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Abstract
In this paper, we present an efficient branch-and-bound algorithm to globally minimize the object space error for the

camera pose estimation. The key idea is to reformulate the pose estimation model using the optimal Lagrangian multipliers.
Numerical simulation results show that our algorithm usually terminates in the first iteration and finds an ε-suboptimal solution.
Furthermore, the efficiency of our algorithm is demonstrated by a comprehensive numerical comparison with two well-known
heuristics. We also demonstrate the computational power of our algorithm by comparing it with the state-of-the-art global
optimization package BARON. c©2017 All rights reserved.
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1. Introduction

Pose estimation, also known as the Perspective-n-Point problem (PnP), is to estimate the pose of the
camera based on the given 3D reference points and their associated 2D images [12]. It is one of the
important problems in computer vision, photogrammetry and robotics.

In general, solution methods for solving pose estimation can be divided into the following three
groups:

The first group is composed of the iterative local search methods ([15, 20, 21, 24]). The orthogonal
iteration (OI) algorithm [15] may be the most efficient. The basic idea of OI is to minimize the object space
error by alternatively minimizing the estimation of the rotation matrix and the translation vector. Starting
from a proper initialization, the OI algorithm often fast converges to a high-accuracy global minimizer.
But if it is poorly initialized, OI could get trapped in a local minimizer.

The second group is made up of the iterative global optimization methods. Agarwal et al. [1] proposed
a branch-and-bound algorithm to solve the triangulation and camera pose estimation, where the objective
function is fractional. The lower bounding approach is to solve the second-order cone programming
(SOCP) relaxation, by noting that a single fraction t/s bounded with s and t can be rewritten as an SOCP
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[26]. This algorithm was further employed in [18] to minimize the image space error, where the rotation
matrix was parameterized by quaternion. Hartley and Kahl [9, 10] developed a branch-and-bound method
to minimize the `∞ norm of the tangent of the angle error, based on SOCP relaxation. Though providing a
solution of proven global optimality, the branch-and-bound methods are of limited application in practice
because of their high computational complexity. For example, the average running time reported in [10]
is 1.5 minutes for 10 reference points.

The third group consists of the non-iterative methods ([2, 7, 11, 14, 17, 19, 23, 28]). The pose estimation
problem is first reformulated to a single (large) equation system. Then the system is approximately solved
in order to gain speed. Recently, Schweighofer and Pinz [23] proposed the semidefinite relaxation (SDR)
approach by lifting the quaternion model of the pose estimation problem. Moreover, to perform better,
the standard SDR was refined to a heuristic version with two well-chosen parameters, see [23]. In practice,
SDR often gives a solution close to the global minimizer, even for small number of points and large noise.
The limitation is that the accuracy of the solution obtained by SDR is lower than that of OI.

To our knowledge, the branch-and-bound algorithm for minimizing the object space error (which is
the same cost function as in OI and SDR) has not been studied in literature. Suppose now we directly
employ the branch-and-bound algorithm developed in [1] to minimize the object space error, at first we
have to introduce much more additional variables to linearize the cost function, which certainly is far
from efficient. In this paper, we observe that the object space error is already a convex quadratic func-
tion. It motivates us to develop a new branch-and-bound method based on quadratic programming (QP)
relaxation. To improve the efficiency, we establish a tighter Lagrangian reformulation of the quadratic
object space error. Surprisingly, the numerical simulation results show that the new branch-and-bound
algorithm usually terminates in the first iteration and returns an ε-suboptimal solution. Finally, a com-
prehensive numerical comparison demonstrates that the new branch-and-bound algorithm outperforms
OI, SDR and the global optimization package BARON.

The remainder of the paper is organized as follows. In Section 2, we reformulate the pose estimation
problem based on Lagrangian dual theory. Section 3 presents the new branch-and-bound algorithm
in detail. In Section 4, we first numerically compare the efficiency of the branch-and-bound algorithm
for solving four different reformulations. Then we compare the accuracy of the solutions obtained by
the branch-and-bound algorithm, OI and SDR, respectively. Finally, we compare the efficiency of our
new branch-and-bound algorithm and the commercial global optimization package BARON. Concluding
remarks are given in Section 5.

