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Abstract
In this paper, a class of predator-prey model with prey competition is proposed, in which the interactions of predation be-

tween predator and prey are randomised and subsequently evaluated under Markovian switching. By constructing appropriate
Lyapunov functions and applying various analytical methods, sufficient conditions for the existence of unique global positive
solution, stochastic permanence and mean extinction are established. In the permanence case, we also estimate the superior and
inferior limits of the sample path in a time-averaged Markov decision. We conclude that the interactions between predator and
two prey, two competitive prey themselves and the dynamical properties of switching subsystems are not only dependent on
subsystem coefficients but also on the transition probability of the Markov chain (switching from one state to another). Specific
examples and numerical simulations are provided to demonstrate our theoretical results. c©2017 All rights reserved.
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1. Introduction

The dynamic behaviour between predator and prey has long been and will continue to be one of the
dominant themes in both ecology and mathematical ecology due to its universal existence and importance
[4]. During the past few decades, predator-prey models have been extensively investigated [1–3, 9, 10, 18,
25, 35, 36], including the review of classical work and monographs, i.e., Gauss-types [18], Leslie-Gower
models [10], ratio-dependent predator-prey systems [1, 25], Holling types [9, 35], Beddington-DeAngelis
functional response models [3, 36], etc. The classical Lotka-Volterra predator-prey model is

dx(t)
dt

= x(t)(a− by(t)),

dy(t)
dt

= y(t)(−c+ dx(t)),
(1.1)

where x and y represent the prey and predator population density, respectively; a is the intrinsic growth
rate of population x; b is the capturing rate of predator y; c and d are the interspecific competition
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coefficients and rate of nutrients conversion of the population y, respectively. This is a deterministic
predator-prey model, i.e., the parameters are all deterministic irrespective of environmental fluctuations.
Many significant studies concerned with this model have been researched [7, 8, 27]. However, due to the
complexity of the process in nature, population systems are often subject to environmental noise, which is
an important component in the real ecosystem. A system with such random perturbations tends to be suit-
ably modelled by stochastic differential equations [12, 17, 37]. Nisbet and Gurney [22] demonstrated that
stochastic differential equations models play a significant role in the analysis of various dynamic systems,
because they can provide an additional degree of realism compared to their deterministic counterpart.
May [20] also noted that due to environmental fluctuation, birth rates, carrying capacity, competition
coefficients and other parameters involved in a population model system exhibit random fluctuation to
a greater or lesser extent. Therefore, many authors introduced stochastic perturbations into the deter-
ministic models [16, 19, 29, 33]. Takeuchi et al. [28] considered the following predator-prey model with
telegraph noise based on model (1.1):

dx(t)
dt

= x(t)(a(r(t)) − b(r(t))y(t)),

dy(t)
dt

= y(t)(−c(r(t)) + d(r(t))x(t)),
(1.2)

where r(t) is a right-continuous Markov chain on the state space S = {1, 2}. The authors stated that tele-
graph noise can be expressed as a switch between two environmental regimes, which are differentiated
by elements such as nutrition or rain-falls. Telegraph noise is memoryless, and the waiting time for the
next change has an exponential distribution. Therefore, the population model (1.2) under regime switch-
ing can be described by two deterministic systems with different parameters. Authors revealed a very
interesting and surprising result achieved via analytical methods: under the influence of telegraph noise,
if two equilibrium states of the subsystems are different, then all positive trajectories of the system will be
away from any compact set of R2

+ with probability one. When the two equilibrium states coincide with
each other, the trajectory either exists from a random compact set of R2

+ or converges to the equilibrium
state. In fact, two equilibrium states often do not coincide with each other. Takeuchi et al. [28] discovered
that the stochastic species system is neither permanent nor dissipative (see, e.g., [5]). This is an important
result as it reveals a significant effect on the species system, i.e., both its subsystems evolved periodically,
but the switching made them neither permanent nor dissipative.

On the other hand, Hutchinson [11] stated that differential predation on competitive prey species may
theoretically permit some diversification of the prey population. To evaluate the effect of predation on
species diversity for competing species, Parrish et al. [23] proposed a three-species model that described
competition between prey species 1 and 2, where predator species 3 preyed on both prey species 1 and 2
as follows: 

dx1(t)

dt
= x1(t)

[
ε1 −α11x1(t) −α12x2(t) −α13y(t)

]
,

dx2(t)

dt
= x2(t)

[
ε2 −α22x2(t) −α21x1(t) −α23y(t)

]
,

dy(t)
dt

= y(t)
[
ε3 +α31x1(t) +α32x2(t)

]
,

where εi (i = 1, 2, 3) are the intrinsic growth rates of species xi (i = 1, 2) and the predator species y;
α11, α12, α21, α22 represent the intra- and inter-specific competitive coefficients of two prey; the coeffi-
cients α13, α23 represent the capturing rate of predator; and α31, α32 represent the rate of conversion of
nutrients. This is a deterministic system, the interactions between predator y and prey xi (i = 1, 2), the
competitive intensity between multiple prey, are fixed, and unalterable. However, in the realistic setting,
because of intrinsic physiology of environment or human intervention over time, the predation randomly
occurs and competitive outcome changes. For example, when resource is rich, predators (such as a car-
nivore) tend to specialise in eating prey types that are easy to catch and subdue, and avoid prey types
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that are distasteful or noxious in some way. Meanwhile, when living conditions become restricted, i.e.,
these “suitable prey” number are in the low phase of their cycle, predators switch to “alternate prey”
[24]. In this means, the competitive results on two prey may also change [21]. Following these situations,
the interactions between predator and prey and the force of competition on two prey can be determined
stochastically by randomly switching. And this action is memoryless and restricted to an exponential
distribution, i.e., a Markov switching system [13–15, 30–32, 34].

Based on the arguments above, in this paper, we research a class of predator-prey models with stochas-
tic interactions of predator and prey under Markovian switching, including the competition between two
prey species: 

dx1(t)

dt
= x1(t)[a1(r(t)) − b1(r(t))x1(t) − d1(r(t))y− g1(r(t))x2(t)],

dx2(t)

dt
= x2(t)[a2(r(t)) − b2(r(t))x2(t) − d2(r(t))y(t) − g2(r(t))x1(t)],

dy(t)
dt

= y(t)[a3(r(t)) − b3(r(t))y(t) + e1(r(t))x1(t) + e2(r(t))x2(t)],

(1.3)

where we assume that the vector x = (x1, x2,y)T represents the population density of prey species xi (i =
1, 2) and predator species y; r(t) is a stochastic process taking values in a finite state space S̃ = {0, 1, 2, 3};
ai(r(t)) (i = 1, 2, 3) denotes the intrinsic growth rate of predator and prey under state r(t); bi(r(t))
(i = 1, 2, 3) represents the intraspecific competitive coefficient of the multiple prey species xi (i = 1, 2)
and predator under state r(t); di(r(t)) (i = 1, 2) is the capturing rate of the predator at time interval under
state r(t); ei(r(t)) (i = 1, 2) is the rate of conversion of nutrients of the predator under state r(t). This
system may be characterised by the following set of cases.
Case 1. r(t) = 0. In this case, the predator species y has other food resource and does not prey on species
x1 and x2, but the prey species xi (i = 1, 2) compete with each other. Therefore, ei(0) = di(0) = 0 (i = 1, 2)
while other parameters are nonzero constants.
Case 2. r(t) = 1. In this case, the predator y captures prey x1 in time, meanwhile, there exists competition
between the prey x1 and x2, i.e., e2(1) = d2(1) = 0, while other parameters are nonzero constants.
Case 3. r(t) = 2. In this case, which is like Case 2, only the prey x2 can be caught by predator y. Therefore,
system (1.3) becomes another subsystem in which the predator y captures prey x2 and the remaining prey
x1 and x2 compete with each other.
Case 4. r(t) = 3. In this case, for example, when winter comes, some species vegetarians or birds species
will migrate to resource-rich food habitats (or warm place) in search for a better place to breed and
survive, predator y have no choice but to catch species x1 and x2. Thus the interaction among the three
species becomes a two-prey-one-predator system where preys compete with each other. This implies that
all parameters in system (1.3) are nonzero constants.

