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Abstract

In this paper, we produce new fixed point theorems for 2n self-mappings of, 3, ..., 95, y}’,yg’ ;oY% 1 X — X on
a metric space (X, p), satisfying a generalized common limit range (CLR) property or CLRgay b for k,1 = 2,...,n. Along

with the newly introduced property CLR b for k,1 = 2,...,n for the 2n self-mappings, we also assume that the pairs

oRY
(pf,y‘lb), (pg,yg), e, [p%,yg] are weakly compatible. From the main result, we produce three more corollaries as its special
cases. These results generalize the work of Sarwar et al. [M. Sarwar, M. Bahadur Zada, I. M. Erhan, Fixed Point Theory Appl.,
2015 (2015), 15 pages] and many others in the available literature. Two examples are also presented for the applications of our

new FPTs. (©2017 All rights reserved.

Keywords: Weakly compatible mappings, common limit range property, fixed point theorems.
2010 MSC: 47H10, 54H25.

1. Introduction and preliminaries

Banach’s FPT has been utilized in a large number of problems by scientists in different fields like;
image processing, selection and matching problems, equilibrium problems, the study of existence and
uniqueness of solutions (EUS) for the integral and differential equations and many others. In literature,
Banach’s FPT has been generalized in different directions for the new FPTs and a lot of applications of
the new FPTs were presented [1, 2, 5, 7, 11, 18, 20, 21]. These generalizations were carried out either by
the help of the spaces or by the contractions. For example, Bhaskar and Lakshmikantham [11] initiated
the concept of coupled FPT which was then followed for the triple and quadruple FPTs. Berinde and
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Borcut [10] worked on the triple FPTs and their applications in partially ordered metric spaces (POMS).
Liu [20] studied FPTs for self-quadruple mappings in POMS with the supposition of mixed g-monotone
property and illustrated the applications of their results. Aydi et al. [5] discussed FPTs for self-quadruple
depending on another function in POMS and some applications were illustrated. Bota et al. [12] studied
coupled FPTs and their applications to the EUS of a coupled system of integral equations on the finite
interval [0, T]. Mustafa et al. [21] proved FPTs on POMS and generalized some FPTs for the generalized
(¢, P)-contractions in POMS and have worked on the applications of their FPTs. Jleli and Samet [17]
provided the idea of generalized metric spaces and have extended some results including Banach’s FPT.
Shatanawi et al. [24] proved coupled FPTs in POMS for two altering distance functions.

Nadler [22] worked on the FPT for multivalued contraction mappings. Branciari [13] generalized the
Banach FPT for a single-valued mapping by the help of integral type of contractions. Stojakovic et al. [25]
generalized the concept of the Banach’s FPT by the help of integral type contractions by following the
work due to Nadler [22]. Sarwar et al. [23] produced an FPT by the help of integral type contractions
and provided some applications of their results in dynamic programing. For the applications of the FPTs
in fractional differential equations, we refer the readers to [6, 8, 15] and some other related results can be
studied in [16, 19].

Inspired from the work [3-5, 14, 19, 19, 22, 23, 25], in this paper, we give the notion of an extended
CLR property or CLR@EY{’ for k,1 = 2,...,m for the 2m self-mappings of', 3, ..., m, y}’,yg,...,y% :
X — X. This new idea of generalization of the CLR property will help us to handle 2m self mappings
for unique CFPs. Along with the newly introduced property CLRa,v for k,1 = 2,...,m for 2m self-
mappings, we also assume that the pairs (pf,9$,...,9%) and (vP,vY,...,v5,) satisfy the property of
weakly compatibility and produce a new FPT as a main result of the paper. Several results are produced
from the main result as special cases. These results generalize the work in [23], and many others in the
available literature.

Theorem 1.1 ([9]). If (X, d) is a complete metric space and f : X — X satisfies that d(f(x),f(y)) < vp(x,y), for
allx,y € X and v € (0,1), then f has a fixed point in X.

Definition 1.2. Let (X, p) be a metric space and g1, 92,v1,v2 : X — X be quadruple self-mappings. The
pairs (pf, p$) and (y?,vY) satisfy the CLR property with respect to mappings p$ and v, denoted by
CLR@?VE if there exist two sequences {x,} and {yn} in X such that

Jim pfxn = lim pfxn = lim yPyn = lim yJyn =v € p3(X) Nv3 (X)
for xn, yn € X and for all n € N U{0}.

