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Abstract

Some sufficient conditions for almost sure exponential stability of solutions to time-changed stochastic differential equations
(SDEs) are presented. The principle technique of our investigation is to construct a proper Lyapunov function and carry out
generalized Lyapunov methods to time-changed SDEs. In contrast to the almost sure exponential stability in existing articles,
we present new results on the stability of solutions to time-changed SDEs. Finally, an example is given to demonstrate the
effectiveness of our work. (©2017 All rights reserved.
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1. Introduction

Time change and its related stochastic calculus have been widely used to study dynamics of various
complex stochastic processes arising in anomalous diffusion. We refer to [4-6, 10, 13, 14] and the refer-
ences therein. Meanwhile, many excellent works have been done on time-changed stochastic differential
equations (SDEs), see [7, 9, 11]. Especially, Kobayashi [11] extended classical SDEs to a lager class SDEs
driven by time-changed semimartingales and derived the corresponding time-changed It6 formula, which
provided the new perspective for the study of SDEs. As it is well-known to all that the study of stability
properties of SDEs have been one of the most active areas in stochastic analysis, involved in several fields
such as physics, mechanical engineering, biology, and economics (see [1-3, 8, 15, 16, 19, 22, 23] and the
references therein). Lyapunov’s method is in general available to obtain sufficient conditions for the sta-
bility of solutions. Very recently, within the new framework of what Kobayashi [11] had set, the stability
theory of time-changed SDEs has started attracting much attention of many researchers. By means of
the generalized Lyapunov method, Wu [21] established sufficient conditions for stability of solutions of
time-changed SDE:s in different senses, such as stochastic stability, stochastically asymptotic stability, and
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globally stochastically asymptotic stability. Likewise, Wu [20] investigated stable behaviors of solutions
for different time-changed systems, such as exponential sample-path stability, p-th moment asymptotic
stability, and p-th moment exponential stability. Nane and Ni [17] studied stabilities of SDEs driven by
time-changed Lévy noise in both probability and moment sense. So far there has no work presented on
the almost sure exponential stability of solutions to time-changed SDEs. Motivated by the above discus-
sion, in this work we shall study the almost sure exponential stability problem for a class of time-changed
SDEs.

The rest of this paper is structured as follows. In Section 2 we recall some preliminary results. Section
3 shows some criteria for almost sure exponential stability and in the last section, to show the effectiveness
of our theories, an illustrative example is provided.

2. Preliminary

Let (Q,3,P) be a complete probability space with a filtration {JF¢};>0 satisfying the usual conditions.
{B(t)}t>0 is a real-valued Brownian motion defined on the stochastic basis (Q, F,{Fi}¢>0, P). Define the
inverse subordinator by

E(t) =inf{lt>0:U(t) >t}, t=0,
where {U(T)}r>0 is an Fi-adapted subordinator with Laplace transform E(e wU(t)) = ¢~ (W) where
Yu) = bu+ [*(1—e ™)v(dy) (u > 0) with b > 0 and [ (x A1)v(dy) < co. Assume that the Lévy
measure Vv is infinite. It implies that the subordinator U has strictly increasing paths, and then E has
continuous, nondecreasing paths. We assume that the Brownian motion {B(t)};>¢ is independent of
{E(t)}t>0. Set

Fo= () o((Bly): 0 <y <uLE(M): £ >0}).
u>t

Then {Fi}i>0 is right continuous, {B(t)}¢>0 is a martingale with respect to the filtration {F¢}¢>0. Thus
{Gt}t>0 is a well-defined filtration where G = J¢ (), and also satisfies the usual condition since the right-
continuity of {F¢}t>0. According to Theorem 1 in [14], the time-changed Brownian motion B(E(t)) is a
square integrable martingale with respect to the filtration {G}¢>0. Let ® : Ry — IR be a predictable,
G¢-adapted process such that

t
IEJ |®(s)PdE(s) < oo, t>0.
0

Then we can define the real-valued stochastic integral

t
jo ®(s)dB(E(s)),

which is a continuous square-integrable martingale. For details of the construction of stochastic integrals,
consult [18].
In this work, we investigate the following SDE driven by time-changed Brownian motion

dX(t) = f(t, E(t), X(t))dt + g(t, E(t), X(t))dE(t) + o(t, E(t), X(t))dB(E(t)) (2.1)

with initial value X(0) = x¢, and f, g, o are real-valued functions, defined on R x Ry x R.
Throughout this paper, for the existence and uniqueness of the solution to (2.1), we shall impose the
following assumptions.