Therefore, system (1.3) can be regarded as an interaction between four deterministic subsystems.
The law of the Markov chain switching is applied in these situations. In the real ecosystem, owing
to natural enemies, competition, seasonal alternatives or deterioration of patches of the environment,
species movement behaviour is common. Therefore, we conclude that the system (1.3) is reasonable.

In this paper, we investigate the dynamic behaviour of system (1.3) (i.e., the existence of the unique
global stochastic positive solution, stochastic permanence, extinction, and path-wise estimation) and ex-
plore the influence of Markvian switching on the population dynamic of multiple species (1.3). The paper
is organised as follows. In Section 2, preliminaries are introduced. In Section 3, we study the existence
and uniqueness of the globally positive solution of system (1.3). Sufficient conditions for the extinction
and stochastic permanence are established in Section 4. Path-wise estimation is discussed in Section 5. In
Section 6, we present specific numerical examples to demonstrate the theoretical results. A discussion is
provided in Section 7.
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2. Preliminaries

Let (Ω,F, {Ft}t>0,P) be a complete probability space with a filtration {Ft}t>0 satisfying the usual
conditions (i.e., it is right-continuous and F0 contains all P-null set). Let r(t) be a right-continuous
Markov chain on the probability space, and taking values in a finite state S̃ = {0, 1, 2, 3} with the generator
Π = (πIJ)4×4 given by

P{r(t+4) = J | r(t) = I} =

{
πIJ4+o(4), I 6= J,
1 + πIJ4+o(4), I = J,

where I, J ∈ S̃,4 > 0, lim
4→0

o(4)

4
= 0. Here, πIJ is the transition rate from I to J and πIJ > 0 (I, J ∈ S̃, I 6= J),

while

πII = −

4∑
J=1,J6=I

πIJ.

For convenience and simplicity in the following discussion, for any constant sequence

{cij(I)} (1 6 i, j 6 3, I ∈ S̃),

define
č = max

16i,j63,I∈S̃
cij(I), č(I) = max

16i,j63
cij(I),

ĉ = min
16i,j63,I∈S̃

cij(I), ĉ(I) = min
16i,j63

cij(I).

Moreover, we rewrite (1.3) to{
ẋ(t) = diag(x1(t), x2(t),y(t))[a(r(t)) +A(r(t))x(t)],
x(τ+0 ) = x0 > 0, r(τ+0 ) = r0 ∈ S̃,

(2.1)

where x = (x1(t), x2(t),y(t))T ∈ R3, a(I) = (a1(I),a2(I),a3(I))
T ∈ R3 represents the intrinsic growth rate

of the species for a fixed I ∈ S̃, and

A =
(
A(r(t))

)
3×3

=

(
−b1(r(t)) −g1(r(t)) −d1(r(t))
−g2(r(t)) −b2(r(t)) −d2(r(t))
e1(r(t)) e2(r(t)) −b3(r(t))

)
.

Next, we will give several useful definitions and lemmas.

Definition 2.1 ([21]). The SDE (2.1) is said to be stochastically permanent if for any ε ∈ (0, 1), there exist
positive constants δ = δ(ε) and χ = χ(ε) such that

lim inf
t→∞ P{| x(t) |6 χ} > 1 − ε, and lim inf

t→∞ P{| x(t) |> δ} > 1 − ε,

where x(t) is the solution of (2.1) with any initial value x(τ+0 ) ∈ R3
+.

Definition 2.2 ([26]). The SDE (2.1) is said to be extinct in mean if for any initial value x(τ+0 ) ∈ R3
+,

solution x(t) of system (2.1) has the property that

lim sup
t→∞ E | x(t) |= 0.

Definition 2.3 (Generalized Itô formula [19]). Let x(t) be an n-dimensional Itô process on t > 0 with the
stochastic differential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+,Rn) and g ∈ L2(R+,Rn×m). Let V ∈ C2,1(Rn × S × R+,R), then V(x(t), r(t), t) is a
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real-valued Itô process with its stochastic differential given by

dV(x(t), r(t), t) = LV(x(t), r(t), t)dt+ Vx(x(t), r(t), t)g(t)dB(t) a.s., (2.2)

where
LV(x(t), r(t), t) = Vt(x(t), r(t), t) + Vx(x(t), r(t), t)f(t)

+
1
2

trace[gT (t)Vxx(x(t), r(t), t)g(t)]

+
∑
s

γrsV(x(t), s, t).

In addition

Vt(x(t), r(t), t) =
∂V(x(t), r(t), t)

∂t
,

Vx(x(t), r(t), t) =
(
∂V(x(t), r(t), t)

∂x1
, · · · ,

∂V(x(t), r(t), t)
∂xn

)
,

and

Vxx(x(t), r(t), t) =
(
∂2V(x(t), r(t), t)

∂xi∂xj

)
n×n

.

Lemma 2.4 ([19, Chebyshev’s inequality]). If c > 0, p > 0, x ∈ Lp, then

P{ω :| x(ω) |> c} 6 c−pE | x |p .

Lemma 2.5 ([6, Fubini’s Theorem]). Let vi (i = 1, 2) be capacities on Ai algebras of Ωi (i = 1, 2). Let
Ω = Ω1 ×Ω2 be endowed with the product algebra A = A1 ⊗A2. Let f : Ω1 ×Ω2 7→ R be a slice-comonotonic
bounded A-measurable mapping, then

1. f(·,ω2) is A1-measurable and ω2 ∈ Ω2 7→
∫
Ω1
f(·,ω2)dv1 is bounded and A2-measurable. f(ω1, ·) is

A2-measurable and ω1 ∈ Ω1 7→
∫
Ω2
f(ω1, ·)dv2 is bounded and A1-measurable.

2. The iterated integrals
∫ ∫
fdv1dv2,

∫ ∫
fdv1dv2 exist and are equal∫

Ω2

(∫
Ω1

f(ω1,ω2)dv1

)
dv2 =

∫
Ω1

(∫
Ω2

f(ω1,ω2)dv2

)
dv1.

3. A capacity v on (Ω1 ×Ω2,A) satisfies: for any slice-comonotonic bounded A-measurable mapping
f : Ω1 ×Ω2 → R, and ∫

fdv =
∫ ∫
fdv1dv2 =

∫ ∫
fdv2dv1,

if and only if v satisfies v(A) =
∫ ∫
A∗dv1dv2 for any slice-comonotonic A∗ belonging to A. Such a capacity

is called a Fubini independent product of v1 and v2.