2. Formulations and relaxations

2.1. Problem formulation
Given a set of 3D reference points pi, i = 1, 2, · · · ,n, (n > 3) in the object coordinate system and

the associated normalized 2D image projections vi in the camera coordinate system, we minimize the
following object space error [22]

min
R∈S(3),t

{
E(R, t) =

n∑
i=1

‖(I− V̂i)(Rpi + t)‖2

}
, (2.1)

where S(3) is the set of 3 × 3 orthogonal matrices, I is the 3 × 3 identity matrix, ‖ · ‖ is the standard
`2-norm, and

V̂i =
v̂iv̂

T
i

v̂Ti v̂i
,

is the line-of-sight projection matrix along v̂i = (ui, vi, 1)T . Since (2.1) is an unconstrained quadratic
program in terms of t, by setting the partial gradient of (2.1) with respect to t equal to zero

∂

∂t
E(R, t) =

n∑
i=1

2{(I− V̂i)(Rpi + t)} = 0,
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we can get the optimal translation vector [15, 23]:

topt = −

(
n∑
i=1

Qi

)−1 n∑
i=1

(QiRpi) , (2.2)

where
Qi = (I− V̂i)

T (I− V̂i) = I− V̂i.

As in [23], define the following operators for the 3D vector p and 3× 3 matrix R, respectively,

C(p) =

 pT 01×3 01×3
01×3 pT 01×3
01×3 01×3 pT

 , r(R) =

 rT1rT2
rT3

 ,

where 01×3 is a zero matrix of size 1× 3 and R =
[
rT1 r

T
2 r
T
3
]T . Now we can rewrite (2.2) as

topt = T3×9 · r, (2.3)

where

T3×9 = −

(
n∑
i=1

Qi

)−1 n∑
i=1

(QiC(pi)) .

Substituting (2.3) into (2.1) and rearranging the formulation yields the following simple model

min
R∈S(3)

{
f1(R) := r(R)

TMr(R)
}

, (2.4)

where

M =

n∑
i=1

(
(C(pi) + T3×9)

T Qi (C(pi) + T3×9)
)

.

2.2. Problem relaxations and reformulations
It is easy to verify that

R ∈ S(3) ⇐⇒ RTR = I ⇐⇒ RRT = I.

Then (2.4) has the following three quadratic constrained quadratic programming (QCQP) reformulations

min
RTR=I

r(R)TMr(R), (2.5)

min
RRT=I

r(R)TMr(R), (2.6)

min
RTR=I,RRT=I

r(R)TMr(R), (2.7)

where the idea to add two redundant constraints in (2.7) is not new, see for example, [3, 27].
For QCQP, Lagrangian dual often provides a high-quality lower bound for the primal problem. We

first present the Lagrangian dual of (2.7). Let S, T be two symmetric matrices of size 3× 3, respectively.
The Lagrangian function of (2.7) is

L(r(R),S, T) = r(R)TMr(R) − tr((RTR− I)S) − tr((RRT − I)T)

= r(R)T (M− I⊗ S− T ⊗ I)r(R) + tr(S+ T),

where tr(A) denotes the trace of the matrix A (i.e., the sum of all the diagonal entries of A), A⊗B denotes
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the Kronecker product of A and B, i.e., A⊗B = [AijB]. Then the dual function reads

d(S, T) = min
r(R)

L(r(R),S, T)

=

{
tr(S+ T), if M− I⊗ S− T ⊗ I � 0,
−∞, otherwise,

where A � 0 denotes that A is positive semidefinite. Now, the Lagrangian dual problem is

max
S=ST ,T=TT

{d(S, T)} = max
M−I⊗S−T⊗I�0,S=ST ,T=TT

tr(S+ T). (2.8)

