Infinitely many periodic solutions for second-order discrete Hamiltonian systems

Da-Bin Wang*, Qin Xiao, Wen Guan
Department of Applied Mathematics, Lanzhou University of Technology, 730050 Lanzhou, People's Republic of China.

Communicated by K. Q. Lan

Abstract

Infinitely many periodic solutions are obtained for a second-order discrete Hamiltonian systems by using the minimax methods in critical point theory. Our results extend and improve previously known results. © 2017 All rights reserved.

Keywords: Minimax methods, periodic solutions, sublinear, discrete Hamiltonian systems, critical point. 2010 MSC: 34C25, 58E50.

1. Introduction

Consider the following second order discrete Hamiltonian system

$$
\left\{\begin{array}{l}
\triangle^{2} u(t-1)+\nabla F(t, u(t))=0, \quad t \in \mathbb{Z}[1, T] \tag{1.1}\\
u(0)=u(T)
\end{array}\right.
$$

where $T \in \mathbb{Z}, \mathbb{Z}[1, T]$ denotes the discrete interval $\{1,2, \cdots, T\}, \Delta \mathfrak{u}(t)=\mathfrak{u}(t+1)-\mathfrak{u}(t), \Delta^{2} \mathfrak{u}(t)=$ $\Delta(\Delta \mathfrak{u}(\mathrm{t}))$ and $\nabla \mathrm{F}(\mathrm{t}, \mathrm{x})$ denotes the gradient of F with respect to the second variable. F satisfies the following assumption:
(A) $F(t, x) \in C^{1}\left(\mathbb{R}^{N}, \mathbb{R}\right)$ for any $t \in \mathbb{Z}[0, T]$ and F is T-periodic in the first variable.

Since Guo and Yu developed a new method to study the existence and multiplicity of periodic solutions of difference equations by using critical point theory (see [4-6, 18], the existence and multiplicity of periodic solutions for problem (1.1) have been extensively studied and lots of interesting results have been worked out, see $[1-3,7,8,10-17]$ and the references therein. In particular, when the nonlinearity $\nabla F(t, x)$ is bounded, that is, there exists $M>0$ such that $|\nabla F(t, x)| \leqslant M$ for all $(t, x) \in \mathbb{Z}[0, T] \times \mathbb{R}^{N}$, and that

$$
\sum_{\mathrm{t}=0}^{\mathrm{T}} \mathrm{~F}(\mathrm{t}, \mathrm{x}) \rightarrow+\infty \text { as }|\mathrm{x}| \rightarrow \infty
$$

Guo and $\mathrm{Yu}[6]$ obtained one periodic solution to problem (1.1).

[^0]In $[12,13]$, Xue and Tang generalized these results to the sublinear case:

$$
|\nabla F(t, x)| \leqslant M_{1}|x|^{\alpha}+M_{2}, \quad \forall(t, x) \in \mathbb{Z}[0, T] \times \mathbb{R}^{N}
$$

and

$$
|x|^{-2 \alpha} \sum_{t=0}^{T} F(t, x) \rightarrow \pm \infty \text { as }|x| \rightarrow \infty
$$

where $M_{1}>0, M_{2}>0$ and $\alpha \in[0,1)$.
In [10], Tang and Zhang considered the nonlinearity $\nabla \mathrm{F}(\mathrm{t}, \mathrm{x})$ satisfies the following condition:

$$
\begin{equation*}
|\nabla \mathrm{F}(\mathrm{t}, \mathrm{x})| \leqslant \mathrm{f}(\mathrm{t})|\mathrm{x}|^{\alpha}+\mathrm{g}(\mathrm{t}), \quad \forall(\mathrm{t}, \mathrm{x}) \in \mathbb{Z}[0, \mathrm{~T}] \times \mathbb{R}^{\mathrm{N}} \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
|\nabla \mathrm{F}(\mathrm{t}, \mathrm{x})| \leqslant \mathrm{f}(\mathrm{t})|\mathrm{x}|+\mathrm{g}(\mathrm{t}), \quad \forall(\mathrm{t}, \mathrm{x}) \in \mathbb{Z}[0, \mathrm{~T}] \times \mathbb{R}^{\mathrm{N}} \tag{1.3}
\end{equation*}
$$

where $\mathrm{f}, \mathrm{g}: \mathbb{Z}[0, \mathrm{~T}] \rightarrow \mathbb{R}^{+}, \alpha \in(0,1)$. Under these conditions, periodic solutions of problem (1.1) have been obtained, which completed and extended the results in $[12,13]$.