Lemma 2.6 ([19, Borel-Cantelli’s lemma]).

(1) If {Ak} ⊂ F and
∑∞
k=1 P(Ak) <∞, then

P(lim sup
k→∞ Ak) = 0.

That is, there exist a set Ω1 ∈ F with P(Ω1) = 1 and an integer-valued random variable k1 such that for
every ω ∈ Ω1 we have ω /∈ Ak whenever k > k1(ω).

(2) If the sequence {Ak} ⊂ F is independent and
∑∞
k=1 P(Ak) =∞, then

P(lim sup
k→∞ Ak) = 1.

That is, there exists a set Ω2 ∈ F with P(Ω2) = 1 such that for every ω ∈ Ω2, there exists a sub-sequence
{Aki} such that the ω belongs to every Aki .
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3. Existence and uniqueness of global positive solution

As the x(t) determines the species population in the system at time t, it should be nonnegative. More-
over, a stochastic differential equation with Markovian switching has a unique global (i.e., no explosion
in finite time) solution for any given initial data if the coefficients of the equation satisfy the linear growth
condition and Lipschitz condition. The coefficients of SDE (2.1) do not satisfy the linear growth condition,
though they are locally Lipschitz continuous. Thus, the solution of SDE (2.1) may explode at a finite time.
A necessary condition may establish to ensure the solution of SDE (2.1) is not only positive but will also
not explode to infinity at any finite time.

Theorem 3.1. Assume that there exist positive numbers c1(I), c2(I), c3(I) for each I ∈ S̃ such that

− λ := max
{
λ+max(C̄(I)A(I) +A

T (I)C̄(I))
}
6 0, (3.1)

where C̄(I) = diag(c1(I), c2(I), c3(I)). Then, for any given initial value x(τ0) ∈ R3
+, there is a unique solution x(t)

of system (2.1) defined on t ∈ R+, and remains in R3
+ with probability one, namely x(t) ∈ R3

+ for all t ∈ R+ almost
surely.

The proof is a modification of the proof for the autonomous case. For the completeness of the paper,
we will provide the proof for the cases in Appendix A.

Remark 3.2. Let
J = C̄(I)A(I) +AT (I)C̄(I)

=

(
−2b1c1(I) −g1c1(I) − g2c2(I) −d1c1(I) + e1c3(I)

−g1c1(I) − g2c2(I) −2b2c2(I) −d2c2(I) + e2c3(I)
−d1c1(I) + e1c3(I) −d2c2(I) + e2c3(I) −2b3c3(I)

)
.

Its characteristic equation is
∆(λ) = λ3 +A1λ

2 +A2λ+A3, (3.2)

where the coefficients A1,A2 and A3 expressed in terms of the matrix are A1 = −tr(J),A3 = −det(J) and
A2 =M, with M indicating the sum of the principal minors of order two of J. Since J is a real symmetric
matrix, the characteristic (3.2) has three purely real roots. By Descartes’ rule, J has three negative roots is
equivalent to

A1 > 0, A1A2 −A3 > 0, and A3 > 0.

4. Stochastic permanence to extinction

Theorem 3.1 states that the solution of (2.1) will remain in the positive cone R+. This positivity
property of the solution allows the construction of various types of Lyapunov functions to study the
dynamic properties of the solution in R+ in more details. Next, we have the following result, which
guarantees the ultimate up boundedness of the solution.

Theorem 4.1. Assume that (3.1) holds. Then there exists a positive number H1 > 0 such that

lim sup
t→∞ E | x(t) |6 H1, (4.1)

for any solution x(t) of the system (2.1) with the initial value x(τ0) ∈ R3
+.

Proof. By Theorem 3.1, the unique solution x(t) of system (2.1) will remain in R3
+ for all t ∈ R+ with

probability one. Define a function V : R3
+ × S̃→ R+ by

V(x, I) = et[c1(I)x1 + c2(I)x2 + c3(I)y].
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By generalized Itô formula, we have
dV(x, I) = LV(x, I)dt,

where LV is a mapping from R3
+ × S̃→ R by

LV(x, I) = et
[
C(I)x+ xT C̄(I)a(I) + xT C̄(I)A(I)x

]
+

4∑
J=1

πIJV(x, J), (4.2)

where C(I) = (c1(I), c2(I), c3(I)). By condition (3.1), there is

xT C̄(I)A(I)x =
xT
(
C̄(I)A(I) +AT (I)C̄(I)

)
x

2
6 −

λ

2
|x|2. (4.3)

Substituting (4.3) to (4.2), therefore

dV(x, I) = LV(x, I)dt

6 et
([

|C(I)|+ |C̄(I)a(I)|+ 4πµ
]
|x|−

λ

2
|x|2
)

dt

6 K1e
tdt,

(4.4)

where π = max{πIJ, I, J ∈ S̃}, µ = max{cm(J)
cn(I)

, 1 6 m,n 6 3, I, J ∈ S̃}, C(I) = (c1(I), c2(I), c3(I)) and

K1 = maxI∈S̃

(
|C(I)|+|C̄(I)a(I)|+p

)2

2λ > 0.
For any t ∈ (τk, τk+1], integrating both sides of the inequality (4.4) from τ+k to t, and then taking

expectations yields

EV(x(t), r(t)) 6 EV(x(τ+k ), r(τ
+
k )) +K1(e

t − eτk)

= EV(x(τk), r(τk)) +K1(e
t − eτk)

6 EV
(
x(τ+k−1), r(τ

+
k−1)

)
+K1(e

τk − eτk−1) +K1(e
t − eτk)

= EV
(
x(τk−1), r(τk−1)

)
+K1(e

t − eτk−1)

6 EV
(
x(τ0), r(τ0)

)
+K1(e

t − eτ0).

(4.5)

Note that

|x(t)| 6
V(x(t), r(t))

ĉet
. (4.6)

Therefore, from (4.5) and (4.6) we obtain

lim sup
t→∞ E | x(t) |6 K1/ĉ , H1,

which means (4.1) holds. The proof of Theorem 4.1 is complete.

Theorem 4.1 illustrates the property of stochastic ultimate boundedness for the solution of system
(2.1). Meanwhile, species x needs to be permanent in a realistic setting in the future. Thus, it is necessary
for us to research the following conclusion.

Theorem 4.2. Assume that the condition (3.1) holds. In addition, if there exist positive constants α, θ and q(I)
(I ∈ S̃) such that

q(I)θâ(I) −

4∑
J=1

πIJq(J) −αq(I) < 0, (4.7)
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then the solution x(t) of the system (2.1) with any initial value x(τ0) ∈ R3
+ has the property that

lim sup
t→∞ E

[
1

|x(t)|θ

]
6 H2,

here H2 is a positive constant.

Proof. By Theorem 3.1 the unique solution x(t) of system (2.1) will remain in R3
+ for all t ∈ R+ with

probability one. Define V : R3
+ → R+ by

V(x) = x1 + x2 + y on t ∈ R+.

Then
dV(x) = xT

[
a(r(t)) +A(r(t))x

]
dt.

Define also
U(x) =

1
V(x)

on t ∈ R+. (4.8)

By generalized Itô formula, we have

dU(x) = LU(x)dt

= −U2(x)dV +U3(x)(dV)2

= −U2(x)xT
[
a(r(t)) +A(r(t))x

]
dt.