We similarly write the Lagrangian dual problems of (2.5) and (2.6) as follows:

max
M−I⊗S�0,S=ST

tr(S), (2.9)

max
M−T⊗I�0,T=TT

tr(T). (2.10)

The above three dual problems are all semidefinite programming (SDP) problems. They can be globally
solved by the publicly available optimization tools SeDuMi [25]. Denote the optimization solutions to
(2.8), (2.9) and (2.10) by (S∗, T∗), S∗∗ and T∗∗, respectively. Then we have the following results. The proofs
can be found in Appendices A–D, respectively.

Proposition 2.1. The three positive semidefinite matrices M− I⊗ S∗ − T∗ ⊗ I, M− I⊗ S∗∗ and M− T∗∗ ⊗ I are
all singular.

Proof. Denote by λmin the minimal eigenvalue of M − I⊗ S∗ − T∗ ⊗ I. Suppose M − I⊗ S∗ − T∗ ⊗ I is
nonsingular. Then λmin > 0. Define S̃ = S∗ + λmin · I. We have

M− I⊗ S̃− T∗ ⊗ I = (M− I⊗ S∗ − T∗ ⊗ I) + λminI⊗ I � 0,

which implies that (S̃, T∗) remains feasible in (2.8). Since

tr(S̃+ T∗) = tr(S∗ + T∗) + 3λmin > tr(S∗ + T∗),

we obtain a contradiction. The singularity of M− I⊗ S∗∗ and M− T∗∗ ⊗ I can be similarly proved.

Proposition 2.2.

min
R∈S(3)

f1(R) > tr(S∗ + T∗) > max{tr(S∗∗), tr(T∗∗)}

> min{tr(S∗∗), tr(T∗∗)} > 0.

Proof. The first inequality is due to the weak duality theory. The second inequality follows from the fact
both (S∗∗, 03×3) and (03×3, T∗∗) are feasible solutions of (2.8). The last inequality holds since M is positive
semidefinite and hence 03×3 is feasible in both (2.9) and (2.10).

Theorem 2.3. The pose estimation problem (2.4) has the following three reformulations:

min
R∈S(3)

{
f2(R) := r(R)

T (M− I⊗ S∗∗)r(R) + tr(S∗∗)
}

, (2.11)

min
R∈S(3)

{
f3(R) := r(R)

T (M− T∗∗ ⊗ I)r(R) + tr(T∗∗)
}

, (2.12)

min
R∈S(3)

{
f4(R) := r(R)

T (M− I⊗ S∗ − T∗ ⊗ I)r(R) + tr(S∗ + T∗)
}

. (2.13)
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Proof. For any R ∈ S(3) and any symmetric matrices S and T , it holds that tr((RTR − I)S) = 0 and
tr((RRT − I)T) = 0. It follows that

r(R)TMr(R) = r(R)TMr(R) − tr((RTR− I)S) − tr((RRT − I)T)

= r(R)T (M− I⊗ S− T ⊗ I)r(R) + tr(S+ T).

The proof is complete by setting (S, T) as (S∗∗, 03×3), (03×3, T∗∗) and (S∗, T∗), respectively.

Proposition 2.4. Let A 6 (<)B denote that B−A is componentwise nonnegative (positive). For any given two
3× 3 matrices L < 03×3 and U > 03×3, we have

min
L6R6U

f1(R) = 0, (2.14)

min
L6R6U

f2(R) = tr(S∗∗), (2.15)

min
L6R6U

f3(R) = tr(T∗∗), (2.16)

min
L6R6U

f4(R) = tr(S∗ + T∗), (2.17)

where the minimums are attained at some scaled eigenvectors corresponding to the minimal eigenvalues of the
Hessian matrices of f1, f2, f3 and f4, respectively.

Proof. The equality (2.14) holds since M � 0 and L < 03×3 < U. Now we show (2.17). Since

M− I⊗ S∗ − T∗ ⊗ I � 0,

we have
rT (M− I⊗ S∗ − T∗ ⊗ I)r > 0, ∀r.

