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Abstract
We develop an SIR vector-bone epidemic model incorporating incubation time delay and the nonlinear incidence rate,

where the growth of susceptibles is governed by the logistic equation. The threshold parameter R0 is used to determine whether
the disease persists in the population. The model always has the trivial equilibrium and the disease-free equilibrium whereas
admits the endemic equilibrium if R0 exceeds one. The disease-free equilibrium is globally asymptotically stable if R0 is less than
one, while the system is persistent if R0 is greater than one. Furthermore, by applying the time delay as a bifurcation parameter,
the local stability of the endemic equilibrium is discussed and it loses stability and Hopf bifurcation occurs as the length of the
time delay increases past τ0 under certain conditions. An example is carried out to illustrate the main results. c©2017 All rights
reserved.
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1. Introduction

In recent years, numerous dynamic models of infectious diseases have received more and more atten-
tion. To better understand the transmission pattern of infectious diseases, a myriad of excellent results
have been developed (see [1–6, 9–12, 14–17, 19–29] and references therein). Recently, based on the clas-
sical SIR epidemic model, Takeuchi et al. [19] formulated a delayed SIR epidemic model with bilinear
incidence rate in order to investigate the spread of the vector-bone diseases, and McCluskey [15] studied
the global stability of equilibria. Later, Wang et al. [24] analyzed the following SIR vector-bone disease
model with incubation time delay and logistic growth rate with carrying capacity K:

dS(t)

dt
= rS(t)

(
1 −

S(t)

K

)
−βS(t)I(t− τ),

dI(t)

dt
= βS(t)I(t− τ) − (µ1 + δ)I(t),

dR(t)

dt
= δI(t) − µ2R(t).

(1.1)

∗Corresponding author
Email addresses: lujuliu@126.com (Luju Liu), wangyan@upc.edu.cn (Yan Wang)

doi:10.22436/jnsa.010.11.21

Received 2016-07-15

http://dx.doi.org/10.22436/jnsa.010.11.21


L. Liu, Y. Wang, J. Nonlinear Sci. Appl., 10 (2017), 5834–5845 5835

S(t), I(t), and R(t) are the numbers of susceptible, infective, and recovered host individuals at time
t, respectively. r denotes the intrinsic birth rate. β denotes the average number of contacts per infective
per unit time. τ is the incubation time. µ1 and µ2 represent the death rate of infective and recovered,
respectively. δ is the recovered rate of infective individuals. All the parameters are positive constants.
The dynamic properties of system (1.1) was established. More precisely, the disease-free equilibrium
is globally asymptotically stable if the basic reproduction number R0 < 1; while the unique endemic
equilibrium is absolutely stable if 1 < R0 < 3, and it is conditionally stable when R0 > 3. Moreover, Hopf
bifurcation occurs under some conditions.

Enatsu et al. [4] extended system (1.1) and proposed the following vector-bone disease model with
nonlinear incidence rate:

dS(t)

dt
= rS(t)

(
1 −

S(t)

K

)
−βS(t)G(I(t− τ)),

dI(t)

dt
= βS(t)G(I(t− τ)) − (µ1 + δ)I(t),

dR(t)

dt
= δI(t) − µ2R(t),

(1.2)

where the parameters have the same biological meaning as that defined in model (1.1). The stability of
model (1.2) was investigated. If R0 is less than one, the disease-free equilibrium is globally asymptotically
stable; while the unique endemic equilibrium may be absolutely stable or conditionally stable depending
on the relationship between R0 and one. Furthermore, the model (1.2) exhibits bifurcation properties as
the length of the delay increases past a critical value provided that 1 < R0 < R0.

Liu [14] also considered another extended epidemic model based on the consideration of some bio-
logical meaning:

dS(t)

dt
= rS(t)

(
1 −

S(t)

K

)
−βF(S(t))I(t− τ),

dI(t)

dt
= βF(S(t))I(t− τ) − (µ1 + δ)I(t),

dR(t)

dt
= δI(t) − µ2R(t).

(1.3)

Liu [14] discussed the dynamic behaviors of system (1.3). The trivial equilibrium is always unstable, and
the disease-free equilibrium is stable if the basic reproduction number is less than one. Furthermore, the
endemic equilibrium may lose its stability under certain conditions if the basic reproduction number is
greater than one, which admits periodic behavior.