Definition 1.3 ([23]). A coincidence point of a pair of self-mapping pf, p5',: X — X is a point z € X for
some pi'z = p3'z.

A CFP of pair of self-mappings i, 95 : X — X is a point z € X for which p{'z = p5'z = z.

Definition 1.4 ([23]). A pair of self-mappings pf, 5 : X — X is weakly compatible if they commute, at
their coincidence point that is if there exists a point z € X such that p{ 95z = p5 pi'z.

Definition 1.5 ([14]). Generalized altering distance function is a mapping t: R — R, satisfying that:

(i) Tis a non-decreasing;
(ii) T(t) =0if and only if t = 0.

F={t:R" - R": tsatisfying (i) and (ii)}.

® ={¢p: R" — R : ¢ is right upper semi-continuous, non-decreasing, and for all x > 0, we have
T(x) > ¢1(x) and t(x) satisfies (i) and (ii)}.

Y ={Y: iR?F — Ry : g satisfies (A1)-(Az)}, where
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(A1) P is continuous and non-decreasing in each coordinate;
(A2) P1(x,x,%x,%,%,x) <xforall x > 0;
(A3z) 1 =0 if and only if all the components of \; are zero;

Wy = {1y : R R 1y is continuous and 1, = 0 if any component of 1, is zero}.

2. Main results

Definition 2.1. Let o, p3,..., o5 and y}’,y}’, ..., Y2 be 2n be self-mappings. We say that the pairs
(05, 95,...,95) and (y}’,yg, YY) satisfy the CLR property with respect to mappings o3, ..., on, }/5’, ey
® denoted by CLR@EV{’ for 1,k =2,...,nif there exist two sequences {x,,} and {yn } in X such that

Jim pixn = lim p3xn =--- = lim ppxn = lim vlyn— Jim szn—- —T}grgowyn

=VE (mk:Z Zpk(x)> N (ml:Z Y1 (X))
for x, yn € X forn € IN.

Theorem 2.2. Let p{, 93, ..., o5 and y}’,yg s+, YR be 21 self-mappings on a metric space (X, p) and satisfying
the following conditions:
(a) the pairs (pf,08,...,0%) and (YP,v5,...,vR) share the property CLRgayb forLk=2,...,mn

(b) the pairs (98,vY), (9$,v5), ..., (92,vY) are weakly compatible;
(c) the following inequality is satisfied:

T(Jp(p?wby) r(t)dt) < m(ﬂbl(wm r(t)dt) +L¢2(J¢Z(N(X'y)] r(tyat), 2.1)

0 0

where, £ > 0, T'(t) is Lebesgue integrable function such that fo t)dt > 0 for any & > 0 and

1 (M(x,y)) = max{p(fx, vy y), p(of%,YRy), 0 (VP Y, Yu), P (Y3 Y, YRY),
plpfx, vYou) p(v?x, vY2y)
T+ SoelefyPy) 1+ X o elefx, vPy) ™
p(ofx, Yhy)
1+ 1 oplefxyPy)”

Vo (N(x, 1)) = alp(pf%,v5y), p(05% YY), p(¥YY, YRY),

then the 2n self-mappings o, 93, ..., 0% and v?,v2, ..., v5 have a unique CFP in (X, p).
Proof. By the help of our assumption of the property CLRgayb of the pairs (p¢, 93, ..., 9%) and (vP,v%,...,
yﬁ), we may have two sequences {x,} and {yn } in the metric space (X, p), such that

lim pfxn = lim pfxn =--- = lim pfixn = lm yPyn = lim y3yn =--- = lim yiyn

(2.2)
=V cE (ﬂkzz pk(DC)) N (01:2 Y1 (f)ﬁ).
From v € (HE » pﬁ(%)) N (ﬁ{‘zz y{’(DC)), we have two cases; v € NI'_,p2(X) and v € NI*_,y? (X).