Recently, Che and Xue [1] obtained infinitely many periodic solutions for problem (1.1) when (1.2) holds, and

$$
\begin{equation*}
\limsup _{r \rightarrow+\infty} \inf _{x \in \mathbb{R}^{N},|x|=r} \sum_{t=0}^{T} F(t, x)=+\infty \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{R \rightarrow+\infty} \sup _{x \in \mathbb{R}^{N},|x|=R}|x|^{-2 \alpha} \sum_{t=0}^{T} F(t, x)=-\infty \tag{1.5}
\end{equation*}
$$

where $\alpha \in(0,1)$.
In this paper, motivated by the results mentioned above, we will further investigate infinitely many periodic solutions to the problem (1.1) under conditions (1.2) or (1.3).

Let H_{T} be a Hilbert space defined by

$$
\mathrm{H}_{\mathrm{T}}=\left\{\mathrm{u}: \mathbb{Z} \rightarrow \mathbb{R}^{\mathrm{N}} \mid \mathrm{u}(\mathrm{t})=\mathrm{u}(\mathrm{t}+\mathrm{T}), \forall \mathrm{t} \in \mathbb{Z}\right\}
$$

with the inner product

$$
\langle u, v\rangle=\sum_{t=0}^{\mathrm{T}}(u(\mathrm{t}), v(\mathrm{t}))
$$

and the norm

$$
\|u\|=\left(\sum_{t=0}^{\mathrm{T}}|u(t)|^{2}\right)^{\frac{1}{2}}
$$

Let

$$
\|u\|_{\infty}=\max _{t \in \mathbb{Z}[0, \mathrm{~T}]}|u(\mathrm{t})| .
$$

Since H_{T} is finite dimensional, one has that:

$$
\frac{1}{\sqrt{\mathrm{~T}}}\|u\| \leqslant\|u\|_{\infty} \leqslant\|u\| .
$$

Let

$$
\Phi(\mathrm{u})=\frac{1}{2} \sum_{\mathrm{t}=0}^{\mathrm{T}}|\triangle \mathrm{u}(\mathrm{t})|^{2}-\sum_{\mathrm{t}=0}^{\mathrm{T}} \mathrm{~F}(\mathrm{t}, \mathrm{u}(\mathrm{t})), \quad \forall \mathrm{u} \in \mathrm{H}_{\mathrm{T}}
$$

It is well-known that the solutions of problem (1.1) correspond to the critical points of Φ (see [9]).

Lemma 1.1 ([14]). As a subspace of $\mathrm{H}_{\mathrm{T}}, \mathrm{N}_{\mathrm{k}}$ is defined by

$$
\mathbf{N}_{\mathrm{k}}=\left\{u \in \mathrm{H}_{\mathrm{T}} \mid-\triangle^{2} u(\mathrm{t}-1)=\lambda_{\mathrm{k}} u(\mathrm{t})\right\}
$$

where $\lambda_{k}=2-2 \cos k \omega, \omega=\frac{2 \pi}{T}, k \in \mathbb{Z}\left[0,\left[\frac{T}{2}\right]\right]$ (where $[\mathrm{c}]$ denotes the largest integer less than c). Then we have
(1) $\mathrm{N}_{\mathrm{k}} \perp \mathrm{N}_{\mathrm{j}}$ for $\mathrm{k} \neq \mathrm{j}$ and $\mathrm{j}, \mathrm{k} \in \mathbb{Z}\left[0,\left[\frac{\mathrm{~T}}{2}\right]\right]$.
(2) $\mathrm{H}_{\mathrm{T}}=\oplus_{\mathrm{k}=0}^{\left[\frac{\mathrm{T}}{2}\right]} \mathrm{N}_{\mathrm{k}}$.