Inspired by the works of Wang et al. [24], Enatsu et al. [4], Zhang et al. [28], and Liu [14], it is
reasonable to construct a more realistic disease model with the general nonlinear incidence rate of the

form
βS(t)I(t− τ)

1 +α1S(t) +α2I(t− τ)
. Then the delayed SIR vector-bone disease model can be written as

dS(t)

dt
= rS(t)

(
1 −

S(t)

K

)
−

βS(t)I(t− τ)

1 +α1S(t) +α2I(t− τ)
,

dI(t)

dt
=

βS(t)I(t− τ)

1 +α1S(t) +α2I(t− τ)
− (µ1 + δ)I(t),

dR(t)

dt
= δI(t) − µ2R(t),

(1.4)

where α1 and α2 are constants in order to illustrate the saturation effects.
Notice that if α1 = α2 = 0, system (1.4) becomes the model investigated by Wang et al. [24]. If α2 = 0,

the incidence rate becomes the saturated one [25, 28]. If α1 = 0, system (1.4) reduces to an example given
by Enatsu et al. [4].
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We introduce the non-dimensional quantities by writing

S̃(t̃) =
S(t)

K
, Ĩ(t̃) =

I(t)

K
, R̃(t̃) =

R(t)

K
, t̃ = βKt, τ̃ = βKτ,

and
r̃ =

r

βK
, µ̃1 =

µ1

βK
, δ̃ =

δ

βK
, µ̃2 =

µ2

βK
, α̃1 = Kα1, α̃2 = Kα2,

which on substituting into (1.4) becomes

dS(t)

dt
= rS(t)(1 − S(t)) −

S(t)I(t− τ)

1 +α1S(t) +α2I(t− τ)
,

dI(t)

dt
=

S(t)I(t− τ)

1 +α1S(t) +α2I(t− τ)
− (µ1 + δ)I(t),

dR(t)

dt
= δI(t) − µ2R(t),

(1.5)

where, for notational simplicity, we have omitted the ˜on all variables and parameters.
The initial conditions of system (1.5) take the following form

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ), φi(0) > 0, i = 1, 2, 3, (1.6)

where (φ1(θ),φ2(θ),φ3(θ))∈C([−τ, 0], R3
+), here R3

+ = {(x1, x2, x3), xi > 0, i = 1, 2, 3}. The fundamental
theory of functional differential equations [7] implies that system (1.5) has a unique nonnegative solution
(S(t), I(t),R(t)) satisfying the initial conditions (1.6). We define the basic reproduction number by

R0 =
1

(µ1 + δ)(1 +α1)
.

The rest of the paper is structured as follows. In Section 2, the stabilities of the trivial equilibrium
and the disease-free equilibrium are described. In Section 3, we consider the permanence for system (1.5)
when R0 > 1. Section 4 deals with the existence and stability of the endemic equilibrium. A numerical
example is given in Section 5 followed by a brief conclusion in Section 6.

2. Stabilities of the trivial equilibrium and the disease-free equilibrium

In this section, we are only concerned with the stabilities of the trivial equilibrium and the disease-free
equilibrium when R0 < 1. It is straightforward to see that E0(0, 0, 0) is a trivial equilibrium and E1(1, 0, 0)
is a disease-free equilibrium from (1.5).

Theorem 2.1. The trivial equilibrium E0(0, 0, 0) of system (1.5) is always unstable.

Proof. For the equilibrium E0, the characteristic equation is of the form

(λ+ µ2)(λ− r)(λ+ µ1 + δ) = 0. (2.1)

It is easy to see that one of the eigenvalues in equation (2.1) is λ = r > 0. This in turn implies the
equilibrium E0 is unstable.

Theorem 2.2. If R0 < 1, the disease-free equilibrium E1(1, 0, 0) of system (1.5) is globally asymptotically stable;
while if R0 > 1, the disease-free equilibrium E1 of system (1.5) is unstable.