Define a function V̄ : R3
+ × S̃→ R+ by

V̄ = q(I)(1 +U)θ,

where for each I ∈ S̃, q(I) > 0. Applying the generalized Itô formula, then

dV̄ = LV̄dt

=

{
q(I)θ(1 +U)θ−1

[
−U2xT

(
a(I) +A(I)x

)]
+

4∑
J=1

πIJq(J)(1 +U)θ
}

dt

=

{
q(I)θ(1 +U)θ−2

[
− (1 +U)U2xT

(
a(I) +A(I)x

)]
+

4∑
J=1

πIJq(J)(1 +U)θ
}

dt.

(4.9)

We have

−(1 +U)U2xT
(
a(I) +A(I)x

)
= −U2xTa(I) −U3xTa(I) −U2xTA(I)x−U3xTA(I)x

= −
xTA(I)x

V2 +
[
−
xTa(I)

V
−
xTA(I)x

V2

]
U−

[xTa(I)
V

]
U2.

It is easy to see that for all x ∈ R3
+,

−
xTA(I)x

V2 6 K2, and −
xTa(I)

V
−
xTA(I)x

V2 6 K2,

where K2 is a positive constant, while
xTa(I)

V
> â(I).
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Hence
−(1 +U)U2xT

(
a(I) +A(I)x

)
6 K2 +K2U− â(I)U2.

Substituting above inequality to (4.9) yields

LV̄ 6 q(I)θ(1 +U)θ−2
[
− â(I)U2 +K2(1 +U)

]
+

4∑
J=1

πIJq(J)(1 +U)θ

= (1 +U)θ−2
{
−
[
q(I)θâ(I) −

4∑
J=1

πIJq(J)
]
U2 +

[
q(I)θK2

+ 2
4∑
J=1

πIJq(J)
]
U+ q(I)θK2 +

4∑
J=1

πIJq(J)
}

.

Let α > 0, and hence

LeαtV̄ = αeαtq(I)(1 +U)θ + eαtLV̄

6 eαt(1 +U)θ−2
{
αq(I)(1 +U)2 −

[
q(I)θâ(I) −

4∑
J=1

πIJq(J)
]
U2

+
[
q(I)θK2 + 2

4∑
J=1

πIJq(J)
]
U+ q(I)θK2 +

4∑
J=1

πIJq(J)
}

= eαt(1 +U)θ−2
{
−U2[q(I)θâ(I) − 4∑

J=1

πIJq(J) −αq(I)
]

+
[
q(I)θK2 + 2

4∑
J=1

πIJq(J) + 2αq(I)
]
U+ q(I)θK2

+

4∑
J=1

πIJq(J) +αq(I)
}

6 3−θq̂(I)Heαt,

(4.10)

where

H =
1
q̂(I)

3θmax

{
sup
{
(1 +U)θ−2

{
−U2[q(I)θâ(I) − 4∑

J=1

πIJq(J) −αq(I)
]

+
[
q(I)θK2 + 2

4∑
J=1

πIJq(J) + 2αq(I)
]
U+ q(I)θK2

+

4∑
J=1

πIJq(J) +αq(I)
}}

, 1

}
,

in which we put 1 in order to make H positive. The inequality (4.10) implies

lim sup
t→∞ E

[
Uθ(x(t))

]
6 lim sup

t→∞ E
[(

1 +U(x(t))
)θ]

6 3−θH. (4.11)

For x(t) ∈ R3
+, note that

(x1 + x2 + y)
θ 6

(
3 max

{
x1, x2,y

})θ
= 3θ

(
max

{
x2

1, x2
2,y2})θ2 6 3θ

∣∣x(t)∣∣θ.
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Consequently,

lim sup
t→∞ E

[
1

|x(t)|θ

]
6 H2.

This completes the proof of Theorem 4.2.

Theorems 4.1 and 4.2 show that the solution of system (2.1) is stochastically bounded. Under the
circumstances, we have the following result about permanence by applying Lemma 2.4.

Theorem 4.3. Assume that all conditions of Theorems 4.1 and 4.2 hold, then any positive solution x(t) of system
(2.1) with the initial value x(τ0) ∈ R3

+ is stochastically permanent.

Proof. By Theorem 4.1, we derive that

lim sup
t→∞ E | x(t) |6 H1.

For any ε > 0, assign δ1 =
H1

ε
, by Lemma 2.4 one has

P{| x(t) |> δ1} 6
E | x(t) |

δ1
.

Hence
lim sup
t→∞ P{| x(t) |> δ1} 6 ε.

Then, we have
lim inf
t→∞ P{| x(t) |> δ1} 6 lim sup

t→∞ P{| x(t) |> δ1} 6 ε.

This implies
lim inf
t→∞ P{| x(t) |6 δ1} > 1 − ε. (4.12)

By Theorem 4.2, we have

lim sup
t→∞ E

[
1

| x(t)θ |

]
6 H2.

Then, for any ε > 0, let δ2 = ε/H
1
θ
2 , by Lemma 2.4 we obtain

P{| x(t) |< δ2} = P

{
1

| x(t)θ |

1
θ

>
1
δ2

}
6
E

[
1

|x(t)θ|

1
θ

]
1
δ2

.

Thus
lim sup
t→∞ P{| x(t) |< δ2} 6 ε.

That is
lim inf
t→∞ P{| x(t) |> δ2} > 1 − ε,

which together with (4.12) yields that system (2.1) is stochastic permanent. The proof of Theorem 4.3 is
complete.

Theorem 4.3 demonstrates the property of stochastic permanence. Species may also become extinct
under some special circumstance such as resource shortages or major environmental changes, which play
a vital role in the study of ecology systems. Hence, we arrive at the result that all species of system (2.1)
will be extinct in mean.
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Theorem 4.4. Assume that condition (3.1) holds. For any initial value x(τ0) ∈ R3
+, the solution x(t) of the system

(2.1) has the property that

lim sup
t→∞

ln |x(t)|

t
6 πII(1 − µ) + lim sup

t→∞
1
t

∫t
τ0

ǎ(r(s))ds a.s.. (4.13)

Particularly, if

πII(1 − µ) + lim sup
t→∞

1
t

∫t
τ0

ǎ(r(s))ds < 0,

then
lim
t→∞

∣∣x(t)∣∣ = 0 a.s.. (4.14)

Proof. By condition (3.1), the unique solution x(t) of system (2.1) will remain in R3
+ for all t ∈ R+ with

probability one. Define a function V : R3
+ × S̃→ R+ by

V(x, I) = c1(I)x1 + c2(I)x2 + c3(I)y. (4.15)

By generalized Itô formula, we derive from (4.15) that

dV(x, I) = LV(x, I)dt

=

{
xT C̄(I)

[
a(I) +A(I)x

]
+

4∑
J=1

πIJV(x, J)
}

dt.

Then
d lnV(x, I) =

1
V(x, I)

dV(x, I) −
1

2V2 (dV(x, I))2

=
1

V(x, I)

{
xT C̄(I)

[
a(I) +A(I)x

]
+

4∑
J=1

πIJV(x, J)
}

dt.
(4.16)

From (4.15) and (3.1) that
xT C̄(I)A(I)x

V(x, I)
=
xT (C̄(I)A(I) +AT (I)C̄(I))x

2V(x, I)

6
−λ|x|2

2V(x, I)
6

−λ

2|C(I)|
|x| 6 0.