Set $\mathrm{H}_{1}=\mathrm{N}_{0}$ and $\mathrm{H}_{2}=\oplus_{\mathrm{k}=1}^{\left[\frac{\mathrm{T}}{2}\right]} \mathrm{N}_{\mathrm{k}}$. Then $\mathrm{H}_{\mathrm{T}}=\mathrm{H}_{1} \oplus \mathrm{H}_{2}$ and

$$
\sum_{\mathrm{t}=0}^{\mathrm{T}}|\triangle \mathrm{u}(\mathrm{t})|^{2} \geqslant \lambda_{1}\|\mathrm{u}\|, \quad \forall \mathrm{u} \in \mathrm{H}_{2}
$$

The element u of H_{1} is just the eigenvector corresponding to $\lambda_{0}=0$ which satisfies $u(t) \equiv u(0)$ for $t \in \mathbb{Z}[0, \mathrm{~T}]$.

Our main results are the following theorems.
Theorem 1.2. Suppose that (A), (1.2) and (1.4) hold, and

$$
\begin{equation*}
\liminf _{r \rightarrow+\infty} \sup _{x \in \mathbb{R}^{N},|x|=r}|x|^{-2 \alpha} \sum_{t=0}^{T} F(t, x)<-\frac{\left(\sum_{t=0}^{T} f(t)\right)^{2}}{2 \lambda_{1}} \tag{1.6}
\end{equation*}
$$

Then
(i) the problem (1.1) has infinitely many periodic solutions $\left\{u_{n}\right\}$ such that $\Phi\left(u_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$;
(ii) the problem (1.1) has infinitely many periodic solutions $\left\{u_{m}^{*}\right\}$ such that $\Phi\left(u_{m}^{*}\right) \rightarrow-\infty$ as $m \rightarrow \infty$.

Theorem 1.3. Suppose that (A), (1.3) with $\sum_{t=0}^{\mathrm{T}} \mathrm{f}(\mathrm{t})<\frac{\lambda_{1}}{4}$ and (1.4) hold, and

$$
\begin{equation*}
\liminf _{r \rightarrow+\infty} \sup _{x \in \mathbb{R}^{N},|x|=r}|x|^{-2} \sum_{t=0}^{T} F(t, x)<-\frac{\left(\sum_{t=0}^{T} f(t)\right)^{2}}{2\left(\lambda_{1}-2 \sum_{t=0}^{T} f(t)\right)} \tag{1.7}
\end{equation*}
$$

Then
(i) the problem (1.1) has infinitely many periodic solutions $\left\{u_{n}\right\}$ such that $\Phi\left(u_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$;
(ii) the problem (1.1) has infinitely many periodic solutions $\left\{u_{m}^{*}\right\}$ such that $\Phi\left(u_{m}^{*}\right) \rightarrow-\infty$ as $m \rightarrow \infty$.

Remark 1.4. Obviously, the condition (1.6) is different from condition (1.5) that of in [1]; Theorem 1.3 is completely new comparing with main result of [1] since we allow $\alpha=1$ although the method using in this paper is same as that of in [1].

2. Proof of main results

Since the proof of Theorem 1.2 is similar to that of Theorem 1.3, we only prove Theorem 1.3.
For the sake of convenience, we denote

$$
\gamma=\sum_{t=0}^{T} f(t), \quad \beta=\sum_{t=0}^{T} g(t)
$$

Lemma 2.1. Suppose that (1.3) with $\sum_{t=0}^{T} f(t)<\frac{\lambda_{1}}{4}$ holds, then

$$
\Phi(u) \rightarrow+\infty \text { as }\|u\| \rightarrow \infty \text { in } \mathrm{H}_{2}
$$

