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Abstract
The purpose of this paper is devoted to consider the existence of solutions for a class of nonlinear Caputo-Hadamard

fractional differential equations with integral terms ((CHFDE), for short). Firstly, by applying the semi-group property of
Hadamard fractional integral operator, a necessary condition of solvability for (CHFDE) is established. Then, under the suitable
conditions, we prove the solution set of (CHFDE) is nonempty by using the method of upper and lower solutions, and Arzelà-
Ascoli theorem. Finally, we present several numerical examples to explicate the main results. c©2017 All rights reserved.

Keywords: Caputo-Hadamard derivative, fractional differential equations, upper and lower solutions, monotone sequences,
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1. Introduction

The fractional calculus ((FC), for short) deals with extensions of derivatives and integrals to non-
integer orders, which was started to be considered deeply as a powerful tool to reveal the hidden aspects
of the dynamics of the complex or hyper complex systems (see [1, 4, 8, 10, 14, 15, 17, 18, 24–26]). In the
last thirty years or so, the theory of (FC) has produced an abundance of important results both in pure
and applied mathematics as well as in other fields as for example: physics, chemistry, biology, economics,
control theory, signal and image processing, biophysics, blood flow phenomena, aerodynamics, fitting of
experimental data, etc. (see [11–13, 22, 28–31]), as it is allowed mathematical formulations for new classes
of interesting problems (see [3, 5, 6, 19, 20, 23, 32]).

To our knowledge, the fractional integral and derivative operators are usually studied in the sense
of Riemann-Liouville, Caputo or Grünwald-Letnikov. However, Hadamard fractional derivative operator
was introduced and studied in order to consider the problems, which is different completely to the ones
in the sense of Riemann-Liouville, Caputo and Grünwald-Letnikov (see [2, 7, 9, 10, 16, 21]). In the present
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paper, we shall consider the following fractional nonlinear differential system involving Hadamard frac-
tional integral term {

CDαa+x(t) = f(t, x(t), Iαa+x(t)), t ∈ [a,b],

x(a) = xa,
(1.1)

where CDαa+ and Iαa+ stand for the Caputo-Hadamard derivative and Hadamard integral operators (see
Definitions 2.1 and 2.4, below), respectively, f : [a,b]×R×R→ R, xa ∈ R, and 0 < a < b <∞.

The rest of paper is structured as follows. Section 2 contains basic definitions and results needed
in the sequel. Section 3 is devoted to present the main results describing the existence of solutions for
Caputo-Hadamard fractional differential equation (1.1). In Section 4, we show several numerical examples
to explicate our results.

2. Preliminaries

In this section we collect a few notions and results to be used later in the paper. In the sequel, we
denote AC(a,b; R) the function space, by R-valued absolutely continuous functions on [a,b]. In the begin,
we recall fractional operators in the sense of Hadamard.

Definition 2.1 ([7, 10]). Let 0 < a < b <∞ and x : [a,b]→ R. The Hadamard fractional integral of order
α > 0 of x is defined by

Iαa+x(t) =
1
Γ(α)

∫t
a

(
ln
t

s

)α−1
x(s)

s
ds for t ∈ [a,b],

where Γ stands for the well-known Gamma function by

Γ(α) =

∫∞
0
tα−1e−t dt.

Definition 2.2 ([7, 10]). Let 0 < a < b < ∞ and x : [a,b] → R. The Hadamard fractional derivative of
order α ∈ (0, 1] of x is defined by

Dαa+x(t) =
1

Γ(1 −α)
t
d

dt

∫t
a

(
ln
t

s

)−α
x(s)

s
ds for t ∈ [a,b].

Obviously, we can obtain

Iαa+

(
ln
t

a

)β−1

=
Γ(β)

Γ(β+α)

(
ln
t

a

)β+α−1

, Dαa+

(
ln
t

a

)β−1

=
Γ(β)

Γ(β−α)

(
ln
t

a

)β−α−1

for t ∈ [a,b].
Now, we review some significant properties for fractional Hadamard integral and derivative operators

in which their proof can be found in [7, 10].