(4.17)

Therefore,
xT C̄(I)a(I)

V(x, I)
+

∑4
J=1 πIJV(x, J)
V(x, I)

6 ǎ(I) +
πIIV(x, I)
V(x, I)

+

∑
J6=I πIJV(x, J)
V(x, I)

= ǎ(I) + πII +

∑
J6=I πIJV(x, J)
V(x, I)

6 ǎ(I) + πII −
µπIIV(x, I)
V(x, I)

= ǎ(I) + πII(1 − µ).

(4.18)

Substituting (4.17) and (4.18) into (4.16) yields

d lnV(x, I) 6 ǎ(I) + πII(1 − µ). (4.19)

Integrating both sides of the inequality (4.19) from τ0 to t, then

lnV(x(t), r(t)) 6 lnV
(
x(τ0), r(τ0)

)
+

∫t
τ0

[
ǎ(r(s)) + πII(1 − µ)

]
ds. (4.20)
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It finally follows from (4.20) by dividing t on the both sides, and taking superior limit, we have

lim sup
t→∞

lnV(x(t))
t

6 πII(1 − µ) + lim sup
t→∞

1
t

∫t
τ0

ǎ(r(s))ds, a.s.,

which implies the required assertions (4.13) and (4.14). This completes the proof of Theorem 4.4.

5. Path-wise estimation

Theorem 5.1. Assume that the condition (3.1) holds. Then for any initial value x(τ0) ∈ R3
+, any solution x(t) of

system (2.1) has the property that

lim sup
t→∞

ln |x(t)|

ln t
6 1 a.s.. (5.1)

Proof. Let V : R3
+ × S̃→ R+ be defined as (4.15), by the generalized Itô formula, we can show that

LV =
(
xT C̄(I)[a(I) +A(I)x] +

4∑
J=1

πIJV(x, J)
)

, (5.2)

which from (3.1) we know xT C̄(I)A(I)x 6 −λ2 |x|
2 < 0.

Substituting above inequality,
∑4
J=1 πIJV(x, J) 6 4πµV(x, I) and xT C̄(I)a(I) 6 |C̄(I)a(I)||x| into (5.2),

we obtain
LV 6 |C̄(I)a(I)||x|+ 4πµV(x, I).

Then

E
(

sup
t6r6t+1

V(x(r), r(r)
)
6 EV(x(t), r(t)) + max

I∈S̃
|C̄(I)a(I)|

∫t+1

t

E
(
|x(s)|

)
ds

+ 4πµ
∫t+1

t

EV(x(s))ds.

From (4.1) of Theorem 4.1, we know that,

lim sup
t→∞ E

(
sup

t6r6(t+1)
V(x(t), r(t))

)
6
√

3c̆(I) lim sup
t→∞ E(|x(t)|) 6

√
3c̆(I)H1.

Therefore
lim sup
t→∞ E

(
sup

t6r6t+1
V(x(r), r(r))

)
6
√

3c̆(I)H1 + max
I∈S̃

|C̄(I)a(I)|H1

+ 4
√

3πµc̆(I)H1

=
[
(4πµ+ 1)

√
3c̆+ max

I∈S̃
|C̄(I)a(I)|

]
H1.

Recalling the following inequality

|x(t)| 6 x1 + x2 + y 6
1
ĉ(I)

V(x, I), ∀ x(t) ∈ R3
+,

we obtain
lim sup
t→∞ E

(
sup

t6r6t+1
|x(r)|

)
6

1
ĉ(I)

[
(4πµ+ 1)

√
3c̆+ max

I∈S̃
|C̄(I)a(I)|

]
H1. (5.3)

We can observe from (5.3) that there is a positive constant H̄ such that

E
(

sup
k6t6k+1

|x(t)|
)
6 H̄, k = 1, 2, · · · .
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Let ε > 0 be arbitrary. Then, by Lemma 2.4, we have

P
{

sup
k6t6k+1

|x(t)| > k1+ε
}
6

H̄

k1+ε , k = 1, 2, · · · .

Applying Lemma 2.6, we obtain that for almost all ω ∈ Ω

sup
k6t6k+1

|x(k)| 6 k1+ε,

holds for all but finitely many k. Hence, there exists a k0(ω) for almost all ω ∈ Ω, such that (5.3) holds
whenever k > k0. Consequently, for almost all ω ∈ Ω, if k > k0 and k 6 t 6 k+ 1,

ln(|x(t)|)
ln t

6
(1 + ε) lnk

lnk
= 1 + ε.

Therefore

lim sup
t→∞

ln(|x(t)|)
ln t

6 1 + ε. a.s..

Letting ε→ 0, we obtain the assertion (5.1). This completes the proof of Theorem 5.1.

Theorem 5.2. If conditions (3.1) and (4.7) hold, then any positive solution x(t) of system (2.1) with any initial
value x(τ0) ∈ R3

+ has the property that

lim inf
t→∞ ln(|x(t)|)

ln t
> −

1
θ

a.s.. (5.4)

Proof. Let U : R3
+ → R+ be the same as defined by (4.8), for convenience, we write U(x(t)) = U(t).

Applying the generalized Itô formula, for the fixed constant θ > 0, we derive

Lq(I)(1 +U(t))θ 6 q(I)θ(1 +U(t))θ−2

{
−
[
q(I)θâ(I) −

4∑
J=1

πIJq(J)
]
U2(t)

+
(
q(I)θK2 + 2

4∑
J=1

πIJq(J)
)
U(t) + q(I)θK2

+

4∑
J=1

πIJq(J)

}
.

Let

ᾱ = max
{
|q(I)θK2 + 2

4∑
J=1

πIJq(J)|, |q(I)θK2 +

4∑
J=1

πIJq(J)|
}

.

Then

(1 +U(t))θ−2
{
−
[
q(I)θâ(I) −

4∑
J=1

πIJq(J)
]
U2(t) + ᾱ(1 +U(t))

}
. (5.5)

Under given condition, by (4.11) of Theorem 4.2, there exists a positive constant M such that

E
(
q(I)(1 +U(t))θ

)
6M on t > 0.

Let δ > 0 such that [ 4∑
J=1

πIJq(J) + q(I)θâ(I) + ᾱ

]
δ 6

1
2

.
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Letting k = 1, 2, 3 · · · , (5.5) implies that

E
[

sup
(k−1)δ6t6kδ

q(I)(1 +U(t))θ
]
6 q(I)

(
1 +U((k− 1)δ)

)θ
+ E

(
sup

(k−1)δ6t6kδ
|

∫t
(k−1)δ

(1 +U(s))θ−2

×
{( 4∑
J=1

πIJq(J) − q(I)θâ(I)
)
U2(s) + ᾱ(1 +U(s))

}
ds|
)

.