Proof. From (1.3), for all u in H_{2} we have

$$
\begin{aligned}
\Phi(u) & =\frac{1}{2} \sum_{t=0}^{T}|\Delta u(t)|^{2}-\sum_{t=0}^{T} F(t, u(t)) \\
& \geqslant \frac{\lambda_{1}}{2}\|u\|^{2}-\sum_{t=0}^{T} f(t)|u(t)|^{2}-\sum_{t=0}^{T} g(t)|u(t)| \\
& \geqslant \frac{\lambda_{1}}{2}\|u\|^{2}-\|u\|_{\infty}^{2} \sum_{t=0}^{T} f(t)-\|u\|_{\infty} \sum_{t=0}^{T} g(t) \\
& \geqslant \frac{\lambda_{1}}{2}\|u\|^{2}-\|u\|^{2} \sum_{t=0}^{T} f(t)-\|u\|_{t=0}^{T} g(t) \\
& =\left(\frac{\lambda_{1}}{2}-\gamma\right)\|u\|^{2}-\beta\|u\| .
\end{aligned}
$$

So, $\Phi(u) \rightarrow+\infty$ as $\|u\| \rightarrow \infty$ in H_{2}.
Lemma 2.2. Suppose that (1.4) holds. Then there exists positive real sequence $\left\{a_{n}\right\}$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=+\infty \\
& \lim _{n \rightarrow \infty} \sup _{u \in H_{2},\|u\|=a_{n}} \Phi(u)=-\infty .
\end{aligned}
$$

Proof. By (1.4), it is easy to obtain this result, so we omit the detail here.
Lemma 2.3. Suppose that (1.3) with $\sum_{t=0}^{T} f(t)<\frac{\lambda_{1}}{4}$ and (1.7) hold. Then there exists positive real sequence $\left\{\mathbf{b}_{\mathrm{m}}\right\}$ such that

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} b_{m}=+\infty \\
& \lim _{\mathfrak{m} \rightarrow \infty} \inf _{u \in \mathrm{H}_{\mathrm{b}_{\mathrm{m}}}} \Phi(u)=+\infty
\end{aligned}
$$

where $\mathrm{H}_{\mathrm{b}_{\mathrm{m}}}=\left\{\mathrm{u} \in \mathrm{H}_{1}:\|u\|=\mathrm{b}_{\mathrm{m}}\right\} \bigoplus \mathrm{H}_{2}$.
Proof. By (1.7), let $a>\frac{1}{\lambda_{1}-2 \gamma}$ such that

$$
\liminf _{r \rightarrow+\infty} \sup _{x \in \mathbb{R}^{N},|x|=r}|x|^{-2} \sum_{t=0}^{T} F(t, x)<-\frac{a}{2} \gamma^{2}
$$

Let $u \in \mathrm{H}_{\mathrm{b}_{\mathrm{m}}}, \mathrm{u}=\overline{\mathrm{u}}+\widetilde{\mathrm{u}}$, where $\bar{u} \in \mathrm{H}_{1}, \widetilde{\mathrm{u}} \in \mathrm{H}_{2}$. So, we have

$$
\begin{aligned}
\left|\sum_{t=0}^{T} F(t, u(t))-\sum_{t=0}^{T} F(t, \bar{u})\right| & =\left|\sum_{t=0}^{T} \int_{0}^{1} \nabla F(t, \bar{u}(0)+s \widetilde{u}(t), \widetilde{u}(t)) d s\right| \\
& \leqslant \sum_{t=0}^{T} \int_{0}^{1} f(t)|\bar{u}(0)+s \widetilde{u}(t)||\widetilde{u}(t)| d s+\sum_{t=0}^{T} \int_{0}^{1} g(t)|\widetilde{u}(t)| d s \\
& \leqslant \sum_{t=0}^{T} f(t)(|\bar{u}(0)|+|\widetilde{u}(t)|)|\widetilde{\mathfrak{u}}(t)|+\sum_{t=0}^{T} g(t)|\widetilde{u}(t)|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \gamma|\bar{u}(0)|\|\widetilde{u}\|_{\infty}+\gamma\|\widetilde{\mathfrak{u}}\|_{\infty}^{2}+\beta\|\widetilde{u}\|_{\infty} \\
& \leqslant \frac{1}{2 \mathrm{a}}\|\widetilde{\mathfrak{u}}\|_{\infty}^{2}+\frac{a}{2} \gamma^{2}|\overline{\mathfrak{u}}(0)|^{2}+\gamma\|\widetilde{\mathfrak{u}}\|_{\infty}^{2}+\beta\|\widetilde{\mathfrak{u}}\|_{\infty} \\
& \leqslant\left(\frac{1}{2 \mathrm{a}}+\gamma\right)\|\widetilde{\mathfrak{u}}\|^{2}+\frac{a}{2} \gamma^{2}\|\bar{u}\|^{2}+\beta\|\widetilde{\mathfrak{u}}\|
\end{aligned}
$$

