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Abstract

In order to deal with (stochastic) multi-objective optimization problems, a robust Pareto optimal solution by minimizing the
worst case weighted sum of objectives on a given weight set is considered [J. Hu, S. Mehrotra, Oper. Res., 60 (2011), 936-953],
[J. Hu, T. Homem-de-Mello, S. Mehrotra, Manuscript, (2010)]. Based on this idea, we introduce a new class of deterministic
model for stochastic vector variational inequalities, called robust weighted expected residual minimization model. Then we
propose sample average approximation (SAA) approach to solve robust weighted expected residual minimization problems.
Some convergence results are established for the approximation problem in terms of the optimal value and the set of optimal
solutions. (©2017 All rights reserved.
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1. Introduction

The concept of variational inequalities plays a major role in the study of both the qualitative and
numerical analysis of various mathematical models. Different types of variational inequalities and their
extensions have been extensively investigated, see [1, 2, 4, 8, 10, 11, 15, 17, 27-29, 32] and the references
therein. The concept of vector variational inequality (VVI) was introduced first by Giannessi [10], which
is a generalization of a scalar variational inequality (VI) to the vector case. Since then, there has been a
significant number of research results on VVI; see [1, 2, 4, 11, 15, 17, 32] and the references therein.

The scalarization approach is a popular method to solve VVI, which is transform VVI into VI by
choosing a weight vector; see, e.g., [1, 2, 4, 15, 17]. In fact, it is hard to determine exactly a preferable
weight over others for a decision maker. In this paper, inspired by recent developments on multiobjective
optimization, a robust weighted model based on gap function for VVI is proposed.

Since some elements in many practical decision problems may involve uncertainties, it is significant
for studying stochastic VVI (SVVI). Note that stochastic variational inequalities (SVI) have been studied
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in [3, 6,7, 12, 16, 18, 19, 21-24, 30, 31, 34]. We know that SVI does not have a common solution in gen-
eral. Therefore, for the sake of getting reasonable solutions in some senses, an appropriate deterministic
reformulation is needed. There are some deterministic formulations have been discussed for SVI. For
example, expected value formulation [12, 16, 19, 31], expected residual minimization (ERM) formulation
[3,6,7,18,21-23, 34], conditional value-at-risk formulation [5], and worst-case residual minimization for-
mulation [30]. Based on the equivalent representation for SVVI, Zhao et al. [33] introduced a deterministic
model for SVVI, which is an extension of a series of works on ERM formulation of SVI to the vector case.
In [14], Hu and Mehrotra introduced the robust weighted sum approach for multiobjective optimization
problem. Hu et al. [13] presented and studied two models for uncertainty/stochastic multiobjective
optimization problem.

Motivated by the works [13, 14] on (stochastic) multiobjective optimization, we introduce a new class
of deterministic model for SVVI, called robust weighted ERM model. An approximation method based
on SAA techniques is proposed for solving the robust weighted ERM problem. Under some assumptions,
the convergence and exponential convergence rates for the optimal value and the set of optimal solutions
of the approximate problem are established.

2. Preliminary

In what follows, || - || denotes the Euclidean norm of a vector. Projg(x) denotes the projection of a point
x onto S, where S is a closed convex set. For given || - ||, denote by d(x, C) := inf,/cc ||[x —x/|| the distance
from x to a set C. For sets C,D C R™, denote by ID(C, D) := sup, . d(x, D) the deviation of C from D.
Furthermore, denote by

m
A=AeR™:A 20,) A=1}
j=1
Consider VVI: Find x* € S such that
((U - X*)TFl (X*)/ Tty (U _X*)TFTTL(X*)) ¢ _lntRTr VU € S/ (21)

where S C R™ is a nonempty, convex and closed set and F; : R™ — R"™ (j =1,2,---,m) are vector-valued
functions. For abbreviation, set F := (Fq, -+, F). We use Sol(F, S) to denote the solution set of VVI.
Clearly, for m =1, VVI collapses to VI: Find x* € S such that

(y —x)TF(x*) >0, Yy € S.

In order to solve VVI, consider the scalar VI as follows: For any given A € A, find x* € S such that
m
(y—x9T Y AF(x) =0, WweS, 2.2)
j=1

and denote by Sol(F, S), the solution set of (2.2).
The following result shows the relationships between VVI and VI.