We have

E

(
sup

(k−1)δ6t6kδ
|

∫t
(k−1)δ

(1 +U(s))θ−2
{( 4∑
J=1

πIJq(J) − q(I)θâ(I)
)
U2(s) + ᾱ(1 +U(s))

}
ds|
)

6 E

( ∫kδ
(k−1)δ

∣∣∣(1 +U(s)
)θ−2

{(
q(I)θâ(r(s)) +

4∑
J=1

πIJq(J)
)
U2(s) + ᾱ(1 +U(s))

}∣∣∣ds)

6 E

( ∫kδ
(k−1)δ

sup
(k−1)δ6s6kδ

[
(q(I)θâ(r(s)) +

4∑
J=1

πIJq(J) + ᾱ
]
· (1 +U(s))θds

)

6

( 4∑
J=1

πIJq(J) + q(I)θâ(I) + ᾱ

)
E

( ∫kδ
(k−1)δ

sup
(
1 +U(s)

)θds
)

6

( 4∑
J=1

πIJq(J) + q(I)â(I) + ᾱ

)
δE

(
sup

(k−1)δ6t6kδ

(
1 +U(t)

)θ).

Therefore

E

(
sup

(k−1)δ6t6kδ

(
1 +U(t)

)θ)
6

[(
1 +U((k− 1)δ)

)θ]
+

1
2
E

(
sup

(k−1)δ6t6kδ

(
1 +U(t)

)θ),

E
[

sup
(k−1)δ6t6kδ

(
1 +U(t)

)θ]
6 2M. (5.6)

Let ε > 0 be arbitrary. Then, by Lemma 2.4, we have

P
{
ω : sup

(k−1)δ6t6kδ

(
1 +U(t)

)θ
> (kδ)1+ε

}
6

2M
(kδ)1+ε , k = 1, 2, · · · .

Applying Lemma 2.6, we obtain that all ω ∈ Ω for which (5.6) holds whenever k > k0. Consequently, for
almost all ω ∈ Ω, if k > k0 and (k− 1)δ 6 t 6 kδ,

ln(1 +U(t))θ

ln t
6

(1 + ε) ln(kδ)
ln((k− 1)δ)

= 1 + ε.

Therefore

lim sup
t→∞

ln(1 +U(t))θ

ln t
6 1 + ε. a.s..

Letting ε→ 0, we obtain

lim sup
t→∞

ln(1 +U(t))θ

ln t
6 1. a.s..

Recalling the definition of U(t), we yield

lim sup
t→∞

ln 1
|x(t)|θ

ln t
6 1. a.s.,
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which further implies

lim inf
t→∞ ln |x(t)|

ln t
> −

1
θ

. a.s..

This completes the proof of Theorem 5.2.

Theorem 5.3. Under conditions (3.1) and (4.7), for any initial value x(τ0) ∈ R3
+, the solution x(t) of system (2.1)

obeys

lim sup
t→∞

1
t

∫t
0
|x(s)|ds 6

2|C(I)|
λ

[
πII(1 − µ) + lim sup

t→∞
1
t

∫t
0
ǎ(r(s))ds

]
a.s., (5.7)

lim inf
t→∞ 1

t

∫t
0
|x(s)|ds >

2ĉ(I)
λ̂

[
πII(1 − µ) + lim inf

t→∞ 1
t

∫t
0
â(r(s))ds

]
a.s., (5.8)

where µ̄ = min
{
cm(J)
cn(I)

: 1 6 m,n 6 3, I, J ∈ S̃
}

, −λ̂ := min
{
λ+max

(
C̄(I)A(I) +AT (I)C̄(I))

}
.

Proof. Define V : R3
+ × S̃→ R+ by the relation (4.15). By the generalized Itô formula, we have

dV(x, I) =
{
xtC̄(I)[a(I) +A(I)x(t)] +

4∑
J=1

πIJq(J)V(x, J)
}

dt. (5.9)

It is easy to observe from the inequalities (5.1) and (5.4) that

lim
t→∞ lnV(x(t), r(t))

t
= 0 a.s..

We derive from (5.9) that

V(x, I) =
1

V(x, I)

{
xT C̄(I)

[
a(I) +A(I)x(t)

]
+

4∑
J=1

πIJq(J)V(x, J)
}

. (5.10)

By condition (3.1), we have

−λ̂

2ĉ(I)
|x| <

xT C̄(I)A(I)x

V(x, I)
=
xT [C(I)A(I) +AT C̄(I)]x

2V(x, I)
6

−λ

2|C(I)|
|x| < 0, (5.11)

and

â(I) + πII(1 − µ̄) 6
xT C̄(I)a(I)

V(x, I)
+

∑4
J=1 πIJq(J)V(x, J)

V(x, I)
6 ǎ(I) + πII(1 − µ). (5.12)

Substituting (5.11) and (5.12) to (5.10) yields

d lnV(x, I) 6
[
ă(I) + πII(1 − µ) −

λ

2|C(I)|
|x|
]
dt.

Thus

lnV(x(t), r(t)) +
λ

2|C(I)|

∫t
0
|x(s)|ds 6 lnV(x(τ0), r(τ0)) +

∫t
0
[πII(1 − µ) + ǎ(r(s))]ds,

we can therefore divide both sides of (5.12) by t and then let t→∞ to obtain

λ

2|C(I)|
lim sup
t→∞

1
t

∫t
0
|x(s)|ds 6 πII(1 − µ) + lim sup

t→∞
1
t

∫t
0
ǎ(r(s))ds.

This completes the proof of (5.7).
On the other hand, we observe from (5.11) and (5.12) that

d lnV(x(t), r(t)) >
[
πII(1 − µ̄) + â(I) −

λ̂

2ĉ(I)
|x|
]
dt.



Y. Q. Li, L. Zhang, J. Nonlinear Sci. Appl., 10 (2017), 5622–5645 5637

Hence

lnV(x(t), r(t))
t

+
1
t

λ̂

2ĉ(I)

∫t
0
|x(s)|ds >

lnV(x(τ0), r(τ0))

t
+

1
t

∫t
0
[πII(1 − µ) + â(r(s))]ds.

So we have
λ̂

2ĉ(I)
lim inf
t→∞ 1

t

∫t
0
|x(s)|ds > πII(1 − µ) + lim inf

t→∞ 1
t

∫t
0
â(r(s))ds,

which implies the other required assertion (5.8). This completes the proof of Theorem 5.3.

6. Numerical simulation

To illustrate our theoretical results developed in the paper, i.e., stochastic permanence and extinction
in mean, we present some numerical examples. Let (r(t))t>0 be a right-continuous Markov chain taking
values in S = {0, 3} ⊂ S̃ = {0, 1, 2, 3}. Here, for convenience, we only discuss two states, i.e.,

S = {0, 3} ⊂ S̃ = {0, 1, 2, 3}.

As noted in Section 1, we may regard SDE (2.1) as the result of the following two equations:

dx1

dt
= x1

[
a1(0) − b1(0)x1 − g1(0)x2

]
,

dx2

dt
= x2

[
a2(0) − b2(0)x2 − g2(0)x1

]
,

dy
dt

= y
[
a3(0) − b3(0)y

]
,

(6.1)

and 

dx1

dt
= x1

[
a1(3) − b1(3)x1 − d1(3)y− g1(3)x2

]
,

dx2

dt
= x2

[
a2(3) − b2(3)x2 − d2(3)y− g2(3)x1

]
,

dy
dt

= y
[
a3(3) − b3(3)y+ e1(3)x1 + e2(3)x2

]
,

(6.2)

switching from one population to the other per the behaviour of the Markovian chain r(t). Here, sub-
system (6.1) implies that the predator y will not capture the species xi (i = 1, 2), but two different prey
compete with each other. In subsystem (6.2), we assume that both interactions, i.e., prey and competition
will occur. This means that predator and prey can meet together, including the two competition species
of prey.