Proof. First we assume that R0 < 1. The characteristic equation about the equilibrium E1 becomes as
follows

(λ+ µ2)(λ+ r)(λ+ µ1 + δ−
e−λτ

1 +α1
) = 0. (2.2)

It is clear that the equation (2.2) has solutions λ = −µ2 < 0, λ = −r < 0 and the solution of the transcen-
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dental equation

λ+ µ1 + δ−
e−λτ

1 +α1
= 0.

Let G(λ) = λ+ µ1 + δ−
e−λτ

1 +α1
. Suppose Re(λ)>0, then G(λ) = 0 implies

Re(λ) =− (µ1 + δ) +
1

1 +α1
e−Re(λ)τ cos Im(λ)τ

=(µ1 + δ)[R0e
−Re(λ)τ cos Im(λ)τ− 1]

6(µ1 + δ)(R0e
−Re(λ)τ − 1)

6(µ1 + δ)(R0 − 1),

which is a contradiction because of the fact that R0 < 1. Then if follows that E1 is locally asymptotically
stable.

An easy way to see the global attractivity of equilibrium E1 when R0 < 1 is to consider the following
Lyapunov functional,

V(t) =
1

1 +α1
(S(t) − 1 − ln(S(t))) + (µ1 + δ)

∫ 0

−τ
I(t+ θ)dθ+ I(t).

Calculating the time derivative of V(t) along with the solution of system (1.5), we obtain

V̇(t)|(1.5) =
1

1 +α1
(1 −

1
S(t)

)Ṡ(t) + (µ1 + δ)I(t) − (µ1 + δ)I(t− τ) + İ(t).

Using the first two equations of system (1.5) gives

V̇(t)|(1.5) =
−r(S(t) − 1)2

1 +α1
+

I(t− τ)(1 +α1S(t))

(1 +α1)(1 +α1S(t) +α2I(t− τ))
− (µ1 + δ)I(t− τ)

6
−r(S(t) − 1)2

1 +α1
+
I(t− τ)

(1 +α1)
− (µ1 + δ)I(t− τ)

=
−r(S(t) − 1)2

1 +α1
+ (µ1 + δ)I(t− τ)(R0 − 1)60.

Lyapunov-LaSalle asymptotic stability theorem implies limt→∞ S(t) = 1 if R0 < 1. By the second and third
equations of system (1.5), it follows from limt→∞ S(t) = 1 that limt→∞ I(t) = 0 and limt→∞ R(t) = 0. Thus
equilibrium E1 is globally asymptotically stable if R0 < 1.

Next we focus on the instability of equilibrium E1 when R0 > 1. If R0 > 1, then G(0) = (µ1 + δ)(1 −
R0) < 0. When λ tends to infinity, G(λ) approaches infinity as well. Then G(λ) = 0 has at least one positive
solution. Hence E1 is unstable.

3. Permanence

In this section, the permanence for system (1.5) is obtained. Before the main results are established,
we give the following lemmas first.

Lemma 3.1 ([13]). Consider the following equation

u ′(t) = au(t− τ) − bu(t),

where a, b, τ > 0 and u(t) > 0 for −τ6t60. We have
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(i) if a < b, then lim
t→∞u(t) = 0;

(ii) if a > b, then lim
t→∞u(t) = +∞.

Lemma 3.2. All the solutions of system (1.5) satisfying conditions (1.6) are always nonnegative and ultimately
bounded.

Proof. By the first equation of the system (1.5), we have Ṡ(t)6r(1 − S(t))S(t), which implies

lim sup
t→∞ S(t)61.

Then for sufficiently large t, adding the equations for system (1.5) yields

d(S(t) + I(t) + R(t))

dt
=rS(t)(1 − S(t)) − µ1I(t) − µ2R(t)

6rS(t) − µ1I(t) − µ2R(t)

=(r+ 1)S(t) − S(t) − µ1I(t) − µ2R(t)

6(r+ 1)S(t) − µm(S(t) + I(t) + R(t))

6(r+ 1) − µm(S(t) + I(t) + R(t)).

Then we have lim supt→∞(S(t) + I(t) + R(t))6
r+ 1
µm

. Then all the solutions of system (1.5) are ultimately

bounded, which completes the proof.

By the third equation of system (1.5), it is easy to get Lemma 3.3.

Lemma 3.3. Permanence of S(t), I(t) in system (1.5) implies that of R(t).