Theorem 2.1 ([17, Theorem 2.1]). It holds that

Sol(F,S) = | J Sol(F,S)a.
AEA

Following [9], for any given A € A, a regularized gap function is introduced for (2.2) as follows:

S04 ) = max((x —y)" ; AFi00) = S =yl
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where « > 0 is a given parameter. From [9], for given A € A and for any x € S,
— o
(x,A) = (x—H(x, ) Zl AT () = S llx = Hix A2,
):

where o
H(x,A) := Projg (x — o Z AjFi(x)).
j=1
It has been shown that for any given A € A,
o O(x,A) >0 for every x € §;
o for x* € S, (x*,A) =0 if and only if x* solves (2.2).

Therefore, for given A € A, solving (2.2) is equivalent to solving the minimization problem

min ¢(x,A).

x€S
As discussed above, scalarization approach is one of the most popular approaches to deal with VVI (2.1),
which transforms VVI into VI by choosing a pre-determined weight vector. In practice, it is very hard to
determine exactly a preferable weight over others for a decision maker. Motivated by the works [13, 14]
on (stochastic) multiobjective optimization, we introduce a robust weighted model for VVI (2.1). That is,
let us consider

13161? I}Pea/)\( d(x,A). (2.3)

The model (2.3) is a minimax problem, which provides a way to overcome the difficulty of choosing
weights.

Denote by 0(x) := rglea/(( d(x, A).

Theorem 2.2. Let S be a compact set and Fy be a continuous function. Then the following properties hold:

(i) 6(x) = 0 for every x € S;

(ii) for x* € S, 0(x*) =0, then x* solves VVI (2.1).
Proof. By setting y = x in the expression of 8(x), it is not hard to obtain that 8(x) > 0 for all x € S. Let us
consider x* € S such that 6(x*) = 0. That is, r}Pa/)\( d(x*,A) = 0. It follows from the continuity of F; and the

€

compactness of S that there exists A* € A such that ¢(x*,A*) = 0. Therefore, x* solves (2.2) with A = A*.
By Theorem 2.1, x* solves VVI (2.1). O

Now, we give an example to illustrate that the converse of the property (ii) in Theorem 2.2 is not true
in general.

Example 2.3. Let S =[-1,0], x = 4. Let F;,F2 : R — R be defined by
Fi(x) =x+1,  F(x)=x

We have
(F1(x)(y —x), F2(x) (y —x)) = ((x + 1) (y — x), x(y —x)).
For x =0,
(F1(x)(y —x), F2(x)(y —x)) = ((y —0),0) &€ —intR%, Wy €S,

which implies that 0 € Sol(F, S). However,

6(0) = maxmax{(0 —y)(A1F1(0) +AsF2(0)) —2|ly — 0]|*} = maxmax{A (0 —y) —2|[y — 0||*}.
AEA yeSsS AEA ye€Ss
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For A = (A, A2) = (1,0),
2 1
max{A (0 —y) —2|ly—0|°} = 5.
yes 8
Thus, we have

0 A -2 2
(0) = rxneaxr;leag{ 1(0—y) =2|y—0|} >

OO\P—‘

which implies that the converse of the property (ii) in Theorem 2.2 does not hold.

3. Robust weighted expected residual minimization model

In the following we mainly discuss SVVI: Find x* € S such that
((y —x ) TR (x%, &), , (y —x*)TFm(x*,E)) ¢ —intRY*, Yy e S, ae. £ €,

where S is a nonempty, convex, and closed set in R™, = C IR" denotes the support of the random variable
&, and ‘a.e.” is the abbreviation for “almost every”.

Similarly to the preceding discussion, for any given A € A, consider SVI as follows: Find x* € S such
that

m
—x)TY MF(x,E) >0, WeS, ae L€ (3.1)

In general, it cannot be expected that problem (3.1) has a common solution for almost every & € =.
Therefore, for the sake of getting reasonable solutions in some senses, a suitable deterministic model for
problem (3.1) becomes an important topic. In what follows, we assume that « is a positive parameter. For
any given A € A, the regularized gap function ¢ is defined for SVI (3.1) as follows:

$x, 2, &) = max((x— yTZAF (x, &) — fux yl?.

j=1

Then, for given A € A, for any x € S and any & € =, we have
b, A E) = (x —H(x,A£)) ZAF (x, &) — —||x— (x, A &), (32)

where
m
H(x, A, &) := Projg (x — ot Z AiF;(x, 6)).
j=1
Motivated by the works [3, 22] on SVI, the robust weighted ERM model for SVVI is proposed as follows:

i ]E 4 A/ 4 3-3
minmax E[¢(x, A, &)] (3.3)
where E denotes the mathematical expectation.
Since problem (3.3) involves mathematical expectation in the objective function, it is generally difficult
to evaluate exactly or these integrals cannot be calculated in a closed form, we apply SAA techniques to
approximate the expectation.