Asv e NY_,pr(X), this implies that v € p5'(X), which further implies v = p5'(z), for some z € X, such
that

Jim pfxn = lim pfxn =--- = lim pixn = lim yPyn = lim yJyn = = lim yiyn =v=p3(z)
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Now, we show that p{'(z) = p5 (z). For this, we assume the contrary path, i.e., p{'(z) # 95 (z). By the help
of (2.1), we have

T(r(p{lz’ﬁy“) Me)dt) < ¢1(F1(M(Z'y")) rt)dt) +£¢2(J

0 0 0

b2 (N(zyn)
r(t)dt) (2.3)

for x =z and y = yn in (2.1), where

U1 (M(z,yn)) = max{p(9£z,vSun), 0(082, Y2un), 0(Y2yn, Y2Un), 6(Y2Un, Y2Un),
Pz, Ynyn) p(vP%, vSyn) (2.4)
1+ o e(efz,vPyn) 1+ s (082, vPyn)

p(9%2,v5yn) }
14+ s ele8z, v2yn)

II)Z(N(ZI yn)) = 11’2{9(&3{12/1/;Un)/ p(pilZ/ngn)l P(Y?‘Jn, ngn)/ (25)

Taking limy _, in (2.3), (2.4), and (2.5), respectively, we get
Jim p1(M(z,yn)) = T}i_r&max{p(pfz,v?yn),p(pfz,v?iyn),p(v}’yn,vﬁyn),p(vé’yn,vﬁyn),

p(9f2,v2yn) o(YPyn, Y yn)
14+ Y top(efz,yPyn) 1+ Y 1 p(982, v yn)
= max{p(p7'z V), pleiz V), p(v,v),p(v,Vv),

p(pfz,v) p(pfz,v)
T+ elefzv) 1+ X 1,0V, V)
p(oi'z, V)

=max{p(p7'z V), ple'z,v),0,0, ,
! ! 1+ 1, plpfz,v)

= p(pT'z, V),
p(952,v8yn)
14+ > (982, v2yn)

V2(N(z,yn)) = Valp(982,v2yn), 0982, Y2 yn), 0(¥2Yn, Yo Un),

p(pf'z, V)
=U2{p(piz, V), P01z, V), p(v, V),
2 ! T+ Y o p(efz,v)
p(piz,v)
:ll)z{p(@ilzzv)/ p(pilz‘/v)lo 1 } :O/

"1+ Y 1, p(pfz,v)

and
p(9fz,yPyn) Y1 (M(zyn)) P2 (N(z,yn))
lim T(J F(t)dt) < lim dn(J r(t)dt) + lim an(f r(t)dt>.

Consequently, we have

T(mefZ/w ]“(t)dt) - d)l(Jp(pfz,v) F(t)dt),

0 0

which is a contradiction and therefore, we have p{'z = v. Thus, p{'(z) = 95 (z). Next, for v € p(X), we
have z; € X for all k = 2,..., 1, such that 3 (zi) = v. By following the same lines as above, we get

o1 (z1) = 93 (z2) = = pilzi) = - = pnlzn) = V. (2.6)

Next, from (2.2), we also have that v € ﬁ?:zy{’ (X). Following the same lines as above, we have that there
exist 25,23, ...,zn € X such that

YP(z1) =¥3 () = =¥R(z) = =vynlza) = V. (2.7)
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By the help of weakly compatibility of the pairs (9, 9%,...,92) and (v?,v5,...,v}) and (2.6), (2.7), we
have

Yev=ylv=- =90y, piv=pfv=-..=ply.
Now, we show that v is a CFP of the 2n self-mappings o', 95, ..., o5, y}’,y%’, ... ,yg, for this we assume
that y}’v # v, and putting x =z and y = v in (2.1), we have

P11 (M(z,v)) P2 (N(z,v))

plofzyPv)
T(J F(t)dt) < q>1( J F(t)dt) +L¢2(J F(t)dt), 2.8)
0 0 0
where
11) (M( _ a b a b b b b b
1 Z/V)) - max{p(pl Z’/YZ V)/ p(pl Z’/an)/ p(Yl v, an)/ p(Yz v, an)/
p(pfz,v3v) p(YPv,v3v)
14+ Y op(efz, v2v) 1+ Y 1, o8z, vPv) 29)
p(v, vYv) p(v,vYv)

= max{p(v,ybv), p(vlybv)/ 0/ Ol ’
1 1 T+ T p(vvPv) T4 X1, (v, vEY)

= p(v,v?v),

plofz, vv)
"1+ 1, p(0fz,v0V)
p(v,yPv)
"4 1o p(v,vPY)
p(v,yPv)