Assumption 2.1 (Lipschitz condition). There exists a positive constant K such that
[f(t1, t2, x) — f(t1, t2, y) [+ [g(t1, t2, x) — g(t1, to, y)[ + [0 (ty, t2, X) — o(t1, t2, y)| < Klx —y|

forall t1,t; € R4 and x,y € R.
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Assumption 2.2. If X(t) is a cadlag and G¢-adapted process, then
f(t, E(t), X(t)), g(t, E(t), X(t)), oft, E(t), X(t)) € L(S1),
where £(G¢) denotes the class of caglad and G¢-adapted processes.
According to Lemma 4.1 in [11], (2.1) admits a unique solution X(-) which is a §¢-adapted process.

Definition 2.3. The solution of time-changed SDE (2.1) is said to be almost surely exponentially stable if
there exists a A > 0 such that

lim sup % log[X(t)| < —A as.

t—o0

We now introduce some notations. Let two operators L; and L, acting on C"2(R; x Ry x R; R} )-
valued functions as follows:

le(tll to, X) = th (tll to, X) + Vx (tll to, X)f(tll to, X)

and
1
LoV(tg, t2,x) = Vi, (1, to, x) + Vx(t1, t2, x)g(t1, t2, x) + EVXXO-Z(tlItZIX)/
where
- av(tlltZIX) o av(tlltzlx)
vt1 (tlltZIX) — TI vtz(tlltZIX) - Tr
OV(ty, ty, 02V(ty, tp,
Vx(ty, t2,x) = M, Vix(t1, t2, x) = #
ox ox

3. Almost sure exponential stability

This section concludes some criteria for almost sure exponential stability of solution to (2.1). To
establish the results on the almost sure exponential stability, we impose the following assumption.

Assumption 3.1. For all t > 0, if xg # 0 in R, P{X(t,x0) #0, on t >0} =1.
The following lemma tells that Assumption 3.1 holds under some conditions.

Lemma 3.2. Assume that for any © > 0 there exists a positive constant Kg such that
If(t1, t2, x)1 +1g(t1, t2, x)| + |0 (ty, t2, x) < Kelx].
IfIx| < ©and t > 0, then for all xg # 0 in Ry,
P{X(t,x0) #0, on t >0} =1. (3.1)

Proof. We shall apply the method used in the argument of [16] to prove this result. Assume that (3.1) is
false. Then there would exist some xy # 0 such that IP(t < co0) > 0 where T:=inf{t > 0: X(t) = 0} which
stands for the first time of zero of the corresponding solution. We can choose a pair of constants T > 0
and 6 > 1 large enough so that IP(B) > 0, where

B={weQ:1(w)<Tand [X(t)|<0—1, forall 0 <t < 1(w)}h

Let V(t1,ty,x) = [x|7' and & = Kg(2+Kp). If 0 < |x| < 8, applying the time-changed It6 formula (see
[21]), it follows that

LiV(t E(t), X()) = —IX(8)] (¢, E(t), X(1) < KolX(t)| ! < aV(t, E(t), X(t)) (3.2)
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and

LyV(t, E(t), X(t)) =— X(t)|2g(t, E(t), X(t)) + X(t)| 2 o?(t, E(t), X(t))

3.3
<KolX(1)[ 7T+ K3X(t) ! < aV(t, E(t), X(t)). 33)

Define the following family of stopping times, for any 0 < € < |xql,
Te =inf{t > 0: |[X(t)| < e or |X(t)] > 0}.
By the time-changed It6 formula applied to Z(ty, ta,x) = e~ *(1F12)V(t, 5, x) we obtain

exp{ — x((tTe AT) + E(te AT))IV(Te AT, E(Te AT), X(Te AT))
T A\T TNT

oce_“(erE(s))V(s,E(s),X(s))ds—J e~ X(sHE(s))

=V/(0,0,xg) —J .

0
TNA\T

x V(s, E(s), X(s))dE(s) +J e  *STEBIL V(s E(s), X(s))ds (3.4)
. .