Table 1: Parameters of the subsystems (6.1) and (6.2).

Subs. r(t) a1(r(t)) b1(r(t)) d1(r(t)) g1(r(t)) a2(r(t))

(6.1) 0 0.8 0.3 0 0.2 1.3
(6.2) 3 1.2 0.4 0.35 0.2 1.1

b2(r(t)) d2(r(t)) g2(r(t)) a3(r(t)) b3(r(t)) e1(r(t))) e2(r(t))

0.3 0 0.1 1.2 0.6 0 0
0.6 0.32 0.09 -0.3 0.1 0.3 0.2
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Table 2: Parameters of the subsystems (6.1) and (6.2).

Subs. r(t) a1(r(t)) b1(r(t)) d1(r(t)) g1(r(t)) a2(r(t))

(6.1) 0 -0.1 0.3 0 0.2 -0.7
(6.2) 3 -0.7 0.4 0.25 0.13 -1

b2(r(t)) d2(r(t)) g2(r(t)) a3(r(t)) b3(r(t)) e1(r(t))) e2(r(t))

0.3 0 0.2 -0.1 0.4 0 0
0.6 0.12 0.18 -0.8 0.1 0.15 0.2

Let θ = 0.2,α = 0.09, C̄ = I ∈ R2×2, q(I) = (1, 1)T , Π =
(
−2 2
5.6 −5.6

)
and P =

(
0.8 0.2

0.56 0.44

)
. We can easily

determine from Table 1

A11 > 0 (A31 > 0), A11A12 −A13 > 0 (A31A32 −A33 > 0), and A13 > 0 (A13 > 0), (6.3)

thus (3.1) holds. Meanwhile,
q(0)θâ(0) −αq(0) = −0.01 < 0,

and
q(3)θâ(3) −αq(3) = −0.15 < 0,

may also be determined. All conditions of Theorem 4.3 hold, as shown in Figure 1 (a), SDE (2.1) is
stochastically permanent. Moreover, we take another parameter shown in Table 2 and let Π =

(
−2 2
5.6 −4.4

)
and P =

(
0.8 0.2
0.56 0.44

)
. We can compute µ = 1 and find that (6.3) holds, we omit the validation here, as the

same holds true for the following examples. Moreover,

π00(1 − µ) + lim sup
t→∞

1
t

∫t
τ0

ǎ(0) = −0.1 < 0,

π33(1 − µ) + lim sup
t→∞

1
t

∫t
τ0

ǎ(3) = −0.7 < 0.

All assumptions in Theorem 4.4 hold. From the numerical simulation in Figure 1 (b), we can see that SDE
(2.1) becomes extinct.

The two numerical simulations demonstrate our results. To further explore the additional dynamic
properties of SDE (2.1) under Markovian switching, we consider the following examples in Tables 3–6.

Table 3: Parameters of the subsystems (6.1) and (6.2).

Subs. r(t) a1(r(t)) b1(r(t)) d1(r(t)) g1(r(t)) a2(r(t)) b2(r(t))

(6.1) 0 -1.1 0.3 0 0.2 -1.6 0.3
(6.2) 3 3 0.4 0.35 0.13 2.8 0.6

d2(r(t)) g2(r(t)) a3(r(t)) b3(r(t)) e1(r(t)) e2(r(t)) x Fig

0 0.1 -0.4 0.3 0 0 Extinct Figure 2 (a)
0.32 0.2 -0.1 0.1 0.3 0.2 Permanent Figure 2 (b)

Furthermore, in Table 3, if we keep all parameters unchanged and just adjust the values of transition
(or generator) between state 0 (extinctive state) and 3 (permanent state), then from simulations in Figure
2, we can see that the extinction and permanence of SDE (2.1) are significantly changed. The details are
provided in Table 4.



Y. Q. Li, L. Zhang, J. Nonlinear Sci. Appl., 10 (2017), 5622–5645 5639

Table 4: Values of the generator and transition rate.

case Π P x Fig

1
(
−3 3
8 −8

) (
0.7 0.3
0.8 0.2

)
Extinct Figure 2 (c)

2
(
−3.5 3.5
5.5 −5.5

) (
0.65 0.35
0.55 0.45

)
Extinct Figure 2 (d)

3
(
−4 4
5 −5

) (
0.6 0.4
0.5 0.5

)
Extinct Figure 2 (e)

4
(
−5.5 5.5

4 −4

) (
0.45 0.55
0.4 0.6

)
Permanent Figure 2 (f)

Table 5: Parameters of the subsystems (6.1) and (6.2).

Subs. a1(r(t)) b1(r(t)) d1(r(t)) g1(r(t)) a2(r(t)) b2(r(t)) d2(r(t))

(6.1) 1.4 0.5 0 0.5 1.5 0.4 0
(6.2) 3 0.4 0.35 0.15 2.8 0.6 0.32

g2(r(t)) a3(r(t)) b3(r(t)) e1(r(t)) e2(r(t)) x1 x2 Fig

0.3 0.4 0.3 0 0 Extinct Permanent Figure 3 (a)
0.5 -0.1 0.1 0.2 0.2 Permanent Extinct Figure 3 (b)

Table 6: Values of the generator and transition rate.

case Π P x Fig

1
(
−2 2
7 −7

) (
0.8 0.2
0.7 0.3

)
Extinct Permanent Figure 3 (c)

2
(
−2.5 2.5
5.5 −5.5

) (
0.75 0.25
0.55 0.45

)
Extinct Permanent Figure 3 (d)

3
(
−5 5
5 −5

) (
0.5 0.5
0.5 0.5

)
Permanent Permanent Figure 3 (e)

4
(
−6.5 6.5

3 −3

) (
0.35 0.65
0.3 0.7

)
Permanent Extinct Figure 3 (f)

Moreover, if we consider the influence of the different transition rates between states 0 and 3 on
competitors x1 and x2, such as the parameters used in Table 5 under different transition rates in Table 6,
we can see that the system (2.1) displays complicated phenomena, i.e., x2 excluding x1, coexistence of two
competitors and x1 excluding x2.
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Figure 1: The dynamical behavior of the SDE (2.1). Here, we take the initial value x0 = (x10, x20,y0) = (2, 4, 5).
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Figure 2: (a,b): The dynamical behavior of deterministic subsystems (6.1) and (6.2) respectively. (c,d,e,f): The dynamical behavior
of the SDE (2.1). Here, we take the initial value x0 = (x10, x20,y0) = (2, 5, 8).
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Figure 3: (a,b): The dynamical behavior of deterministic systems (6.1) and (6.2), respectively. (c,d,e,f): The dynamical behavior
of the SDE (2.1). Here, we take the initial value x0 = (x10, x20,y0) = (1, 2, 3).