for all $u \in \mathrm{H}_{\mathrm{b}_{\mathrm{m}}}$. Therefore, one has that

$$
\begin{aligned}
\Phi(u)= & \frac{1}{2} \sum_{t=0}^{T}|\triangle u(t)|^{2}-\sum_{t=0}^{T} F(t, u(t)) \\
= & \frac{1}{2} \sum_{t=0}^{T}|\triangle \widetilde{u}(t)|^{2}-\left(\sum_{t=0}^{T} F(t, u(t))-\sum_{t=0}^{T} F(t, \bar{u}(t))\right)-\sum_{t=0}^{T} F(t, \bar{u}(t)) \\
\geqslant & \left(\frac{\lambda_{1}}{2}-\frac{1}{2 a}-\gamma\right)\|\widetilde{u}\|^{2}-\beta\|\widetilde{u}\| \\
& -\|\bar{u}\|^{2}\left(\|\bar{u}\|^{-2} \sum_{t=0}^{T} F(t, \bar{u}(t))+\frac{a}{2} \gamma^{2}\right)
\end{aligned}
$$

for all $u \in \mathrm{H}_{\mathrm{b}_{\mathrm{m}}}$. From condition (1.7) and the above inequality the proof is finished.
Now we give the proof of Theorem 1.3.
The proof of Theorem 1.3. Let $\mathrm{B}_{\mathrm{a}_{\mathrm{n}}}$ be a ball in H_{1} with radius a_{n}. Set

$$
\Gamma_{\mathrm{n}}=\left\{\gamma \in \mathrm{C}\left(\mathrm{~B}_{\mathrm{a}_{\mathrm{n}}}, \mathrm{H}_{\mathrm{T}}\right),\left.\gamma\right|_{\partial \mathrm{B}_{\mathrm{a}_{n}}}=\left.\mathrm{Id}\right|_{\partial \mathrm{B}_{\mathrm{a}_{n}}}\right\}
$$

and

$$
c_{n}=\inf _{\gamma \in \Gamma_{n}} \max _{x \in \mathrm{~B}_{a_{n}}} \Phi(\gamma(x))
$$

It is easy to obtain that Φ is coercive on H_{2} from Lemma 2.1. So, there is a constant M such that

$$
\max _{x \in \mathrm{~B}_{a_{n}}} \Phi(\gamma(\mathrm{x})) \geqslant \inf _{\mathrm{u} \in \mathrm{H}_{2}} \Phi(\mathbf{u}) \geqslant M
$$

On the other hand, it is easy to see that $\gamma\left(\mathrm{Ba}_{n}\right) \bigcap \mathrm{H}_{2} \neq \emptyset$ for any $\gamma \in \Gamma_{\mathrm{n}}$. Therefore

$$
c_{n} \geqslant \inf _{u \in \mathrm{H}_{2}} \Phi(u) \geqslant M
$$

By Lemma 2.2, for any large value of n, one has that

$$
c_{n}>\max _{u \in \partial \mathrm{~B}_{a_{n}}} \Phi(u)
$$

For such n, there exists a sequence $\left\{\gamma_{k}\right\}$ in Γ_{n} such that

$$
\max _{x \in \mathrm{~B}_{\mathrm{a}_{n}}} \Phi\left(\gamma_{\mathrm{k}}(x)\right) \rightarrow \mathrm{c}_{\mathrm{n}}, \quad \mathrm{k} \rightarrow \infty
$$