T N\T
+J e—oc(s+E(S))]_2V(s,E(S),X(S))dE(S)
0

+ JTEAT e S HEI(—|X(s)[7%)a(s, E(s), X(s))dB(E(s)).
0

From [13] and [12], we have

T NA\T
]EJ e *FTES)) (X (s)72)a(s, E(s), X(s))dB(E(s)) = 0.
0

Therefore, taking expectation on both sides of (3.4), together with (3.2) and (3.3), yields that
Elexp{—a((te AT) +E(te AT))IV(te AT, E(te AT), X(te AT))] < V(0,0,%0)-
If w € B, then 1. (w) < T and |X(t¢(w))| < ¢. Then
Ele *(THEM) e 1] C Ele (T T X (e (w) 18] < V(0,0,%0)-
In addition, according to the reverse Holder inequality:

[E(XY)| > (EIXP)? (Y[ 75)%, 0<p<l,

we have
Eflefth(H)(B))Z[]E[eocE(T)]]fl < IE[efo((TJrE(T))EflIB]‘

Moreover, in terms of Lemma 8 in [9], E[e*F(T)] is finite for any « € R, T > 0. Hence, for all £ > 0,
P(B) < ee*TE[e*F(M]jxo[1.

Let ¢ — 0, then it follows that IP(B) = 0 which contradicts the definition of the set B and the required
result follows. ]

Remark 3.3. Lemma 3.2 tells us that Assumption 3.1 is satisfied if f(t;,t2,0) = g(t1,t2,0) = o(t1,12,0) =0
and Assumption 2.1 are true. But generally speaking, Assumption 2.1 is required in order to have a
unique solution, and f(ty,t2,0) = g(t1,t2,0) = o(t1,t2,0) = 0 can be assumed to be true in the study of
stability of solutions.
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Theorem 3.4. Let Assumption 3.1 hold. If V(t1,t2,x) € CY2(Ry x Ry x R;Ry) and some constants p > 0,
c1 >0, and cy > 0 satisfy:

(1) |X|P < V(tlltZIX);
(2) LiV(ty, ta,x) < —c1V(ty, t2, x);
() LaV(ty, t2, x) < —c2V(ty, t2, x);
(4) E(t) is asymptotically slower than t, i.e., lim¢_, o @ =0 as,
then for all xg € R and t > 0
1
limsup - log [X(t)] < ——* as..
t—o0 t P

Proof. Fix xg # 0. By Assumption 3.1, for all t > 0, X(t) # 0 almost surely. Thus, for all t > 0 one can
apply the time-changed It6 formula to show

fLiV(s, E(s), X(s))

log V(t, E(t), X(t)) :logV(O,O,xo)+J0 V(s E(s), X(5)) ds
Y V(s E(s), X(s)) 1 (" Vi(s, E(s), X(s))
L V(s, E(s), X(s)) dE“)_zL V2(s, E(s), X(s)) (5.5)

—
w

~—

N

x 02(s,E(s), X(s))dE(s) +Jt Vi (s, E(s), X

o V(s E(s),X(s)) x o(s, E(s), X(s))dB(E(s)).

Let
o(s,E(s),X(s))dB(E(s)).

Pt Vils E(s), X(s))
M{t) = Jo V(s, E(s), X(s))

Using lemma 6.2 in [15] with g(t) =t, Tx =k, yx =1, and 6 = 2, we deduce that, for almost all w € Q,
there exists an integer ko(w) such that for all k > ko
M(t) < z(M(t)) +2logt, 0 <t <k

Note

t \/2
M) = | TR (s ES) X()E ),

o V2(s,E(s),X(s))
So, forall0 <t <Kk, k> ko,

1Jt vﬁ(s,E(s),X(S))Gz(S,E(S)/X(S))dE(s)+2logk a.s..

M(t) < =

<2, Vs, B, X6))

Substituting this into (3.5), together with conditions (2) and (3) gives, for any 0 <t <k, k > ko,
log V(t, E(t), X(t)) <logV(0,0,x9) —c1t —c2E(t) +2logk as..

This along with condition (1) implies, for k —1 <t <k, k > ko,

1 1 1
T log [X(t)] < E log V(t, E(t), X(t)) <E (log V(0,0,%9) —ci1t —coE(t) +2log k)

<logV(O,O,x0) —ci1t—cE(t) 2logk
h pt p(k—1)

a.s..