Lemma 2.3 ([7, 10]). Let α,β be such that α > 0 and β > 0.

(i) If 1 6 p <∞, then for x ∈ Lp(a,b; R), we have

I
β
a+I

α
a+x(t) = I

α+β
a+ x(t) for t ∈ [a,b].

(ii) If 1 6 p <∞ and α > β, then for x ∈ Lp(a,b; R), we have

D
β
a+I

α
a+x(t) = I

α−β
a+ x(t) for t ∈ [a,b].

Definition 2.4. Let 0 < a < b < ∞ and x : [a,b] → R. The Caputo-Hadamard fractional derivative of
order α ∈ (0, 1] of x is defined by

CDαa+x(t) = Dαa+ [x(t) − x(a)] for t ∈ [a,b].
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Remark 2.5. It is obvious that if x ∈ AC(a,b; R), then Caputo-Hadamard fractional derivative, Defini-
tion 2.4, has the following equivalent formulation

CDαa+x(t) =
1

Γ(1 −α)

∫t
a

(
ln
t

s

)−α

x ′(s)ds for t ∈ [a,b].

We conclude this section by recalling the following component properties for Caputo-Hadamard frac-
tional operators.

Lemma 2.6 ([7, 10]). Let α > 0 be such that n = [α] + 1.

(i) If x ∈ C(a,b; R), then
CDαa+(Iαa+x(t)) = x(t) for t ∈ [a,b].

(ii) If x ∈ AC(a,b; R), then
Iαa+(CDαa+x(t)) = x(t) − x(a) for t ∈ [a,b].

3. Main results

In this section, we focus our attention on the existence of solutions for fractional nonlinear differential
system (1.1).

Theorem 3.1. Let f : [a,b]×R×R → R be a continuous function. Assume that x ∈ C(a,b; R) is a solution of
the following integral equation

x(t) = xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s, x(s), Iαa+x(s))

s
ds for t ∈ [a,b], (3.1)

then it also resolves the fractional nonlinear differential equation (1.1).

Proof. Assume that x ∈ C(a,b; R) is a solution of the integral equation (3.1). Obviously, we obtain x(a) =
xa and t 7→ Iαa+x(t) ∈ C(a,b; R). The continuity of f and definition of Hadamard integral Iαa+ guarantee
that t 7→ f(t, x(t), Iαa+x(t)) is continuous as well and

Iαa+f(t, x(t), Iαa+x(t))
∣∣
t=a

= 0.

Since, t 7→ Iαa+f(t, x(t), Iαa+x(t)) is continuous, then we have x is differential for a.e. t ∈ (a,b), see (3.1),
i.e., x ∈ AC(a,b; R). From Lemma 2.6, we have

CDαa+Iαa+f(t, x(t), Iαa+x(t)) = f(t, x(t), Iαa+x(t)) for t ∈ [a,b].

On the other hand, Remark 2.5 reveals

CDαa+ [x(t) − xa] =
1

Γ(1 −α)

∫t
a

(
ln
t

s

)−α

[x(s) − xa]
′ ds =

1
Γ(1 −α)

∫t
a

(
ln
t

s

)−α

x ′(s)ds = CDαa+x(t)

for t ∈ [a,b].
By all above, we conclude that x ∈ C(a,b; R) is a solution of fractional nonlinear differential equation

(1.1), which completes the proof of the theorem.

Now, we introduce the concept of upper and lower solutions for integral equation (3.1), which plays a
remarkable role in our work.

Definition 3.2. Let (x, x) ∈ C(a,b; R)× C(a,b; R). A pair of functions (x, x) is called to be upper and
lower solutions of fractional integral equation (3.1), respectively, if

x(t) 6 xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s, x(s), Iαa+x(s))

s
ds for all t ∈ [a,b],
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and

x(t) > xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s, x(s), Iαa+x(s))

s
ds for all t ∈ [a,b].