Before introducing the main theorem, some notations and a lemma are presented firstly from [8]. Let
X := C+([−τ, 0], R2

+) be the space of continuous functions from [−τ, 0] to R2
+. Define

X1 = {(φ1,φ2)∈X : φ1(θ) = 0, θ∈[−τ, 0]},
X2 = {(φ1,φ2)∈X : φ1(θ) > 0,φ2(θ) = 0, θ∈[−τ, 0]}.

Denote X0 = X1∪X2, X0 = X/X0. Denote T(t) for t > 0 as the solution operators corresponding to system
(1.5). The ω-limit set is defined as ω(x) := {y∈X : there is a sequence tn→∞ as n→∞ such that T(tn)x→y
as n→∞}. Then we have the following lemma.

Lemma 3.4. Suppose we have the following:

(i) the solution operators T(t) satisfy T(t) : X0→X0; T(t) : X0→X0;

(ii) X0 is open and dense in X with X = X0∪X0 and X = X0∩X0 = ∅;

(iii) T(t) is asymptotically smooth;

(iv) T(t) is point dissipative in X;

(v) γ+(U) is bounded in X if U is bounded in X, where γ+(x) is the positive orbit through x;

(vi) Ω = ∪
x∈Y

ω(x) is isolated and has an acyclic covering M, where Y is the global attractor of T(t) restricted to

X0 and M = ∪ki=1Mi;

(vii) for each Mi∈M, Ws(Mi)∩X0 = ∅, where Ws refers to the stable set.

Then T(t) is uniformly persistent, i.e., there is an η > 0 such that for any x∈X0, lim inf
t→∞ d(T(t)x,X0)>η.
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Theorem 3.5. If R0 > 1, there exists an η > 0 such that any solution (S(t), I(t)) of system (3.1) with initial value
(S0, I0)∈X0 satisfies lim inf

t→∞ S(t) > η, and lim inf
t→∞ I(t) > η.

Proof. Obviously, it is sufficient to consider the following subsystem of system (1.5) and the persistence of
(S(t), I(t)) for system (3.1) when R0 > 1:

dS(t)

dt
= rS(t)(1 − S(t)) −

S(t)I(t− τ)

1 +α1S(t) +α2I(t− τ)
,

dI(t)

dt
=

S(t)I(t− τ)

1 +α1S(t) +α2I(t− τ)
− (µ1 + δ)I(t),

(3.1)

where S(θ), I(θ)>0 are continuous on the interval [−τ, 0], and S(0), I(0) > 0.
By Lemma 3.2, it is straightforward to see that (i)-(v) of Lemma 3.4 always hold. Thus, we only need

to verify the conditions (vi) and (vii). To do this, set

M∂ := {φ∈X0 : T(t)φ satisfies system (3.1) and T(t)φ∈X0,∀t>0}.

We first show that
M∂ = {Ẽ0, Ẽ1}.

System (3.1) has two equilibria in X0: Ẽ0∈X1, Ẽ1∈X2 with

Ẽ0 = {(φ1,φ2)∈X : φ1(θ) ≡ φ2(θ) ≡ 0, θ∈[−τ, 0]},
Ẽ1 = {(φ1,φ2)∈X : φ1(θ) ≡ 1,φ2(θ) ≡ 0, θ∈[−τ, 0]},

and we get Ṡ(t)|(φ1,φ2)∈X1 ≡ 0, then we obtain S(t)|(φ1,φ2)∈X1 ≡ 0 for any t>0. The second equation of
system (3.1) implies İ(t)|(φ1,φ2)∈X1 = −(µ1 + δ)I(t)60, hence all the points in X1 tend to Ẽ0, that is to say,
X1 = Ws(Ẽ0). Similarly, we have all the points in X2 approach Ẽ1, that is to say, X2 = Ws(Ẽ1). Those
show that the invariant sets Ẽ0 and Ẽ1 are isolated, then {Ẽ0, Ẽ1} is isolated and is an acyclic covering. Let
Ω = ∪

x∈Y
ω(x), where Y is the global attractor of T(t) restricted to X0. It is easy to see that Ω = {Ẽ0, Ẽ1}.