Applying [9, Theorem 4.3 and Corollary 4.3], there exists a sequence $\left\{v_{k}\right\}$ in H_{T} satisfying

$$
\Phi\left(v_{\mathrm{k}}\right) \rightarrow \mathrm{c}_{\mathrm{n}}, \quad \operatorname{dist}\left(v_{\mathrm{k}}, \gamma_{\mathrm{k}}\left(\mathrm{~B}_{\mathrm{a}_{\mathrm{n}}}\right)\right) \rightarrow 0, \quad \Phi^{\prime}\left(v_{\mathrm{k}}\right) \rightarrow 0
$$

as $k \rightarrow \infty$. So, for any large enough k, one has that

$$
c_{n} \leqslant \max _{x \in B_{a_{n}}} \Phi\left(\gamma_{k}(x)\right) \leqslant c_{n}+1
$$

and there exists $w_{k} \in \gamma_{k}\left(B_{a_{n}}\right)$ such that

$$
\left\|v_{\mathrm{k}}-w_{\mathrm{k}}\right\| \leqslant 1
$$

For fix n, by Lemma 2.3, let m be large enough such that

$$
\mathrm{b}_{\mathfrak{m}}>\mathrm{a}_{\mathfrak{n}}, \quad \text { and } \inf _{u \in \mathrm{H}_{\mathrm{b}_{\mathfrak{m}}}} \Phi(u)>\mathrm{c}_{\mathfrak{n}}+1
$$

This implies that $\gamma\left(\mathrm{B}_{\mathrm{a}_{n}}\right)$ cannot intersect the hyperplane $\mathrm{H}_{\mathrm{b}_{\mathrm{m}}}$ for each k.
Let $w_{k}=\bar{w}_{k}+\widetilde{w}_{k}$, where $\bar{w}_{k} \in \mathrm{H}_{1}$ and $\widetilde{w}_{k} \in \mathrm{H}_{2}$. Then we have $\left|\bar{w}_{k}\right|<b_{m}$ for each k.
From (1.3), we have that

$$
\begin{aligned}
c_{n}+1 & \geqslant \Phi\left(w_{k}\right)=\frac{1}{2} \sum_{t=0}^{T}\left|\Delta w_{k}(t)\right|^{2}-\sum_{t=0}^{T} F\left(t, w_{k}(t)\right) \\
& \geqslant \frac{\lambda_{1}}{2}\left\|\widetilde{w}_{k}\right\|^{2}-\sum_{t=0}^{T} f(t)\left|w_{k}(t)\right|^{2}-\sum_{t=0}^{T} g(t)\left|w_{k}(t)\right| \\
& \geqslant \frac{\lambda_{1}}{2}\left\|\widetilde{w}_{k}\right\|^{2}-2 \sum_{t=0}^{T} f(t)\left[\left|\bar{w}_{k}(0)\right|^{2}+\left|\widetilde{w}_{k}(t)\right|^{2}\right]-\sum_{t=0}^{T} g(t)\left(\left|\bar{w}_{k}(0)\right|+\left|\widetilde{w}_{k}(t)\right|\right) \\
& \geqslant\left(\frac{\lambda_{1}}{2}-2 \gamma\right)\left\|\widetilde{w}_{k}\right\|^{2}-2 b_{m}^{2} \gamma-\left\|\widetilde{w}_{k}\right\| \beta-b_{m} \beta
\end{aligned}
$$

Therefore $\widetilde{w}_{k}(t)$ is bounded. Hence, w_{k} is bounded since $\left\|w_{k}\right\| \leqslant C\left(\left\|\widetilde{w}_{k}\right\|+\left\|\bar{w}_{k}\right\|\right)$. Also, $\left\{v_{k}\right\}$ is bounded in H_{T}.

From the fact that H_{\top} is finite dimensional, we know there is a subsequence, which is still be denoted by $\left\{v_{k}\right\}$ such that $\left\{v_{k}\right\}$ converges to some point u_{n}. Therefore, in view of the continuity of Φ and Φ^{\prime}, it is easy to see that accumulation point u_{n} of $\left\{v_{k}\right\}$ is a critical point and c_{n} is a critical value of Φ.