=Pa{p(v, ¥PV), p(v,¥Tv),0, }=0.
! P T elvvy)

V2(N(z,v)) = bolp(0fz,v5V), o052, v v), (¥ v, Y V)

= wz{p(vr ’Y})-V)/ p('\/,'}/?'\/), p(Y})V/Y%LV)

(2.10)

By the help of (2.8)-(2.10), we have

T(JP(VW?V) F(t)dt) . ¢1(JD(V,Y}’V) F(t)dt>,

0 0

this is a contradiction of our supposition that t(t) > ¢1(t). This implies that v = y}’v, which further
implies that yPv =yyv =" =y8v=v = pdv =-.. = pdv. Thus, v is a CFP of the 2n self-mappings
%, 0%, ..., 9%, v, v2,...,v2. Finally, we show that the CFP of the 2n self-mappings is unique. For this,
we assume once again a contrary path, i.e., the fixed point is not unique and suppose that there are two
different points z,z* € X, such that

Putting x =z and y = z in (2.1), we have

p(fzyPz) P1(M(z,2)) P2 (N(z,2))
T(J F(t)dt) < ¢1(J r(t)dt) +L¢2(J r(t)dt), 2.11)
0 0 0
where
¥1(M(z,2)) = max{p(pfz, v52), plofz, Y5 2), p(vT 2, v22), p (v 2, V2 2),
p(pfz,vSz) p(vPz,vYz)
1+ Y oplefz,vPz) 1+ 3 1 plptz, vP2)
p(z,z*) p(z*,z*) (2.12)

=max{p(z,z*), p(z,z%), p(z", 2"), p(2", 2"), ,
1+ Z{Lzz p(z,z*) 1+ Z{lzz p(z,z*)

/0} = p(ZI Z*)r

p(z,z*)
= max{p(z,z*), p(z,z%),0,0,
14+ {,p(z2%)
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p(pfz,v8z)
"1+ Y, plefz,vPz)

plz,z") 2.13
)'1+Z{1:2p(z,z*)} (2.13)

_ * * p(Z/Z*) =
=alp(z,2%), p(2,2%),0, 1+5 " ,p(zz7)

V2(N(z,2)) = Polp(pfz,v52), (952, v02), p(v1 2, VR2)

* *

= II)Z{P(Z/ Z*)/ p(Z/ Z*)/ p(Z ,Z

By the help of (2.11)-(2.13), we have

T( Jp(z'z*) r(t)dt) <y ( Jp(z'z*) r(t)dt),

0 0
this is a contradiction of our supposition that t(t) > ¢1(t). This implies that z = z*. Thus, the CFP of the

2n self-mappings ©1, 05, 1 y}’,y}’, ... ,yg is unique. O
For n = 2 in Theorem 2.2, we have the following corollary.

Corollary 2.3. Let p&, 0%,..., 9% and v?,vY,...,v5 be 2n self-mappings on a metric space (X, p) and satisfying
the following conditions:

(@) the pairs (98, 908), (v¥,vY) share the property CLR gy
(b) the pairs (9%, 03), (Y2, vY) are weakly compatible;
(c) the following inequality is satisfied:

T<JOP(&3?X,V}’U) F(t)dt) < q)l(J';M(M(x,y)) F(t)dt) +L¢2<J;bz(N(X,y)) ),

where, L > 0, T'(t) is Lebesgue integrable function such that fg I'(t)dt > 0 for any & > 0 and

Y1 (M(x,y)) = max{p(p{%, Y5y), p(of%,v2Y), (Y U, v2Y), 0 (Y5 y, v2),
P95, vSy) p(vPx, v y)
1+ p(e8%,v5y) 1+ plpfx, v2y) ™"

p(98%,v2y)
1+ p(pfx, v2y)”

Vo (N(x%, 1)) = Wolp(pfx, v5Y), p(ofx,vY2Y), (YT Y, Y2U),

then, the self-mappings o5, 93, y}’,yé’ have a unique CFP in (DC, p).
For n = 3 in Theorem 2.2, we have the following corollary.