7. Discussion

In this paper, we have established a predator-prey system that includes competition between prey
and stochastic interactions between predator and multiple prey under Markovian switching. Theorem 4.3
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tells us that if every subsystem of the SDE (2.1) is permanent, the overall behavior, i.e., SDE (2.1) remains
stochastically permanent. On the other hand, if πII(1 − µ) + lim supt→∞ 1

t

∫t
0 ǎ(I)ds < 0 for some I ∈ S̃,

then subsystem of SDE (2.1) on state I is extinct. Hence, Theorem 4.4 tells us that if every subsystem
of SDE (2.1) is extinct, the overall behaviour of system (2.1) is extinct. Theorems 4.3 and 4.4 also tell
us that some subsystems in SDE (2.1) are permanent, while others are extinct, as shown in Table 4, the
overall behaviour may be stochastically permanent or extinct. When we further increase the transition
rates from the extinct state (0 state) to the permanent state (3 state) and from the permanent state (3 state)
to the permanent state (3 state), i.e., p03 and p33, the overall behavior of SDE (2.1) will be stochastically
permanent if the transition rates p03 and p33 are greater enough than p00 and p30.

Furthermore, Markovian switching also imposes constraints on competitors. In Table 6, with the pos-
sibility of increasing the survival (competitive force) of species x1, some interesting phenomena occur:
species x2 excludes x1 (Figure 3 (c)–(d)), the coexistence of two competitors (Figure 3 (e)) and x1 excludes
x2 (Figure 3 (f)). This means that one species may tend to eliminate another species in one set of envi-
ronmental conditions, but the reverse may occur in a different set of environmental conditions, with the
result that the two species may oscillate in density as the environment fluctuates. If inferior species can
adjust themselves to offset the fatal impacts from nature, they can coexist with superior competition and
even exclusively survive. The results obtained in this paper are different from those obtained with solely
deterministic models, which assume the consistency of ecological environments and ignore so many un-
determinable factors that occur stochastically in real ecosystems. This can greatly impact on the balance
of species in common habitats.

Briefly, a stochastic predator-prey model that includes prey who are competing is a more meaningful
model. Due to a shortage of analytical techniques on the stochastic model, the threshold value between
the rate of permanence and extinction has not been studied in the present paper. Additionally, the open
question of how to guarantee the coexistence of species remains. Thus, great efforts should be devoted to
find these answers. We will study this problem in our future work.

Appendix A. Proof of Theorem 3.1

Proof. It is easy to verify that the coefficients of the model (2.1) are satisfied the local Lipschitz condition
in x(t), then there is a unique maximal local solution x(r(t)) on [τ+0 , τe), where τe is explosion time. To
show this solution is global, we need to show that τe = ∞ a.s.. Let m0 > 0 be sufficient large for every
component x(τ0) lying within the interval

[ 1
m0

,m0
]
. For each integer m > m0, define the stop time

τm = inf
{
t ∈ [0, τe) : min{x1, x2,y} 6

1
m0

or max{x1, x2,y} > m0

}
,

where throughout this paper we set inf ∅ =∞ (as usual ∅ denotes the empty set). Clearly, τm is increasing
as m → ∞. Set τ∞ = limt→∞ τm, whence τ∞ < τe a.s.. If we can show that τ∞ = ∞ a.s., then τe = ∞
a.s.. If this statement is false, there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ 6 T } > ε.

Hence there is an integer m1 > m0 such that

P{τm 6 T } > ε, ∀m > m1. (A.1)

Define a C2-function V : Rn+ × S̃→ R+ by

V(x, I) = c1(I)
(
x1 − 1 − ln x1

)
+ c2(I)

(
x2 − 1 − ln x2

)
+ c3(I)

(
y− 1 − lny

)
.

The nonnegativity of this function can be seen from

u− 1 − lnu > 0 on u > 0.
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If x(t) ∈ R3
+, we have

dV(x, I) = LV(x, I)dt

=

{
xT C̄(I)a(I) + xT C̄(I)A(I)x−C(I)[a(I) +A(I)x]

+

4∑
J=1

πIJV(x, J)
}

dt

=

{
xT C̄(I)a(I) −C(I)A(I)x+

xT (C̄(I)A(I) +A(I)T C̄(I))x

2
−C(I)a(I)

+

4∑
J=1

πIJV(x, J)
}

dt

6

{
−
λ

2
|x|2 + xT C̄(I)a(I) −C(I)A(I)x−C(I)a(I) +

4∑
J=1

πIJV(x, J)
}

dt.

(A.2)

Moreover, there is a constant K3 > 0 such that

max
I∈S̃

{xT C̄(I)a(I) −C(I)A(I)x−C(I)a(I)} 6 K3(1 + |x|).

Substituting this inequality into (A.2) yields

LV(x, I) 6 K3(1 + |x|) +

4∑
J=1

πIJV(x, J). (A.3)

Noticing that u 6 2(u− 1 − lnu) + 2 on u > 0, we have

|x| 6 x1 + x2 + y 6
[
2(x1 − 1 − ln x1) + 2 + 2(x2 − 1 − ln x2) + 2

+ 2(y− 1 − lny) + 2
]

6 6 +
2
ĉ

[
c1(I)(x1 − 1 − ln x1) + c2(I)(x2 − 1 − ln x2) + c3(I)(y− 1 − lny)

]
= 6 +

2
ĉ
V(x, I).

(A.4)

By the definition of V , for any I, J ∈ S̃, we have

4∑
J=1

πIJV(x, J) 6 4πµV(x, I). (A.5)

We therefore obtain from (A.3), (A.4) and (A.5) that

LV(x, I) 6 K4
[
1 + V(x, I)

]
, (A.6)

where K4 is a positive constant. Integrating both sides of the inequality (A.6) from τ+m to τm∧ T and then
taking expectations, one has

EV
(
x(τm ∧ T), r(τm ∧ T)

)
6 EV

(
x(τ+m), r(τ+m)

)
+ E

∫τm∧T

τm

K4
[
1 + V(x, I)

]
ds.
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Hence

EV
(
x(τm ∧ T), r(τm ∧ T)

)
6 EV

(
x(τm), r(τm)

)
+K4T +K4E

∫τm∧T

τm

V(x, I)ds,

6 V
(
x(τ0), r(τ0)

)
+K4T

+K4E

∫T
0
V(x(τm ∧ t), I(τm ∧ t))dt.

By the Gronwall inequality, we know

EV
(
x(τm ∧ T), r(τm ∧ T)

)
6
[
V(x(τ0, r(τ0)) +K4T

]
eK4T .

Set Ωm = {τm 6 T } for m > m1 and by (A.1), P(Ωm) > ε. Note that for every ω ∈ Ωm, we have
xi (i = 1, 2) or y equals either m or 1

m , and hence V(x(τm,ω)) is no less than either ĉ(m− 1 − lnm) or
ĉ( 1
m − 1 − ln 1

m) = ĉ( 1
m − 1 + lnm). Consequently,

V(x(τm,ω), r(τm,ω)) > ĉ
(
(m− 1 − lnm)∧ (

1
m

− 1 + lnm)
)

.

Hence [
V(x(τ0), r(τ0)) +K4T

]
eK4T > E

[
1ΩmV(x(τm,ω), r(τm,ω))

]
> εĉ

(
(m− 1 − lnm)∧ (

1
m

− 1 + lnm)
)

,

where 1Ωm is the indicator function of Ωm. Let m→∞ which leads to the contradiction

∞ > [V(x(τ0), r(τ0)) +K4T ]e
K4T =∞.

So we must have τ∞ =∞ a.s.. The proof of Theorem 3.1 is complete.
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