This further gives that

lim sup % log [X(t)] < —%1 a.s.. O]

t—o00
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Theorem 3.5. Let Assumption 3.1 hold. Assume that V(t1,t2,x) € CY2(R. x Ry x R;Ry) and o(t) be a
nonnegative predictable process, and let p > 0,¢c1 >0,c2 > 0,¢c3 >0, c2 < %, and p > 0,y > 0. Assume that for
all xg Z0and t > 0,

(1) xP < V(ty, t2,x);

(2) LiV(ty, to,x) < —c10(t)V(t1, t2, x);

(3) LaV(ty, t2,x) < c2(t)V(ty, t2, x);

(4) [Vx(ty, to, x)o(ty, to, X)? = c3@(t) V(1 to, x) %
(5) iminfye0 L [ @(s)dE(s) = p a.s.;

(6) liminfi_,o0 L [ @(s)ds > v as..

~— ~— ~— ~—

Then the solution of equation (2.1) satisfies

. 1 C1 1 C3
limsup — log [ X(t)| < ——v——(=—c¢ a.s..
HOopt g [X(t)] pv p(2 2)p

Proof. Fix xg # 0 arbitrarily. It is easy to deduce by time-changed It¢’s formula and conditions (2) and (3)
that

t t

log V(t, E(t), X(t)) glogV(0,0,xo)—l—clj (p(s)ds—i-czj @(s)dE(s)

1" [Va(t E(t) Xo(t))c(t E(t) X(()t))|2 (3.6)
2 Jo ’ Vé(t,E(t , ’(t)) ’ dE(s) +M(t),

where M(t) has been defined in Theorem 3.4. Let k = 1,2,... and assign 0 < ¢ < 1—2¢ arbitrarily. In
view of Lemma 6.2 in [15] with g(t) =t, Tk =k, Yk = ¢, and 6 = 2, we derive that, for almost all w € Q,
there exists an integer ko(w) such that, for all k > ko, 0 <t <k,

£

M(t) < 2e7! log k + >

dE(s).

. e [ [Vilt, E(1), X(t))o(t, E(t), X(1))
(M{t)) < 2¢ log“zJo V2(t, E (1), X(1)

Substituting this into (3.6) and using condition (4) one obtains, for any 0 < t <k, k > ko,

log V(t, E(t), X(t)) <logV(0,0,%x0) —c1 Jt
0
1-—c¢ Jt Vi (t, E(t), X(t))o(t, E(t), X(t))]

2 o V2(t, E(t), X(t))

t
@(s)ds + 02J @(s)dE(s) +2¢ ! log k
0

2
dE(s)

t

t 1—c¢ t
(p(s)ds—i—ch (p(s)dE(s)—i—Zs*llogk— 5 C3J @(s)dE(s)

<1og V(0,0,x0) ¢ |
0 0

0
t

2

t
<10gV(0,0,x0)—c1J @(s)ds +2¢ " logk — (——c3 —c2) L o(s)dE(s).

0

This along with condition (1) implies, for any 0 < t <k, k > ko,

% log [X(t)| gplt log V(t, E(t), X(t))

t

1 -1 I—e¢ '
ga(logV(O, 0,%0) —c¢1 Jo @(s)ds+2¢ " logk — ( 5 ©3 —Cz) Jo (P(S)dE(S))

t 1—¢

2logk
(p(s)ds—< 5 &

ep(k—1)°

<plt(logV(0,0,xo)—c1J C3—C2) E (P(S)dE(S)) +

0
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Consequently

t

t —_—
lim sup ¢ log X(t )|<—‘;nminflj @(s)ds—;(l “es—ca) limint L[ (s)dE(s)

t—oo t=oo t o 2 0

c1 1/1—¢
<—2y—= — S..
pY p< > c3 Cz)p a.s
Here we have used conditions (5) and (6). Let ¢ — 0. Then we obtain the required result. O

In what follows we shall remove hypothesis of Assumption 3.1. However it should be pointed out
that the following results are not the generalizations of the previous ones, but cover different case.