Corollary 2.4. Let pf, 5" and y}’,yg be self-mappings on a metric space (X, p) and satisfying the following
conditions:

(a) the pairs (98, 05, 0%), (YY,v5,vY) share the property CLRgayy for 1,k =2,3;
(b) the pairs (9&,vY), (98,7, (9$,vY) are weakly compatible;
(c) the following inequality is satisfied:

T(Jop(pfxn/}’y) F(t)dt) - (bl(J';bl(M(X/yJJ F(t)dt) +L¢2(J;PZ(N(X,U)) )/

where, L > 0, T'(t) is Lebesgue integrable function such that fg I'(t)dt > 0 for any & > 0 and

P1(M(x,y)) = max{p(p{'x, Y3y), p(95%, Y3Y), 0(¥P U, Y3Y), 0 (V3 U, V5 Y),
p(ofx, Y3y) p(vPx, v3y)
1+ 37 508 yPy) 1+ 35, ple8x,vPy)
p(pfx, Yhy)
1+ Y7, p(efxvPy)”

Vo (N(x, 1)) = bolp(pfx,v5y), p(07%, Y2), p(vPY, Y5 Y),
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then, the six self-mappings p{, 95, 95, yl ,y2 ,y3 have a unique CFP in (f)C p)
For £ = 0 in Theorem 2.2, we have the following corollary.

Corollary 2.5. Let p&, 0%,..., 9% and v?,v3,...,v5 be 2n self-mappings on a metric space (X, p) and satisfying
the following conditions:

(a) the pairs (98,905, ...,0%) and (v?,v%,...,vY) share the property CLR b forLk=2,...,mn,

(b) the pairs (pf,y}’), (pf,yg’), oo, (98,72 are weakly compatible;

(c) the following inequality is satisfied:

P1 (M(x,y))

T(Lp(pgx'm) F(t)dt) < ¢1(L ’ r(t)dt),

where, I'(t) is Lebesgue integrable function such that fo t)dt > 0 for any 6 > 0 and

Y1 (M(x,y)) = max{p(p{x, vY5y), ol Y2U), 0 (YD, Y2Y), p(v2 Y, Y2U),
p(p8x,v5y) p(vPx, v2y)
14+ Y toplefxyPy) 1+ X 1, plofx, vPy) ™

then, the 2n self-mappings i, 95, ..., 95 and y%’,y‘z”, oo, Y8 have a unique CFP in (DC, p).

3. Applications

In this section, two applications of our main Theorem 2.2 are presented. In the following example, we
assume that n = 2, and show that the self-mappings ¢, 95, v?,v% : X — X satisfy all the conditions of
Theorem 2.2.

Example 3.1. Let (X = [0,1], p) be a metric space with p(x,y) = [x —y| for x, y € X. Define pf, pg,y}’,yé’
as

1: 1
a 5 if x € 0,0.5], a 5 if x € 10,0.5],
#r(x) {gifxe(om 209 = Tifx e (05,1 G
1 1:
b 5 if x € 0,0.5], b 5 if x € 10,0.5],
Vi) {; if x € (05,1], Y=\ L e (05,1, 6.2

One can easily check that the pair (zpf‘,y}’) and (5, y%’) are weakly compatible. Let us consider the

following sequences
0.In+0.21 0.2In+0.11

)= (=) ) =g (33)
By the help of (3.1), (3.2), and (3.3), we have
0.In+0.21 1 0.In+0.21 1
lim pf'(xn) = lim pf(————) =7,  lm pi(xn) = lim p3(———) =7,
n—00 —00 n 2 n—00 —00 n 2 (3.4)
y biy) = li b(0.21n+0.11)_1 I Plyn) = i b(0.21n+0.11)_1 ‘
e VT = AR YT 0714 T 20 nbee 2NV T R ) T

From (3.4), it is proved that the mappings 9, p$,v?,vS share the property CLRgq,v. Next, we need to
determine that the mappings 9&, p$,vY, VS satisfy the inequality (2.1). For this, we study two cases, i.e.,
x,y € [0,0.5] and x,y € (0.5, 1].

Case I. For x,y € [0, 0.5], we have p%, ps",v?, vy = %, which implies p(p{x, pSy) = 0, P1(M) = 0 and
P2(N) = 0. And therefore, the inequality (2.1) is trivially satisfied.