In general, for an integrable function ¢ : = — IR, the sample average Z P(&Y) is employed to

approximate the expected value ERp(&)]. By the strong law of large numbers, we have the following
result.
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Lemma 3.1. Assume that \ : = — R is an integrable function, then

1«
lim = > W(E") =ERp(&)]
i=1

N—oo N

holds with probability one, where &', --- ,EN are independently and identically distributed samples of .

Thus, let &1, ,EN be an independent and identically distributed sampling of &, then the approxima-
tion problem of (3.3) as follows:

min max G, A ED. (3.4)

xeS AeA N

nl\/]z

Next we list some assumptions which are needed in the following section.

(Al) For any x € S and almost every ¢ € =, there exists a measurable function k(&) such that

>R &) < x(E)
j=1

with E[k?(£)] < 4o0.

(A2) There exists a nonnegative measurable function C(&) such that E[C?(&)] < +o0 and
for all £ € Z, and F; is measurable in & for every x € S.

Definition 3.2 ([25]). It is said that the function H(x, &) is random lower semicontinuous if the associated
epigraphical multifunction & — epiH(-, &) is closed valued and measurable.

Theorem 3.3. Assume that conditions (A1) and (A2) are satisfied. Then, ¢(x, A, -) is measurable for every (x,A) €
Sx A.

Proof. Since F;(, &) is continuous for almost every & € Z, and Fj(x -) is measurable for every x € S,
then, Z AjF(x, &) is continuous in (x,A) for almost every & € Z, and Z AjFj(x, ) is measurable for every

j=1 j=1
(x,A) € S x A. This implies that the function

(= u)" 3 NF(x,E) = Sl -y

j=1

is continuous in (x,y, A) for almost every & € = and measurable in & for every (x,y,A) € S x S x A. That
is, the above function is random lower semicontinuous. Therefore, the measurability of ¢(x, A, &) follows
from Theorem 7.37 of [25]. O

We first discuss the convergence of the optimal value and the set of optimal solutions of the approxi-
mate problem (3.4). We let 8% and S* C S be the optimal value and the set of optimal solutions of (3.3),
respectively. Let O and S3; C S be the optimal value and the set of optimal solutions of (3.4), respectively.

Theorem 3.4. Let S be a compact set. Suppose that conditions (Al) and (A2) hold. Then, O — 0* and
ID(SY,S*) =+ 0as N — oco.
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Proof. 1t follows from assumption (A2) and the compactness of S that for any (x,A) € S x A, ¢(x, A, &) is
continuous at (x,A) for a.e. & € =. Since ¢(x,A, &) > 0 for any (x,A) € S x A and & € =, we have from (3.2)
that

m

fo H(x, M\, &)1 < (x—H(x, M, &) Z % E) < [x—HEAE) D NMIFx &)l

j=1 j=1

< x—HEA LD IF(x &)
j=1

Then,
x —H(x, A, &)l ZHF (x, &)

Thus, we have

oA E) = (x—H(x,A &) ZAan fo H(x, A, &)

4 m
< Ix = HOx A ) 3 [Fy e E)]+ e — i B < ORLLLI

j=1
which implies that ¢(x, A, &) is dominated by an integrable function from the assumption (A1l). Therefore,

N .

it follows from [25, Theorem 7.48] that % > d(x, A &) converges to Eld(x, A, &)] with probability one
i=1

uniformly on S x A. That is,

sup = Y d(xAED—Elp(x, A E)]| =0, (3.5)

(x,A)ESXA i=1

N .
with probability one as N — oco. Let n(X) == I{Ia/)\( % > d(x, A EY) and T(x) = Ig1a/>\<IE[cb(x, A, &)]. Then,
S i=1 (S

we have N
! Z d(x, A ED —Elb(x, A, &)]l. (3.6)

On — 0% < max|tn(x) —T(X)I < sup IS
X€S (xAesxA N

It follows that On — 6* with probability one as N — oo.