Theorem 3.6. Let V(t1,1,x) € C1'1'2(]R+ x R4y x R;R4) and u(t) be a polynomial with positive coefficients,
and let p, A be positive constants. Assume that for all xo € Rand t > 0,

(1) Ix[P < V(t,t2,x);

(2) L1V(ty,t2,x) < —AV(ty, to,x) 4+ u(t)e MHEM),

(3) LyV(ty,t2,x) < —AV(ty, to,x) 4+ u(t)e MtHEM),

(4) [Vx(t1,t2,x)o(ty, to, x)2 < u(t)e MHELIV (1, 15, x);

(5) E(t) is asymptotically slower than t, i.e., lim¢_ (— =0 as..

Then the solution of equation (2.1) satisfies

11msupflog|X( )| < —2 as..

t—o0
Proof. Since E(t) is asymptotically slower than t, for any € > 0 we can deduce that there exists a constant

T > 0 such that
E(t) et a.s.,

whenever t > T. By time-changed Itd’s formula and conditions (2) and (3), we arrive at

MHFEMIV(t, E(t), X(1)) =V(0,0,%0) +r TRV (s, E(s), X(s)) + L1 V(s, E(s), X(s))]ds
0

+JteMS+E JIAV(s, E(s), X(s)) + LaV(s, E(s), X(s))]dE(s)
0 (3.7)

+Jt MRV (5 E(s), X(s))o(s, E(s), X(s))dB(E(s))
0

<V(0,0,x0) +J

u(s)ds +J u(s)dE(s) + N(t),
0

where

N(t) = E MRV, (5 E(s), X(s))o(s, E(s), X(s))dB(E(s)).

Let % (g > 2) be the degree of the polynomial u(-) and k = 1,2,.... Assign 0 > max{l,Tﬁ}. An
application of Lemma 6.2 in [15] with g(t) = t, yx = 0795, 1, = 0 yields that, for almost all w € Q,
there exists an integer ko(w) such that, for all k > kg and 0 < t < ok,

N(t) <07 9%(N(t)) + 09% 1 1ogk

NI~ N

t
equ e?MNSHEIDV2 (5 E(s),X(5)) 02 (s, E(s), X(s))dE(s) + 89 log k.
0
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Substituting this into (3.7) and using condition (4) one obtains

t t

u(s)ds —i—J u(s)dE(s) + 095 ogk

MRV (¢ E(1), X(1)) <V(0,0,x0) +J
0

0

+ %e—qk E MRSy (s)V (s, E(s), X(s))dE(s)

<V(0,0,xp) + (u(t))? +J u(s)dE(s) + 09%  logk + %G_qk
0
rt

x | erSTEEy(s)V(s, E(s), X(s))dE(s)
0

=V(0,0,%0) + (1(6%))* + 09 logk

rt

+ | u(s) [1 + %e*qk x eMSTE V(g E(s), X(s))|dE(s),
JO

which further gives that

1 1 1 1
1+ Ee—qkeW“?(U)V(t,E(t),X(t)) <1+ Ee—qum, 0,%0) + Ee—qk(u(ek))2 +50logk

+ 1eqkr u(s) [1+ 1e*qkeMS*E(SUV(s E(s) X(s))}dE(s)
2 0 2 ! ! )

By time-changed Gronwall’s inequality in [20], we deduce

1 1 1 1
1+ -0 9k RV (¢ (1), X (1)) < (1 + Ee*qkwo, 0,%0) + Ee*qk(u(ek))2 +50log k)

2
1
X ex quj
P{z 0

t
u(s)dE(s) }

This, together with condition (5) and the monotonicity of u and E, implies that, forall T <t < 0k, k > ko,
t

MFEMIV(t, E(1), X(1)) < (2095 + V(0,0,%0) + (w(6%))2 + 89 log k) x exp {;9““[
0

u(s)dE(s)}
< (26qk +V(0,0,%0) + (w(8%))? 4+ gak+1 logk) X exp {%Gf(qfl)ksu(ek)}
<Cpak+l logk as.,

where C is a finite random variable independent of k. If 6%~ < t < 0%, k > kq,

MRV (¢ E(t), X(t)) < Coak+l logk ga-1 logk
t9loglogt = 9d(k—1 Joglog O%—1 ~ log(k—1) +loglog 6’

which implies
AMHE) V(¢ E(1), X(t))

li < CoIt as.
Htrl,s:jp tdloglogt <o s
Since 0 > 1 is arbitrary,
' lim su e EV(L E(L), X(1) <C as
t_wop tdloglogt = h