Let (x, x) be a pair of upper and lower solutions of fractional integral equation (3.1). In the sequel,
we denote an admissible set of solutions for fractional integral equation (3.1) governed by a pair of upper
and lower solutions (x, x) as follows

U(x,x) :=

{
x ∈ C(a,b; R) : x(t) 6 x(t) 6 x(t), t ∈ [a,b] and x is a solution of (3.1)

}
.

Theorem 3.3. Let f ∈ C([a,b]×R2; R). Assume that (x, x) ∈ C(a,b; R)×C(a,b; R) is a pair of upper and lower
solutions of fractional integral equation (3.1) with x(t) 6 x(t) for t ∈ [a,b]. If (x,y) 7→ f(t, x,y) is nondecreasing,
that is

f(t, x1,y1) 6 f(t, x2,y2) for x1 6 x2 and y1 6 y2,

then there exist maximal and minimal solutions xM, xL ∈ U(x,x) in U(x,x), i.e., for each x ∈ U(x,x) one has

xL(t) 6 x(t) 6 xM(t) for t ∈ [0, T ].

Proof. To this end, we construct two sequences {yn} and {zn} as follows
y0 = x,

yn+1(t) = xa +
1

Γ(α)

∫t
a

(
ln ts

)α−1
f(s,yn(s),Iα

a+
yn(s))

s ds, t ∈ [a,b] and n = 0, 1, . . . ,

and 
z0 = x,

zn+1(t) = xa +
1

Γ(α)

∫t
a

(
ln ts

)α−1
f(s,zn(s),Iα

a+
zn(s))

s ds, t ∈ [a,b] and n = 0, 1, . . . .

We now split the proof in three parts.

Step 1. Sequences {yn} and {zn} satisfy the following relation:

x(t) = y0(t) 6 y1(t) 6 y2(t) 6 . . . 6 yn(t) 6 . . . 6 zn(t) 6 . . . 6 z1(t) 6 z0(t) = x(t) (3.2)

for t ∈ [0, T ].
First, we shall prove that sequence {yn} is nondecreasing and

yn(t) 6 z0(t), t ∈ [a,b] for all n ∈N.

According to the assumptions, we can know x(t) = y0(t) 6 x(t) = z0(t) for t ∈ [a,b] and

y1(t) = xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s,y0(s), Iαa+y0(s))

s
ds > y0(t) for t ∈ [a,b].

Since (x,y) 7→ f(t, x,y) is nondecreasing, then it is obvious that

f(s,y0(s), Iαa+y0(s)) 6 f(s, z0(s), Iαa+z0(s))

for s ∈ [0, T ]. This deduces

y1(t) = xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s,y0(s), Iαa+y0(s))

s
ds
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6 xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s, z0(s), Iαa+z0(s))

s
ds 6 z0(t) for t ∈ [a,b].

Therefore, we assume inductively

yn−1(t) 6 yn(t) 6 z0(t) for t ∈ [a,b].

By virtue of definition of {yn}, we have

yn(t) = xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s,yn−1(s), Iαa+yn−1(s))

s
ds,

yn+1(t) = xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s,yn(s), Iαa+yn(s))

s
ds

for t ∈ [0, T ]. Using the monotonicity of f, we readily obtain

yn(t) 6 yn+1(t) 6 z0(t) for t ∈ [a,b].

Further, we will show that

yn(t) 6 zn(t) for t ∈ [a,b] and n ∈N.

For n = 0, it is clear that x(t) = y0(t) 6 z0(t) = x(t) for t ∈ [a,b]. Now, we also suppose inductively

yn(t) 6 zn(t), t ∈ [a,b].

Analogically, we easily conclude from the monotonicity of f with respect to the second and the third
variables that

yn+1(t) 6 zn+1(t), t ∈ [a,b].

Also, we have that the sequence {zn} is nonincreasing.