N
Based on the above discussions, we have E[}p(x, A, &)] and ﬁ S ¢(x, A &) are continuous on S x A.
i=1
Since A is compact, this implies that Tn(x) and T(x) are continuous on S. Consequently, due to the
compactness of S, the sets S* and Sy, are nonempty with probability one. Suppose that ID(SX;,S*) /4 0.
Then, there exists xn € Sy, such that d(xn,S*) > e for some € > 0. Since S is compact, we have
xNn — x* € S (taking a subsequence if necessary). It follows that x* ¢ S* and T(x*) > 0*. Since xNn € SY,
then O = ™n(xn) and

TN (XN) — T(x) = T (X)) — T(xn) + TN ) —T(xF).

It follows from (3.5)-(3.6) and the continuity of T that O = T~n(xn) — T(x*) > 0%, which leads to a
contradiction. O

The following results show that exponential convergence rates of the optimal value and the set of
optimal solutions of the approximate problem (3.4).
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Theorem 3.5. Let S be a compact set. Assume that conditions (A1)-(A2) and the following conditions are satisfied:

(i) Forall (x,A) € S x A, the moment generating function E [et(‘b(X’A"i)*md’(x’)"a)])] is finite valued for all t
in a neighborhood of zero;
(ii) For all t in a neighborhood of zero, E[et(ﬁ(a)*m[k(am] is finite valued, where k(&) = «(&)(6 + %C(&) +
o k(&)
Then, for any € > 0O, there exist positive constants C(e) and (e) such that

Prob{|0n — 0| > ¢} < C(e)e VB

for sufficiently large N.
Proof. Under the conditions (A1) and (A2), we have
lb(x/, A, E) —d(x, A E) S RE)(Ix' —x|| + A =A|]), Vx,x" €SN €A (3.7)

and E[k(&)] < co.

From conditions (i)-(ii) and (3.7), it follows by virtue of [26, Theorem 5.1], for any ¢ > 0, there exist
positive constants C(¢) and (3(e) such that

N

Prob{ sup 1Y @A £~ Elp(x A E)]l > ¢ < Cleje NP 8)
(x,A)ESXA i=1

for sufficiently large N. Note that

N
1 .
On — 0% = |I§‘€1n%a,§ N Z1¢ X\ EH) Iglelgrxnea%JE[dJ(XJ\, &)l
Y .
< max | max (N l:1d>( XA EY) —maxElb(x, A, &) (3.9)
1 N
< max IS ;¢ X\ &Y —Eld(x, A, &)]l.

From (3.8) and (3.9), we have
Prob{|on — 0| > e} < C(e)e NPl

O

Theorem 3.6. Suppose that all conditions of Theorem 3.5 are satisfied. Then, for any ¢ > 0, there exist positive
constants Cq (&) and B1(¢e) such that

Prob{ID(S3,,$*) > €} < Cy(e)e NPrle)
for sufficiently large N. Moreover, if problem (3.3) satisfies the second order growth condition at S*:
1}'\n€a/>\<]E[d)(x AE)] > 1‘1‘16115‘1 (Iglg/)\(lE[d)(x, A, 5)]) +Kd(x,S*),vx €S, (3.10)
where K is a positive constant, then Cq(e) = C(%Kez) and Pq1(e) = B(%Kez) where C(e) and 3(e) are given in
(3.8).
Proof. By Lemma 3.8 of [20], we have for any ¢ > 0, there exists 5(¢) such that
D(S%,S*) <&,

< .
if geaé\%a/)\( ~N Zl 1O EY — r}\nea}\dE[d)(x, A, E)]l < 8(¢). Therefore, we have

Prob{ID(S},,S*) > ¢} < Prob{meax|max— Zd) x, A, &Y maxIE[cI)(x, AE) = d(e)h (3.11)
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It follows from (3.8)-(3.9) and (3.11) that there exist positive constants C;(¢) and (31 (e) such that
Prob{ID(S%,$*) > €} < Cy(e)e NPile)

for sufficiently large N.
If the condition (3.10) holds, we have the result from Theorem 3.10 of [20] immediately. O
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