Finally, by condition (1)

lim sup ! log [X(t)| <limsup plt log V(t, E(t), X(t))

t—o00 t t—o0
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1 1 7}\(t+E(t])e)\(t_'_E(t))v(t/E(t)/X(t)) q
—hin_> S;lp - log (e taToglog t t9loglog t)
<—§liminf@—§<—§ a.s.. O

ptoee t p P

Theorem 3.7. Let V(t1,t,x) € CV2(Ry x Ry x R; Ry ) and @(t) be a nonnegative predictable process. Let p,
q, A, M be positive constants and « € [0,1). Assume that for all xo € R and t > 0,

(1) e TP < V(t, t,x);

(2) LiV(ty, t2,x) <0;

(3) LaV(ty, t, x) + (1 +1) "9V (ty, ta, x) o (t1, to, x)* < @(t)[1+ (V(t1, t2, x))¥);
(4) limsup, , 1 +log (IS (p(S)dE(S)) <0 as,;

(5) E(t) is asymptotically slower than t, i.e., limy_, o Elb)

T =0 as..

Then the solution of equation (2.1) satisfies

hmsup—long( )| < —2 as..

t—o0
Proof. Fix any t > 0 and x¢. By time-changed Itd’s formula,

t t
V(t, E(t), X(t)) =V(0,0,%o) +J L1V(s, E(s), X(s))ds +J LaV(s, E(s), X(s))dE(s)
. 0 0 (3.8)
+J Vi(s, E(s), X(s))o(s, E(s), X(s))dB(E(s)).
0

Letk =1,2,.... An application of Lemma 6.2 in [15] with g(t) =t, yx = 2n(1+2%)79, 1, =2X and 0 =2
yields that, for almost all w € Q, there exists an integer ko(w) such that for all k > kg and 0 <t < 2k

N(t) < 1(1+2‘<)q1ogk+n(1+2’<) Jtvg(s,E(s),X(s))oz(s,E(s),X(s))dE(s),
0

.:S

where .

N(t) = L Vi (s, E(s),X(s))o(s,E(s), X(s))dB(E(s)).

Substituting this into (3.8) and using conditions (2) and (3), one obtains, for all 0 < t < 2K,k > ko,

V(t, E(t), X(1)) <VI(0,0,%x9) + Jt L1V(s, E(s),X(s))ds + r LLV(s,E(s),X(s))dE(s)
0 0

+ 1i(l +2K)d logk +n(1+ 2K)~4 Jt V2(s,E(s), X(s))0?(s, E(s), X(s))dE(s)
0

t
<V(0,0,x0) +J L1 V(s, E(s), X(s))ds + iu +2%)910g k
0

+Jt[L2V(s,E(s),X(s)) +1(142%)79V2(s, E(s), X(s))o%(s, E(s), X(s))IdE(s)
0

t
<V(0,0,x0) +J L1 V(s, E(s), X(s))ds + i(l +2%)9logk
0

+Jt[L2V(s,E(s),X(s)) +1(1+5)"9V2(s,E(s), X(s))0(s, E(s), X(s))IdE(s)
0

t
<V(0,0,%0o) +J L1V(s, E(s), X(s))ds + 1i(l +2%)9logk
0
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t
4 JO ()11 + (V(s, E(s), X(s)))4IdE(s)
t

<V(0,0,x%9) + Tl](l +2K)4 logk—i—J @(s)[1+ (V(s,E(s),X(s)))¥]dE(s) a.s..
0

Now applying Corollary 1.7.5 in [15] we derive

2k

1 Zk 1_“ ],l(x
V(t, E(t), X(t)) g[(V(0,0,xo)+n(1+2k)qlogk—|—J (p(S)dE(s)) +(1—oc)J (p(s)dE(s)]
0

0

for all 0 < t < 2%, k > ko almost surely. Now let ¢ > 0 be arbitrary and by condition (4) one sees that
there exists a random integer k; = ki (w) such that for all k > k4,

2k
J o(s)dE(s) < e as.
0

Therefore, if 2K-1 <t < 2K, k > ko V kg

%log <e (EHEL)x (¢ )|P) <%logV(t,E(t),X(t))