According to Proposition 2.1, the minimal eigenvalue of M− I⊗ S∗ − T∗ ⊗ I is zero. Denote by y 6= 0 the
corresponding normalized eigenvector. Then for any positive scalar t > 0, we have

(ty)T (M− I⊗ S∗ − T∗ ⊗ I)(ty) = 0.

Let R(t) be such that r(R(t)) = ty. For sufficient small t, we have L 6 R(t) 6 U. Therefore, R(t) solves

min
L6R6U

f4(R).

The other equalities (2.15)-(2.16) are similarly proved.

Propositions 2.2 and 2.4 imply that (2.13) is the tightest reformulation in view of relaxation.

3. A new branch-and-bound method

The branch-and-bound algorithm plays a great role in globally minimizing the nonconvex problems,
see for example, [4]. It terminates with a certificate proving that the obtained solution is ε-suboptimal, by
iteratively updating the upper and lower bounds on the optimal objective value. However, in general, the
worst-case complexity of the branch-and-bound method grows exponentially with the problem size. For
this purpose, we rewrite the pose estimation problem (2.4) as

min
(α,β,γ)∈[0,2π]×[0,π]×[0,2π]

f1(R(α,β,γ)), (3.1)

by observing there is a one-to-one mapping between the rotation matrices and the Euler angles

R(α,β,γ) =

 R11 R12 sin(α) sin(β)
R21 R22 − cos(α) sin(β)
R31 R32 cos(β)

 , (3.2)

where R11 = cos(α) cos(γ) − cos(β) sin(α) sin(γ), R12 = − cos(β) cos(γ) sin(α) − cos(α) sin(γ), R21 =
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cos(γ) sin(α) + cos(α) cos(β) sin(γ), R22 = cos(α) cos(β) cos(γ) − sin(α) sin(γ), R31 = sin(β) sin(γ) and
R32 = cos(γ) sin(β).

Denote by Q0 the feasible region of (3.1), which is a cuboid. For any subset Q ⊆ Q0, denote by flb(Q)
and fub(Q) the lower and upper bounds of the objective function over Q, respectively. The following
general branch-and-bound algorithm presented in [5] is employed to solve (3.1):

Algorithm 3.1.

s.0 Set ε > 0. Initialize k = 0, S0 = {Q0}, L0 = flb(Q0) and U0 = fub(Q0).

s.1 If Uk − Lk < ε, stop and return an ε-suboptimal solution R∗ such that f(R∗) = Uk. Otherwise, goto
s.2.

s.2 (Branching) Select Q ∈ Sk such that flb(Q) = Lk and then split Q along one of its longest edges into
Ql and Qr. More precisely, suppose Q = [q1,q1]× [q2,q2]× [q3,q3]. Let j = arg maxi=1,2,3(qi − qi).
qj = (q

j
+ qj)/2. If j = 1, Ql = [q

j
,qj]× [q2,q2]× [q3,q3], Qr = [qj,qj]× [q2,q2]× [q3,q3]. When

j = 2, 3, Ql and Qr are similarly defined. Let Sk+1 = Sk
⋃
Ql
⋃
Qr \Q. Goto s.3.

s.3 (Bounding) Compute fub(Ql) and fub(Qr). Update the upper bound

Uk+1 = min{Uk, fub(Ql), fub(Qr)},

and the lower bound Lk+1 = minQ∈Sk+1 flb(Q). Update the candidate optimal solution R∗ as the
feasible solution corresponding to Uk+1. Prune {Q : flb(Q) > Uk+1} from Sk+1. Let k := k+ 1 and
goto s.1.

Now, we discuss in detail the estimation of lower and upper bounds, flb(Q) and fub(Q), which are
critical for the efficiency of the branch-and-bound algorithm.

