t)∈[0,1]×R h(x, t) = 1
2 , M =

sup(x,t)∈[0,1]×R h(x, t) = 5
2 . The boundary value problem (1.1) turns to be

−(φp(u
′)) ′ =

(
λf(x,u(x)) + µg(x,u(x)) +

∫u ′(x)
0

∂

∂x

(
2x(1 − p)|τ|p−2(
1 + x2 + 1

2 sin τ
)2

)
dτ

)

×
(

1 + x2 +
1
2

sinu ′(x)
)

, x ∈ (0, 1),

u(0) − 2u ′(0) = 4, 2u(1) + 3u ′(1) = −5.

(4.1)

For the function f : [0, 1]×R → R, we use the assumption in Example 3.1 of [18] directly, that is, we
assume that f(x, t) = (x2 + 1)f0(t), where

f0(t) =


b3

1

√
1 − (1 − t)2 + 1, t ∈ [0,b1],

(an − b3
n)
√

1 − (an − 1 − t)2 + 1, t ∈ ∪∞n=1[an − 2,an],
(b3
n+1 − an)

√
1 − (bn+1 − 1 − t)2 + 1, t ∈ ∪∞n=1[bn+1 − 2,bn+1],

1, otherwise,
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with b1 = 2,bn+1 = b6
n,an = b4

n for n ∈N. It is obvious that f is an L1-Carathéodary function. According
to the argument of Example 3.1 of [18], we know that

lim
n→∞ F0(an)

a2
n

= 0 and lim
n→∞ F0(bn)

b2
n

= +∞,

where F0(t) =
∫t

0 f0(s)ds. Then

A∞ = lim inf
ν→+∞

∫1
0 supt∈Q(ν)F(x,t)dx

νp
= lim inf
ν→+∞ F0

 1 + 2
1
q

1 −
(

1
1+q

) 1
q

ν+ 4

 ∫1
0(x

2 + 1)dx
νp

= 0

and

lim sup
t→+∞

∫1
0 F(x, t)dx((1

2

)p−1
3p +

(2
3

)p−1 6p
)
tp

=

∫1
0(x

2 + 1)dx((1
2

)p−1
3p +

(2
3

)p−1 6p
) lim sup
t→+∞

F0(t)

tp
=∞.

Hence the function f satisfies the assumption (H1) in Theorem 3.1. On the other hand, assume that
g(x, t) = (1 + x2)(2 + sin t), then

B∞ = lim inf
ν→+∞

∫1
0 supt∈Q(ν)G(x, t)dx

νp
= lim inf
ν→+∞

supt∈Q(ν)(1 + 2t− cos t)
∫1

0(1 + x2)dx

νp
= 0

and

lim inf
t→+∞

∫ 1

0
G(x, t)dx = lim inf

t→+∞
∫ 1

0
(1 + x2)(1 + 2t− cos t)dx = +∞.

Hence g : [0, 1]×R → R satisfies the assumptions (H2) and (H3) in Theorem 3.1. According to Theorem
3.1, for every λ ∈ (0,+∞) and every µ ∈ [0,+∞), the boundary value problem (4.1) has an unbounded
sequence of classical solutions in C([0, 1]).
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