Therefore, the condition (vi) of Lemma 3.4 is satisfied.
Next, we show that Ws(Ẽi)∩X0 = ∅, i = 0, 1. It is sufficient to prove that Ws(Ẽ1)∩X0 = ∅ because the

proof for Ws(Ẽ0)∩X0 = ∅ is analogous.
Suppose that on the contrary, i.e., Ws(Ẽ1)∩X0 6= ∅, then there is a positive solution (S(t), I(t))∈X0 of

system (3.1) with lim
t→∞(S(t), I(t)) = (1, 0). Therefore there exists a sufficiently small ε > 0 and a positive

constant T = T(ε) such that

S(t) > 1 − ε > 0, 0 < I(t) < ε, ∀t>T , µ1 + δ <
1 − ε

1 +α1(1 − ε) +α2ε

because of R0 = 1
(µ1+δ)(1+α1)

> 1.
By the second equation of (3.1), we have

İ(t) >
1 − ε

1 +α1(1 − ε) +α2ε
I(t− τ) − (µ1 + δ)I(t), ∀t>T + τ. (3.2)

Now consider the following comparison system

ż(t) =
1 − ε

1 +α1(1 − ε) +α2ε
z(t− τ) − (µ1 + δ)z(t), ∀t>T + τ,

z(t) = I(t) > 0 for T6t6T + τ.
(3.3)

By applying Lemma 3.1 and the second equation of (3.3), we get lim
t→∞ z(t) = +∞. System (3.2) together

with the comparison principle [18] implies I(t)>z(t) for all t>T . Hence, lim
t→∞ I(t) = +∞, which contradicts

I(t) < ε for all t>T + τ. Then Ws(Ẽ1)∩X0 = ∅ holds. By applying Lemma 3.4 we obtain that for some
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constant η > 0
lim inf
t→∞ S(t) > η, and lim inf

t→∞ I(t) > η,

which completes the proof of Theorem 3.5.

4. The uniqueness and stability of the endemic equilibrium

In this section, we are about to concentrate particularly on the uniqueness and stability of the endemic
equilibrium, and Hopf bifurcation as well when R0 > 1.

Theorem 4.1. If R0 > 1, system (1.5) admits exactly one endemic equilibrium E∗(S
∗, I∗,R∗), where

S∗ =
(µ1 + δ)α1 +α2r− 1 +

√
[(µ1 + δ)α1 +α2r− 1]2 + 4α2r(µ1 + δ)

2α2r
, 0 < S∗ < 1,

I∗ =
rS∗(1 − S∗)

µ1 + δ
, R∗ =

δ

µ2
I∗.

Proof. At the endemic equilibrium E∗, it follows from the first equation of the system (1.5) that

r(1 − S∗) =
I∗

1 +α1S∗ +α2I∗
. (4.1)

The second equation of the system (1.5) gives

µ1 + δ =
S∗

1 +α1S∗ +α2I∗
. (4.2)

Equation (4.1) divided by equation (4.2) yields

I∗ =
rS∗(1 − S∗)

µ1 + δ
, (4.3)

which on substituting into the equation (4.2) gives S∗ as solutions of the quadratic equation

α2r(S
∗)2 + (1 −α1(µ1 + δ) −α2r)S

∗ − (µ1 + δ) = 0. (4.4)

Let H(S) = α2rS
2 + (1 − α1(µ1 + δ) − α2r)S− (µ1 + δ). It is a straightforward matter to calculate H(0) =

−(µ1 + δ) < 0, then equation H(S) = 0 has one negative real root and one positive real root. Observe that
H(1) = (α1 + 1)(µ1 + δ)(R0 − 1) > 0 since R0 > 1. Therefore H(S) = 0 has exactly one positive solution
S∗ ∈ (0, 1). To be specific, S∗ satisfies

S∗ =
(µ1 + δ)α1 +α2r− 1 +

√
[(µ1 + δ)α1 +α2r− 1]2 + 4α2r(µ1 + δ)

2α2r
.

It is not difficult to compute the expression R∗ from system (1.5) at the endemic equilibrium E∗.