A. Khan, et al., ]. Nonlinear Sci. Appl., 10 (2017), 5690-5700 5697

Y7y =§ Y3y =5 and

=

y:

NI=

Case II. For x,y € (0.5, 1], we have p{'x = %, P3xX =

U1 (M(x,y)) = max{p(p{x, Y5y), 0(08% Y5y), 0¥y, vIu), 0 (Y5 Y, Y5 y),
p(98%, VoY) p(vPx, v3y)
1+ p(pfx,viy) 14 plefx,viy)

- - (3.5)
— max{p(%, 1), p(2, ), 0(%, 2), pln, ), —ersl _Plars)
6'7777697789779'9" 1+ p(L, 1Y 1+p(L, 1)
— 0.05556,
p(efx, Y3 Y)
$2(N(x,y)) = alp(ox, vEY), p(ofx,VEY), (v Py, v3y), o L
+ p(o% v2Y) (36)
11, 11, 11 plgs) '
= =, 20,002, 2),p(5, o), — 2~} = 0.013889.

For t(t) = 0.9t, ¢1(t) = 0.86t, $o(t) = 0.83t, I(t) = 2t, £ = 0.21, (2.1), (3.5), and (3.6), imply

p(pfxvPy)
0.0015625 = T( L F(t)dt> < ( L

P1(M(xy)) P2 (N(xy))

r(t)dt) + L(I)z(J

r(t)dt) — 0.00269526.
0

Therefore, the inequality (2.1) is also satisfied. Thus, the self-mappings pf,pg,y}’,yg : X — X have a
unique CFP 0.5.

In the following example, we assume that n = 3, and show that the self-mappings o, p$, 95, v,
Y2, v% : X — X satisfy all the conditions of Theorem 2.2.

Example 3.2. Let (X = [0, 1], p) be a metric space with p(x,y) = [x —y| for x, y € X. Define p{, o5, pa‘},y}’,
b b
Y2, Y3, as

0.77 — (0.11 +sin(0.03 4+ x?) + 0.1 cos x), if x € (0,0.35),

o1 (x) =104, if x € [0.35,0.5),
2220 if x € [0.5,1],
0.8— (0.11 +5in(0.03 +x2) + 0.1 cos x), if x € (0,0.35),
93 (%) =104, if x € [0.35,0.5),
222, if x € [0.5,1],
0.85— (011 +sin(0.03 + %) + 0.1 cosx), if x € (0,0.35),
p5(x) =104, if x € [0.35,0.5), (3.7)
1952 if x € 0.5,1],
1— (0.11 +5in(0.03 +y2) + 0.1 cos y), ify € (0,0.35),
YP(y) =104, ify € [0.35,0.5),
2 v ify € [0.5,1],
09— (0.11 +sin(0.03 +y2) + 0.1 cos y), ify e (0,0.35),
YEy) =< 04, ify € [0.35,0.5),

2yt if y € [0.5,1],
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0.85 — (0.11 +sin(0.03 4+ y?) + 0.1 cos y), if y € (0,0.35),
Y5 (y) =104, ify € [0.35,0.5),
L5 y? ify € [05,1].

The pairs (pf,y}’), (pg,yg ), (pg,yg) are weakly compatible. Let us consider the following sequences

04n+14 04In+1.41

xXn}={———— ] b {yn}z{?}- (3.8)

By the help of (3.7), and (3.8), we have

04n+14 a/04n+14

r}grgopl (xn) = hrr;ozpl (W) =04, nlgr;opz (xn) = lnrgozoz(ni“) =04,
0.4n+1.4 b, 0.41n +1.41

T}g%o 93 (xn) = hnéo zpé‘(ni“) =04, hm 1 Y1 (Un) = hm 1Y (ni—l—l) =04, 3.9)
04In+141, b 04In+141

M, Y2 ) = fim v () =04 lim v3lyn) = Jim vy (TR = 04

From (3.9), it is proved that the mappings o7, 95, pg,ylb,yg,yé’ share the property CLRpﬁy{’ fork,1=2,3.

Next, we need to determine that the mappings o7, 95, pél,y}’ ,}/5’ ,yg’ satisfy the inequality (2.1). For this,
we study three cases, i.e., x,y € [0,0.35), x,y € [0.35,0.5), and x,y € [0.5,1].