Let n large enough such that $a_{n}>b_{m}$, then $\gamma\left(B_{a_{n}}\right)$ intersects the hyperplane $H_{b_{m}}$ for any $\gamma \in \Gamma_{n}$. It follows that

$$
\max _{x \in B_{a_{n}}} \Phi(\gamma(x)) \geqslant \inf _{u \in \mathcal{H}_{b_{m}}} \Phi(u)
$$

In view of above inequality and Lemma 2.3, we get $\lim _{n \rightarrow \infty} c_{n}=+\infty$. So, the proof of first result of Theorem 1.3 is finished.

Next, we prove (ii) of Theorem 1.3.
For fixed m, let

$$
P_{m}=\left\{u \in H_{\top}: u=\bar{u}+\widetilde{u},|\bar{u}| \leqslant b_{m}, \widetilde{u} \in H_{2}\right\} .
$$

For $u \in P_{m}$, one has that

$$
\begin{align*}
\Phi(u) & =\frac{1}{2} \sum_{t=0}^{T}|\triangle u(t)|^{2}-\sum_{t=0}^{T} F(t, u(t)) \\
& \geqslant \frac{\lambda_{1}}{2}\|\widetilde{\mathfrak{u}}\|^{2}-\sum_{t=0}^{T} f(t)|u(t)|^{2}-\sum_{t=0}^{T} g(t)|u(t)| \tag{2.1}\\
& \geqslant \frac{\lambda_{1}}{2}\|\widetilde{\mathfrak{u}}\|^{2}-2 \sum_{t=0}^{T} f(t)\left[|\bar{u}(0)|^{2}+|\widetilde{\mathfrak{u}}(t)|^{2}\right]-\sum_{t=0}^{T} g(t)(|\bar{u}(0)|+|\widetilde{\mathfrak{u}}(t)|) \\
& \geqslant\left(\frac{\lambda_{1}}{2}-2 \gamma\right)\|\widetilde{\mathfrak{u}}\|^{2}-2 b_{m}^{2} \gamma-\|\widetilde{u}\| \beta-b_{m} \beta
\end{align*}
$$

So, Φ is bounded below on P_{m}. Let

$$
\mu_{\mathrm{m}}=\inf _{u \in \mathrm{P}_{\mathrm{m}}} \Phi(u)
$$

and choose a minimizing sequence $\left\{u_{k}\right\}$ in P_{m}, that is

$$
\Phi\left(u_{k}\right) \rightarrow \mu_{\mathrm{m}} \text { as } \mathrm{k} \rightarrow \infty .
$$

According to (2.1), $\left\{u_{\mathrm{k}}\right\}$ is bounded in H_{T}. Then there exists a subsequence, which is still be denoted by $\left\{\mathfrak{u}_{k}\right\}$ such that

$$
\mathfrak{u}_{\mathrm{k}} \rightharpoonup \mathfrak{u}_{\mathrm{m}}^{*} \text { weakly in } \mathrm{H}_{\mathrm{T}} .
$$

Since P_{m} is a convex closed subset of H_{T} and Φ is weakly lower semicontinuous, $u_{m}^{*} \in P_{m}$ and

$$
\mu_{\mathrm{m}}=\lim _{\mathrm{k} \rightarrow \infty} \Phi\left(\mathfrak{u}_{\mathrm{k}}\right) \geqslant \Phi\left(\mathfrak{u}_{\mathrm{m}}^{*}\right) .
$$

By $u_{m}^{*} \in P_{m}$,

$$
\mu_{\mathrm{m}}=\Phi\left(\mathrm{u}_{\mathrm{m}}^{*}\right) .
$$

Let $u_{\mathfrak{m}}^{*}=\bar{u}_{\mathfrak{m}}^{*}+\widetilde{\mathfrak{u}}_{\mathfrak{m}}^{*}$. In view of Lemma 2.2 and Lemma 2.3, $\left|\overline{\mathfrak{u}}_{\mathfrak{m}}^{*}\right| \neq \mathrm{b}_{\mathfrak{m}}$ for large \mathfrak{m}, i.e., $\mathfrak{u}_{\mathrm{m}}^{*}$ is in the interior of P_{m}. Then $\mathrm{u}_{\mathrm{m}}^{*}$ is a local minimum of functional. So, we have

$$
\Phi\left(\mathfrak{u}_{\mathfrak{m}}^{*}\right)=\inf _{\mathfrak{u} \in \mathrm{P}_{\mathfrak{m}}} \Phi(\mathfrak{u}) \leqslant \sup _{|\mathfrak{u}|=\mathbf{b}_{\mathfrak{m}}} \Phi(\mathfrak{u}) .
$$