The characteristic equation at endemic equilibrium E∗(S
∗, I∗,R∗) can be turned into

(λ+ µ2)[λ
2 + aλ+ b− e−λτ(cλ+ d)] = 0,

where

a = µ1 + δ− r(1 − 2S∗) +
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 ,

b = (µ1 + δ)[
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 − r(1 − 2S∗)],

c =
S∗(1 +α1S

∗)

(1 +α1S∗ +α2I∗)2 , d = −r(1 − 2S∗)
S∗(1 +α1S

∗)

(1 +α1S∗ +α2I∗)2 .

(4.5)

Then the eigenvalues at E∗ are −µ2 and the solutions of the following equation:

λ2 + aλ+ b− e−λτ(cλ+ d) = 0. (4.6)
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Proposition 4.2. Assume R0 > 1 and b+ d>0, then all the solutions of equation (4.6) have negative real part for
τ = 0.

Proof. If incubation time delay τ = 0, equation (4.6) yields

λ2 + (a− c)λ+ (b− d) = 0.

It follows from equations (4.2) and (4.3) that

b− d = (µ1 + δ)[
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 − r(1 − 2S∗)] + r(1 − 2S∗)
S∗(1 +α1S

∗)

(1 +α1S∗ +α2I∗)2

=
rS∗(1 − S∗ +α2S

∗I∗)

(1 +α1S∗ +α2I∗)2 > 0,

a− c = (µ1 + δ) − r(1 − 2S∗) +
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 −
S∗(1 +α1S

∗)

(1 +α1S∗ +α2I∗)2

=
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 − [r(1 − 2S∗) −
(µ1 + δ)α2I

∗

1 +α1S∗ +α2I∗
],

b+ d = (µ1 + δ)[
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 − r(1 − 2S∗)] − r(1 − 2S∗)
S∗(1 +α1S

∗)

(1 +α1S∗ +α2I∗)2

= (µ1 + δ)[
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 − r(1 − 2S∗)
(2 + 2α1S

∗ +α2I
∗)

1 +α1S∗ +α2I∗
].

Next we pay attention to the following scenarios: (I) S∗>0.5 and (II) S∗ < 0.5. In case (I), from the
above-mentioned equations, we clearly have b+d > 0 and a− c > 0. In case (II), if b+d>0, then we have

I∗(1 +α2I
∗)

(1 +α1S∗ +α2I∗)2>r(1 − 2S∗)
(2 + 2α1S

∗ +α2I
∗)

1 +α1S∗ +α2I∗
.

It is easy to see that

r(1 − 2S∗)
(2 + 2α1S

∗ +α2I
∗)

1 +α1S∗ +α2I∗
> r(1 − 2S∗) > r(1 − 2S∗) −

(µ1 + δ)α2I
∗

1 +α1S∗ +α2I∗
.

Therefore, we get
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 > r(1 − 2S∗) −
(µ1 + δ)α2I

∗

1 +α1S∗ +α2I∗
,

which proves the theorem.

Proposition 4.3. Assume R0 > 1, then the following statements hold.

(i) If (1 + 3α1(µ1 + δ) − α2r)S
∗ + (µ1 + δ)(2 − α1) + α2r− 1>0, then all the solutions of equation (4.6) have

negative real part for τ > 0.

(ii) If (1 + 3α1(µ1 + δ) − α2r)S
∗ + (µ1 + δ)(2 − α1) + α2r − 1 < 0, then there exists a monotone increasing

sequence {τn}
∞
n=0 with τ0 > 0 such that equation (4.6) has a pair of imaginary roots for τ = τn(n =

0, 1, 2, · · · ).

Proof. Suppose that λ = iω (ω > 0) is a solution of equation (4.6). We substitute λ = iω into equation
(4.6) to get

−ω2 + iaω+ b− (cosωτ− i sinωτ)(icω+ d) = 0.