1

1 k 2k 11—
<Mlog[(V(O,O,XO)+n(1+2 )qIngJFJ0 (p(s)dE(s)>

2k
+(1—a) J (p(s)dE(s)}

0

1 1 1% 2k 1—a zk
<{— _ q £ o £
S T log[(V(O,O,x0)+n(1+2 Jlogk+e )+ (1-a)e |,

where condition (1) has been used. This immediately implies

2¢

11msupflog< (CFEU)IX (¢ )|p> < a.s..

t—o00
Since ¢ > 0 is arbitrary,
1
lim sup flog< (tHE))X (¢ )|p> <0 as..
t—o0 t

Finally,

lim sup flogIX( )| —limsuppltlog (e_MHE(t))eA (B X (¢ )Ip)

t—o0 t—o0

AA E(t A
<——— —liminfg < —— as. O
P p too ot P

Theorem 3.8. Let V(ty,t2,x) € CM2(Ry x Ry x R;Ry) and ¢1(t), @a(t) be two nonnegative predictable
processes. Let p, q, A, 11 be positive constants and « € [0,1). Assume that for all xo € Rand t > 0,

(1) et tR2fx[P < V(ty, t2,x);

(2) LiV(ty, t2,x) <0;

(3) LaV(t1, t2,x) +me 9V, (1, t2, x)o(ty, t2, X)[* < @1(t) + @2 () (V(t1, t2, x))*;
(4) limsup, ,_ +log (fo ©1(s)dE(s )) <q as;

o) limsupt_>Oo log (fo @2(s)dE(s )) <(1—a)q as.;
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(6) E(t) is asymptotically slower than t, i.e., lim¢_ @ =0 as.

Then the solution of equation (2.1) satisfies

limsup%logIX(t)l < —11)(?\— q) as..

t—o0
Proof. According to (3.8) we have

t t
V(t, E(t), X(t)) =V(0,0,%0) + L L1V(s, E(s), X(s))ds + JO Lo V(s, E(s), X(s))dE(s) + N(t). (3.9)

Letk =1,2,.... Again making use of Lemma 6.2 in [15] with g(t) =t, yx = 2ne 9%, 1, =k, and 6 = 2 one
can derive that, for almost all w € Q, there exists an integer ko(w) such that forall k > kpand 0 <t <k

N(t) < ieqklogk—i—ne_qk Jt V2(s,E(s), X(s))0?(s, E(s), X(s))dE(s).
0

Substituting this into (3.9) and using conditions (2) and (3), one obtains

V(t, E(t), X(t)) <V(0,0,%0) + Jt L1V(s,E(s),X(s))ds + Jt LLV(s,E(s),X(s))dE(s)
0 0

+ ieqklongrne_qk Jt V2(s,E(s), X(s))o?(s, E(s), X(s))dE(s)
0
t
<V(o,o,xO)+$eqklogk+J [o1(s) + @2(s)(V(s, E(s), X(s)))*dE(s)
0

for all 0 < t <k, k > kg almost surely. So by Corollary 1.7.5 in [15] we deduce

t

k
Vi, E(t), X (1) <V(0,0,%0) +$eq‘<logk+J 1(s)dE(s) +j 02(s)(V(s, E(s), X(s)))*dE(s)
0 0

1—o T—a

1 k k
< [(V(O, 0,%x0) + ﬁeqk logk + Jo (pﬂS)dE(s)) +(1—«) Jo (pz(s)dE(s)]

for all 0 < t <k, k > ko almost surely. Let ¢ > 0 be arbitrary. By conditions (4) and (5) there exists a
random integer k; = k;(w) such that

k k
J o1(s)dE(s) < elT7<)%  and J @ (5)dE(s) < el1-)(a+e)k
0 0

forall k > kq. Hence, if k—1 <t <k, k > kg VK4,

1

I—x

1—
V(t, E(t),X(t) < [(V(O, 0,x0) + ieqk log k + e(q“)k) T (1 etelare| T
which implies immediately that
. 1
limsup —log V(t,E(t),X(t)) < q+¢ as.
t—o0 t

Letting ¢ — 0, it gives
limsup%logV(t,E(t),X(t)) <q as.

t—o0
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Finally,
_ 1 . 1 “A(t+E(L))
lim sup —log [X(t)| <limsup — log [e V(t, E(t), X(t))]
t—o0 t t—o0 pt
gﬂ— A —Aliminfit) < —é—l— q_ —1(7\—q) a.s.
P P P toeo t PP P
as required. The proof is complete. O

The following theorem gives a sufficient condition for a stochastic system which is almost surely
exponentially instable.