Step 2. Sequences {yn} and {zn} are both relatively compact in C(a,b; R).
Because f is continuous and x, x ∈ C(a,b; R), from Step 1, we have {yn} and {zn} belong to C(a,b; R)

as well. It follows from (3.2) that {yn} and {zn} are uniformly bounded. On the other hand, for any
t1, t2 ∈ [a,b], without loss of generality, let t1 6 t2, we have

|yn+1(t1) − yn+1(t2)| =
1
Γ(α)

∣∣∣∣ ∫t2

a

(
ln
t2

s

)α−1 f(s,yn(s), Iαa+yn(s))

s
ds−

−

∫t1

a

(
ln
t1

s

)α−1 f(s,yn(s), Iαa+yn(s))

s
ds

∣∣∣∣
=

1
Γ(α)

∣∣∣∣ ∫t1

a

[(
ln
t2

s

)α−1

−

(
ln
t1

s

)α−1]f(s,yn(s), Iαa+yn(s))

s
ds

+

∫t2

t1

(
ln
t2

s

)α−1 f(s,yn(s), Iαa+yn(s))

s
ds

∣∣∣∣
6

M

Γ(α)

∣∣∣∣ ∫t1

a

1
s

[(
ln
t2

s

)α−1

−

(
ln
t1

s

)α−1]
ds+

∫t2

t1

1
s

(
ln
t2

s

)α−1

ds

∣∣∣∣
6

M

Γ(1 +α)

[(
ln
t2

a

)α
−

(
ln
t1

a

)α
+ 2

(
ln
t2

t1

)α]
→ 0, as |t1 − t2|→ 0,

whereM > 0 is a constant independent of n, t1, and t2. It implies that {yn} is equicontinuous in C(a,b; R).
From Arzelà-Ascoli Theorem (see [27]), we imply that {yn} is relatively compact in C(a,b; R). Similarly,
we obtain {zn} is also relatively compact in C([a,b]; R).
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Step 3. There exist maximal and minimal solutions in U(x,x).
Step 1 and Step 2 indicate that the sequences {yn} and {zn} are both monotone and relatively compact

in C(a,b; R). Obviously, there exist continuous functions y and z with yn(t) 6 y(t) 6 z(t) 6 zn(t) for all
t ∈ [a,b] and n ∈N, such that {yn} and {zn} converge uniformly to y and z in C(a,b; R), respectively. So,
y and z are two solutions of (3.1), i.e.,

y(t) = xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s,y(s), Iαa+y(s))

s
ds,

z(t) = xa +
1
Γ(α)

∫t
a

(
ln
t

s

)α−1 f(s, z(s), Iαa+z(s))

s
ds

for t ∈ [a,b]. However, the fact (3.2) ensures that

x(t) 6 y(t) 6 z(t) 6 x(t) for t ∈ [a,b].

Finally, we shall illustrate that y and z are the minimal and maximal solutions in U(x,x), respectively.
For any x ∈ U(x,x), then we have

x(t) 6 x(t) 6 x(t) for t ∈ [a,b].

Recall that f is nondecreasing with respect to the second and the third arguments, we induct

x(t) 6 yn(t) 6 x(t) 6 zn(t) 6 x(t) for t ∈ [a,b] and n ∈N.

Taking limits as n→∞ into the above inequality, one implies

x(t) 6 y(t) 6 x(t) 6 z(t) 6 x(t) for t ∈ [a,b].

This means that xL = y and xM = z are the minimal and maximal solutions in U(x,x), respectively, which
completes the proof of the theorem.

Theorem 3.4. Assume that hypotheses of Theorem 3.3 are satisfied. Then fractional nonlinear differential equation
(1.1) has at least one solution in C([a,b]; R).

Proof. By the assumptions and Theorem 3.3, we have U(x,x) 6= ∅, i.e., the solution set of fractional integral
equation (3.1) is nonempty in C(a,b; R). This combines with Theorem 3.1 to verify that fractional non-
linear differential equation (1.1) has at least one solution in C(a,b; R), which completes the proof of the
theorem.

4. Examples

In this section, we will apply foregoing theoretical results stated in Section 3 to present two simple
examples to explicate the results.

Example 4.1. Consider the following Caputo-Hadamard fractional differential equation CD
1
2
1+x(t) =

8
3
√
π
(ln t)

3
2 − (ln t)2 + x(t) for t ∈ [1, e],

x(1) = 0.