Equating real and imaginary parts gives

−ω2 + b = d cosωτ+ cω sinωτ, aω = cω cosωτ− d sinωτ. (4.7)
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Squaring and adding both equations in equation (4.7), we obtain

ω4 + (a2 − 2b− c2)ω2 + b2 − d2 = 0. (4.8)

By equation (4.5), we get

a2 − 2b− c2 =
(µ1 + δ)α2I

∗

1 +α1S∗ +α2I∗
((µ1 + δ) +

S∗(1 +α1S
∗)

(1 +α1S∗ +α2I∗)2 )

+ (r(1 − 2S∗) −
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 )
2 > 0,

and

b− d =
rS∗(1 − S∗ +α2S

∗I∗)

(1 +α1S∗ +α2I∗)2 > 0,

b+ d = (µ1 + δ)[
I∗(1 +α2I

∗)

(1 +α1S∗ +α2I∗)2 − r(1 − 2S∗)
(2 + 2α1S

∗ +α2I
∗)

1 +α1S∗ +α2I∗
].

Substitution of equations (4.1), (4.2), and (4.4) into above-mentioned equation gives

b+ d =
rS∗[(1 + 3α1(µ1 + δ) − rα2)S

∗ + (µ1 + δ)(2 −α1) + rα2 − 1]
1 +α1S∗ +α2I∗

.

Firstly assume that (1+ 3α1(µ1 + δ)− rα2)S
∗+(µ1 + δ)(2−α1)+ rα2 − 1>0. Then we arrive at a2 − 2b−

c2 > 0 and b+ d > 0. That is to say, equation (4.8) has no positive real root ω, which is a contradiction.
Therefore, all the roots of equation (4.6) have negative real part for τ > 0. The first part of the proof is
completed.

Secondly suppose (1+ 3α1(µ1 + δ)− rα2)S
∗+(µ1 + δ)(2−α1)+ rα2 − 1 < 0, which indicates b+d < 0.

Therefore, there exists a unique positive real root ω0 satisfying (4.8), where

ω0 =

√√
(a2 − 2b− c2)2 − 4(b− d)(b+ d) − (a2 − 2b− c2)

2
.

It should be noted that λ = −iω0 is also a root of equation (4.6). Then equation (4.6) has a single pair of
purely imaginary roots ±iω0. Then using equation (4.7), we obtain

(ac− d)ω2
0 + bd = (c2ω2

0 + d
2) cosω0τ,

and it follows that

τn =
1
ω0

arccos
(ac− d)ω2

0 + bd

c2ω2
0 + d

2 +
2nπ
ω0

,n = 0, 1, 2, · · · . (4.9)

This completes the proof of the proposition.

We give the following proposition without any proof since the proof is similar to that of paper [4].

Proposition 4.4. If R0 > 1 and (1 + 3α1(µ1 + δ) − rα2)S
∗ + (µ1 + δ)(2 − α1) + rα2 − 1 < 0, then the transver-

sality condition
dRe(λ(τ))

dτ
|λ=iω0 > 0.

Summarizing the above propositions, we obtain the following theorem.

Theorem 4.5. Assume R0 > 1, then the following statements hold.

(i) If (1 + 3α1(µ1 + δ) − rα2)S
∗ + (µ1 + δ)(2 −α1) + rα2 − 1>0, then the endemic equilibrium of system (1.5)

is locally asymptotically stable for τ > 0.
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(ii) If (1+ 3α1(µ1 + δ) − rα2)S
∗+ (µ1 + δ)(2−α1) + rα2 − 1 < 0, then the endemic equilibrium of system (1.5)

is locally asymptotically stable for 0 6 τ < τ0 and unstable for τ > τ0.

Remark 4.6. If both R0 > 1 and (1+ 3α1(µ1 + δ) − rα2)S
∗ + (µ1 + δ)(2−α1) + rα2 − 1 < 0 hold true, system

(1.5) undergoes Hopf bifurcation at the endemic equilibrium E∗ when τ crosses τn(n = 0, 1, · · · ).

5. An example

In this section, we consider the numerical results of system (1.5). In system (1.5), we set r = µ1 = µ2 =
α1 = α2 = 0.1. If we choose δ = 0.1, the endemic equilibrium of system (1.5) is E∗(0.2057, 0.0817, 0.0817),
R0 = 4.54555, and τ0 = 2.2224 by applying (4.9). It should also be noted that (1 + 3α1(µ1 + δ) − rα2)S

∗ +
(µ1 + δ)(2 − α1) + rα2 − 1 = −0.3940 < 0, which implies the endemic equilibrium E∗ is conditionally
stable. Furthermore, We can see that the endemic equilibrium E∗ is asymptotically stable if time delay
τ = 0.5 < τ0 = 2.2224 (see Figure 1), while the endemic equilibrium E∗ loses its stability, Hopf bifurcation
occurs, and system (1.5) exhibits a stable period solution if τ = 2.5 > τ0 (see Figure 2).