Then from Lemma 2.2 we see that $\Phi\left(u_{\mathrm{m}}^{*}\right) \rightarrow-\infty$ as $\mathrm{m} \rightarrow \infty$. Therefore, the proof is finished.

Acknowledgment

The authors express their sincere thanks to the reviewers and editor for the useful suggestions to improve the paper.

References

[1] C.-F. Che, X.-P. Xue, Infinitely many periodic solutions for discrete second-order Hamiltonian systems with oscillating potential, Adv. Difference Equ., 2012, (2012), 9 pages. 1, 1, 1.4
[2] X.-Q. Deng, H. Shi, X.-L. Xie, Periodic solutions of second order discrete Hamiltonian systems with potential indefinite in sign, Appl. Math. Comput., 218 (2011), 148-156.
[3] H. Gu, T.-Q. An, Existence of periodic solutions for a class of second-order discrete Hamiltonian systems, J. Difference Equ. Appl., 21 (2015), 197-208. 1
[4] Z.-M. Guo, J.-S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515. 1
[5] Z.-M. Guo, J.-S. Yu, Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems, Nonlinear Anal., 55 (2003), 969-983.
[6] Z.-M. Guo, J.-S. Yu, The existence of periodic and subharmonic solutions of subquadratic second-order difference equations, J. London Math. Soc., 68 (2003), 419-430. 1, 1
[7] Z.-M. Guo, J. S. Yu, Multiplicity results for periodic solutions to second-order difference equations, J. Dyn. Diff. Equ., 18 (2006), 943-960. 1
[8] X.-Y. Lin, X. H. Tang, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems, J. Math. Anal. Appl., 373 (2011), 59-72. 1
[9] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, (1989). 1, 2
[10] X. H. Tang, X.-Y. Zhang, Periodic solutions for second-order discrete Hamiltonian systems, J. Difference Equ. Appl., 17 (2011), 1413-1430. 1, 1
[11] D.-B. Wang, H.-F. Xie, W. Guan, Existence of periodic solutions for nonautonomous second-order discrete Hamiltonian systems, Adv. Difference Equ., 2016 (2016), 7 pages.
[12] Y.-F. Xue, C.-L. Tang, Existence and multiplicity of periodic solution for second-order discrete Hamiltonian systems, J. Southwest China Normal Uni., 31 (2006), 7-12. 1, 1
[13] Y.-F. Xue, C.-L. Tang, Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear Anal., 67 (2007), 2072-2080. 1, 1
[14] Y.-F. Xue, C.-L. Tang, Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems, Appl. Math. Comput., 196 (2008), 494-500. 1.1
[15] S.-H. Yan, X.-P. Wu, C.-L. Tang, Multiple periodic solutions for second-order discrete Hamiltonian systems, Appl. Math. Comput., 234 (2014), 142-149.
[16] L. Yuhua, Multiplicity results for periodic solutions with prescribed minimal periods to discrete Hamiltonian systems, J. Difference Equ. Appl., 17 (2011), 1499-1518.
[17] X. Zhang, Multibump solutions of a class of second-order discrete Hamiltonian systems, Appl. Math. Comput., 236 (2014), 129-149. 1
[18] Z. Zhou, J.-S. Yu, Z.-M. Guo, Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect., 134 (2004), 1013-1022. 1

[^0]: *Corresponding author
 Email addresses: wangdb96@163.com (Da-Bin Wang), 1063838122@qq. com (Qin Xiao), mathguanw@163.com (Wen Guan) doi:10.22436/jnsa.010.11.26