Proof. Let f(t, x(t)) = 8
3
√
π
(ln t)

3
2 − (ln t)2 + x(t) for t ∈ [1, e]. From Theorem 3.1, we only prove that the

following fractional integral equation has at least one solution in C(1, e; R)

x(t) = I
1
2
1+

(
8

3
√
π
(ln t)

3
2 − (ln t)2 + x(t)

)
for t ∈ [1, e]. (4.1)

Indeed, we can see that (x(t), x(t)) = (0, (ln t)2 + (ln t)3) is a pair of upper and lower solutions of (4.1). In
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addition, f is continuous and nondecreasing with respect to the second argument. We can calculate the
sequences {yn} and {zn} by y0(t) = x(t),

yn+1(t) = I
1
2
1+f(t,yn(t)), n = 0, 1, . . . ,

 z0(t) = x(t),

zn+1(t) = I
1
2
1+f(t, zn(t)), n = 0, 1, . . .

for t ∈ [1, e]. We are now in a position to apply Theorem 3.3 to conclude yn → y ∈ C(1, e; R) and
zn → z ∈ C(1, e; R) as n → ∞. In the meantime, we can get z(t) = y(t) = (ln t)2 for t ∈ [1, e]. The
approximation of sequences {yn} and {zn} to (ln t)2 is shown in Fig. 1 and Table 1.
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Figure 1: A plot of yk and zk, k = 0, 1, 2, 3, 4, 10 for Example 4.1.

Table 1: Error analysis.
n = 5 n = 10 n = 15 n = 20

supt∈[1,e] |yn(t) − x(t)| 8.33× 10−2 1.10× 10−3 5.51× 10−6 1.46× 10−8

supt∈[1,e] |zn(t) − x(t)| 5.00× 10−2 1.49× 10−4 1.65× 10−6 3.51× 10−9

Example 4.2. Consider the following Caputo-Hadamard fractional differential equation CD
1
2
1+x(t) =

2√
π
(ln t)

1
2 − 4

3
√
π
(ln t)

3
2 + I

1
2
1+x(t) for t ∈ [1, e]

x(1) = 0.

Proof. Let f(t, x(t), I
1
2
1+x(t)) = 2√

π
(ln t)

1
2 − 4

3
√
π
(ln t)

3
2 + I

1
2
1+x(t) for t ∈ [1, e]. Then, the corresponding

fractional integral equation is obtained by

x(t) = I
1
2
1+

(
2√
π
(ln t)

1
2 −

4
3
√
π
(ln t)

3
2 + I

1
2
1+x(t)

)
for t ∈ [1, e]. (4.2)

Obviously, (x(t), x(t)) = (0, (ln t)2 + ln t) is a pair of upper and lower solutions of (4.2). All conditions in
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Theorem 3.3 are verified readily, so, we construct the sequences {yn} and {zn} by y0(t) = x(t),

yn+1(t) = I
1
2
1+f(t,yn(t), I

1
2
1+yn(t)),

 z0(t) = x(t),

zn+1(t) = I
1
2
1+f(t, zn(t), I

1
2
1+zn(t)).

Applying Theorem 3.3 again, we have yn → y ∈ C([1, e]; R) and zn → z ∈ C(1, e; R) as n → ∞. Besides,
we have that z(t) = y(t) = ln t for t ∈ [1, e]. Furthermore, we also obtain the approximation results, Fig.
2 and Table 2.
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Figure 2: A plot of yk and zk, k = 0, 1, 2, 3, 4, 10 for Example 4.2.

Table 2: Error analysis.

Absolute Error
Iterations

n = 5 n = 10 n = 15 n = 20

supt∈[1,e] |yn(t) − x(t)| 8.34× 10−3 2.6× 10−7 7.65× 10−13 1.11× 10−16

supt∈[1,e] |zn(t) − x(t)| 2.78× 10−3 5.01× 10−8 9.57× 10−14 1.14× 10−16
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