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

t

I(
t)

0

0.2

0.4

0

0.2

0.4
0

0.05

0.1

0.15

0.2

I(t)S(t)

R
(t

)

Figure 1: Temporal behavior of the infective individuals and corresponding three-dimensional phase for system (1.5) with
R0 = 4.5455 and (1 + 3α1(µ1 + δ) − rα2)S

∗ + (µ1 + δ)(2 − α1) + rα2 − 1 = −0.3940 < 0. The initial conditions are set to be
φ1(θ) = 0.3, φ2(θ) = 0.2, φ3(θ) = 0.1, θ∈[−τ, 0], and τ = 0.5 < τ0 = 2.2224.
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Figure 2: Temporal behavior of the infective individuals and corresponding three-dimensional phase for system (1.5) with
R0 = 4.5455 and (1 + 3α1(µ1 + δ) − rα2)S

∗ + (µ1 + δ)(2 − α1) + rα2 − 1 = −0.3940 < 0. The initial conditions are set to be
φ1(θ) = 0.37, φ2(θ) = 0.1, φ3(θ) = 0.1, θ∈[−τ, 0], and τ = 2.5 > τ0 = 2.2224.
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Figure 3: Temporal behavior of the infective individuals and corresponding three-dimensional phase for system (1.5) with
R0 = 2.2727 and (1 + 3α1(µ1 + δ) − rα2)S

∗ + (µ1 + δ)(2 − α1) + rα2 − 1 = 0.2353 > 0. The initial conditions are set to be
φ1(θ) = 0.4, φ2(θ) = 0.2, φ3(θ) = 0.2, θ∈[−τ, 0], and τ = 10 > τ0 = 2.2224. The values of parameters are as those in Figure 1 but
δ = 0.3.

If δ is chosen as 0.3 and other parameters are set as those in Figure 1, then the endemic equilibrium
is E∗(0.4192, 0.0609, 0.1826), R0 = 2.2727, and (1 + 3α1(µ1 + δ) − rα2)S

∗ + (µ1 + δ)(2 − α1) + rα2 − 1 =
0.2353 > 0, which imply the condition (i) of Theorem 4.5 is satisfied. Moreover, from Figure 3, we can see
the endemic equilibrium E∗ is globally asymptotically stable although τ = 10 > τ0.

6. Conclusion

In this paper a delayed SIR vector-bone disease model with incubation time delay is established, in
which the growth of population follows the logistic model in the absence of disease and the more general
form of the nonlinear incidence rate is considered. The stability of the equilibria has been discussed by
analyzing the roots of characteristic equations and constructing the suitable Lyapunov functional. It is
shown that the trivial equilibrium is always unstable. The stability of the disease-free equilibrium is com-
pletely determined by the threshold parameter R0: the disease-free equilibrium is globally asymptotically
stable if R0 < 1 while it is unstable if R0 > 1. Moreover, if R0 > 1, there exists a unique endemic equilib-
rium E∗. It is found that (1 + 3α1(µ1 + δ) − rα2)S

∗ + (µ1 + δ)(2 −α1) + rα2 − 1 = 0 is the condition which
determines the absolute stability or conditional stability of the endemic equilibrium. To be specific, the
endemic equilibrium is absolutely stable if (1 + 3α1(µ1 + δ) − rα2)S

∗ + (µ1 + δ)(2 −α1) + rα2 − 1>0 holds
true while it is conditionally stable if the above-mentioned formula is violated. That is to say, there is a
certain threshold time value τ0 such that the endemic equilibrium is locally asymptotically stable when
0 < τ < τ0 whereas it is unstable when τ > τ0. Furthermore, it is worth noting that, if R0 > 1 and
(1+ 3α1(µ1 + δ)− rα2)S

∗+(µ1 + δ)(2−α1)+ rα2 − 1 < 0, the system exhibits Hoph bifurcation when time
delay τ crosses τn(n = 0, 1, · · · ).
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