Theorem 3.9. Let Assumption 3.1 hold. Let V(t1,tp,x) € CY2(Ry x Ry x R;Ry) and @(t) be a nonnegative
predictable process, and p >0, ¢y >0, ¢ >0,¢c3 >0, c2 > %, and p > 0,y > 0. Assume that for all xo # 0 and
t>0,

(1) XP = V(ty, t2,x);

(2) LiV(ty, t2,x) > c1o(t)V(ty, ta, x);

(3) LaV(ty, t2,x) = co(t)V(ty, t2,x);

(4) [Vi(ty, t2,x)o(ty, t2, x)? = cap(t)|V(ty, t2, x) %
(5) iminfy_e0 L [ @(s)dE(s) = p a.s.;

(6) liminf;_, % fé @(s)ds >y as..

Then the solution of equation (2.1) satisfies

.1 C1Y 1 C3
- > L4 —(cp—=)p as.
htrgg)lft log [X(t)] > - +p(cz > Jp a.s
Proof. Fix xg # 0 arbitrarily. It is easy to deduce by time-changed Itd’s formula and conditions (2), (3),
and (4) that
t t cs [t
log V(t, E(t), X(t)) >1logV(0,0,%x0) + ¢4 J @(s)ds + CzJ @(s)dE(s) — > J @(s)dE(s) +M(t), (3.10)
0 0 0
where M(t) has been defined in Theorem 3.4. Let k = 1,2,... and assignh 0 < ¢ < 2% — 1 arbitrarily.
Applying Lemma 6.2 in [15] to the martingale —M(t) with g(t) =t, Tx =k, Yk = ¢, and 0 = 2, we deduce
that, for almost all w € ), there exists an integer ko(w) such that for all k > ko

~M(t) < 2e 'logk + %<M(t)> <2¢ ogk+ dE(s)

€ r Vi (t, E(1), X(t))o(t, E(t), X(t))?
2

2 o V2(t,E(1), X(1))

for all 0 < t < k. Substituting this into (3.10) and using condition (4) one obtains

t c t
log V(t, E(t),X(t)) >1log V(0,0,x0) + c1 J @(s)ds + (c2— 53) J o(s)dE(s) —2¢ 'logk
0

0
e [*IVilt, E(t), X(t))o(t, E(t), X(t))
“3); VAL, E(6), X(1) aes)
>1og V(0,0,%0) +c1 Jt @(s)ds + (cz — (1-1-25)03> Jt @(s)dE(s) —2¢7 ! logk
0 0

for all 0 < t <k, k > kg almost surely. This, together with conditions (1), (5), and (6), implies

.1 cay 1 1+¢
- Z— + — - .S..
11trgg)1f . log [X(t) > ’ + . (cz 5 03>p a.s

Since ¢ is arbitrary, the conclusion follows and the proof is complete. O
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4. An illustrative example

In this section, we consider an example to verify the stability of time-changed SDEs. We assume that
all coefficients of SDEs satisfy Assumptions 2.1, 2.2, and 3.1.

Example 4.1. Consider a one-dimensional inhomogeneous linear SDE driven by time-changed Brownian
motion
dX(t) = —oX(t)dt + BX(t)dE(t) + oX(t)dB(E(t)), Xo = xo # 0, (4.1)

where «, 3,0 > 0. In the following section, we will analyse the almost sure exponential stability of (4.1).
Taking Lyapunov function V(ty,tz,x) = Ix|2, we have

L V(t, E(t), X(t)) = —2X(t)]> = —2V/(t, E(t), X(1)),
LyV(t, E(t), X(t) = (2B + 0D X(t)* = (2B + 0?)V(t, E(t), X(t))
and
Vi (t, E(t), X(1))o(t, E(t), X(1))* = 467X (1) = 40?|V(t, E(t), X(t)[*.

Letp =2, ¢; =2, cp = 2B + 02, c3 = 402, v = 1. Therefore, if 0% > 2, applying Theorem 3.5, we obtain

limsupllogIX(t)I < —a— %(0‘2—2[3)() a.s.,

t—o0 t

that is to say, the solution of (4.1) is almost surely exponentially stable.
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