Case I. For x,y € [0, 0.35), we have

pix =0.77 — (0.11 +5in(0.03 +x2) 4+ 0.1 cos x),
pSx = 0.8 — (0.11 +5in(0.03 +x2) + 0.1 cos x),
p3x = 0.85— (0.11 +5in(0.03 +x?) 4+ 0.1 cos x),
yiy=1- (0.11 +5in(0.03 +y?) +0.1 cosy),
vy =09— (0.11 +sin(0.03 +y2) + 0.1 Cosy),

vby = 0.85 — (0.11 +sin(0.03 +y2) + 0.1 Cosy>,
and

P1(M(x,y)) = max{p(px, ¥5y), p(o5%,Y3Y), 0(vP Y, Y2Y), p(V2Y, Y2y),
(8%, vY2u) p(v?x, v2y)

T+ X oelefxyPy) 1+ X 15 pefx, vPy)

PlefxYRY) 4 (066

1+ Y SoelefxyPy)

}=0.13,

Do (N(x,y)) = Wa{p(pfx, v5y), p(05% Y2Y), o (YD, YRy),

For t(t) = 0.9t, ¢1(t) = 0.86t, $o(t) = 0.83t, I(t) = 2t, £ = 0.21, (2.1), (3.5), and (3.6), imply

p(efix,vPy) Py (M(x,y))
0.04761 = T(J r(t)dt) < ( L r(t)dt) + Ly (J

0 0

B2 (N(x,y))
F(t)dt) — 0.0868436.

Case II. For x, y € [0.35, 0.5], we have p{'x = p5'x = p§x = yly = yzy = ygy = 0.4, which implies
p(p1x, ©5y) =0, P1(M) = 0 and P2(N) = 0. And therefore, the inequality (2.1) is trivially satisfied.
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Casze III. For x,y 26 (0.5, 1], we have pfx = z.zgx,zl p9x = —2_5"2, pgx = 1-955—x2, yby = Z—SXZ, vy =
22 yby = 19 Consequently, we have

P1(M(x,y)) = max{p(p'x, 3 y), p(ofx, Y3y), PPy, You), p (YU, Y2y),
p(ofx, Yay) o(vPx, v2y)

T+ 1oelefyPy) 14 X1, plefx, vPy)
p(8x,vY2y)

1+ 5 elefxvPy)

For (t) = 0.9t, ¢1(t) = 0.86t, o (t) = 0.83t, I(t) = 2t, £ = 0.21, (2.1), (3.5), and (3.6), imply

=01,

Vo (N(x,y)) = Wolp(pfx, v5y), p(95% Y2Y), p(¥YY, YRu), } = 0.04.

plofxvPy) Y1 (M(x,y)) P2 (N(xy))
0.00144 — T(J r(t)dt) < (J r(t)dt) + Ly (J F(t)dt) — 0.0088656.
0 0 0
Therefore, the inequality (2.1) is also satisfied.

x \\‘ N : \\\\\ 015— 1 \\\ ~

Plot for pf*(x) Plot for o5 (x) Plot for o5 (x)
(77 e ~ " ) - ~ 0sF h h \\

Plot for y}” (y) Plot for y;’ (y) Plot for yg (y)

Figure 1

Consequently, all the conditions of Theorem 2.2 are satisfied and therefore, the self-mappings o, o5,
pg,y}’,yg ,yé’ have a unique CFP. From Fig. 1, we can observe that the unique CFP of the self-mappings

ZQ?I 25351/ K)él/Y}j,Yg,Yg is 0.4.

4. Conclusion

In this paper, we have given the notion of property CLR payb fork,1 =2,...,n for the 2n self-mappings

01, 05, Ons y}’ ,y%’ s ,y}’l : X — X. This new idea of generalization of the CLR property will help the
scientists to handle 2n self-mappings for the unique CFPs and many others. The new definition was
utilized for a new FPT along with the assumption that the pairs (o, v{), (95, v5), ..., (95, Yn) are weakly
compatibility in Theorem 2.2. Three corollaries were also produced from Theorem 2.2 as its special cases
and two applications were illustrated. Example 3.1 demonstrates the application of our work for n = 2
that the four self-mappings pf', 5, y}’,y}’ have a unique CFP 0.5 € X = [0, 1]. Example 3.2, demonstrates
an application of our main Theorem 2.2 for n = 3. From the graphical representation of the six self-
mappings in the second example, one can easily observe the unique CFP 0.4 in the metric space (X, p).
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