Suppose the cuboid Q = [q1,q1]× [q2,q2]× [q3,q3]. It follows from the representation (3.2) that we
can easily calculate the element-wise lower and upper bounds of R, denoted by L and U, respectively. For
example, if max(q2,q3) 6 π/2, L(3, 1) = sin(q2) sin(q3) and U(3, 1) = sin(q2) sin(q3). Define

R(Q) = {R(α,β,γ) : (α,β,γ) ∈ Q}.

Then, according to (3.2), we have

R(Q) = {R ∈ S(3) : L 6 R 6 U}. (3.3)

Removing the constraint R ∈ S(3) yields a lower relaxation of (3.1)

flb(Q) := min
L6R6U

{
f1(R) = r(R)

TMr(R)
}

, (3.4)

which is a box-constrained convex quadratic programming (QP) problem and hence globally solved in
polynomial time. In particular, at the root note (i.e., Q = Q0), all the entries of L are −1 and U = −L.
According to Proposition 2.4, we immediately have flb(Q0) = 0 without any need to solve (3.4).

The upper bound fub(Q) is set as f1(R
∗), where R∗ ∈ R(Q) is obtained by some heuristic. Solving (3.4),

we obtain a solution matrix, denoted by R̃. If R̃ ∈ S(3), then according to (3.3), we have R̃ ∈ R(Q) and then
set R∗ = R̃, fub(Q) = f1(R̃). Otherwise, let R̃∗ be the closest point to R̃ in S(3), i.e.,

R̃∗ = arg min
R∈S(3)

{
‖R− R̃‖2

F = tr
(
(R− R̃)T (R− R̃)

)
= tr(I) − 2tr(R̃TR) + tr(R̃T R̃)

}
,

where ‖ · ‖F is the Frobenius norm, or equivalently,

R̃∗ = arg max
R∈S(3)

tr(R̃TR). (3.5)
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Let R̃ = USVT be the singular value decomposition (SVD) of R̃, where U and V are orthogonal matrices
and S is a diagonal matrix. As first given in [6], the solution of (3.5) is

R̃∗ = UVT .

Suppose R̃∗ 6∈ R(Q). Define R∗ = arg minR∈R(Q) ‖R− R̃‖F. Then ‖R∗ − R̃‖F > ‖R̃∗ − R̃‖F and hence

|f1(R̃
∗) − f1(R

∗)| 6 Lp‖R̃∗ − R∗‖F
6 Lp(‖R̃∗ − R̃‖F + ‖R̃− R∗‖F)

< 2Lp‖R̃− R∗‖F
6 2Lp‖U− L‖F,

where Lp is the Lipschitz constant of f1(R). Therefore, to ensure the finite termination of the branch-and-
bound algorithm, we can always set fub(Q) = f1(R̃

∗) whatever R̃∗ ∈ R(Q).
Finally, we notice that the above branch-and-bound algorithm for solving (2.4) can be similarly em-

ployed to solve (2.11), (2.12), (2.13). Denote these four algorithms by B&B1, B&B2, B&B3 and B&B4,
respectively.

4. Experiments

In order to produce the data, we use a virtual calibrated camera having a focal length 800 and a
principal point at (320, 240). The random 3D reference points are within the rectangular box defined by
[−2, 2]× [−2, 2]× [4, 8] in the object space, and the corresponding 2D projections lie inside the 640× 480
image plane, with additional Gaussian noise.

4.1. Numerical comparison among different reformulations
In this subsection, we compare the performance of B&B1, B&B2, B&B3 and B&B4. We independently

run 200 simulations using MATLAB R2009b on a computer with a 2.66 GHz Intel Core 2 Duo processor
and 4GB RAM. The number of the reference points varies from 6 to 100. The standard deviation of
Gaussian noise is fixed at σ = 5. The semidefinite programming problems are solved using the SeDuMi
software package [25]. The convex quadratic programming problems are solved using the compatible
function ‘quadprog’ in the Matlab optimization toolbox.

We report in Table 1 the numerical results where the parameter ε = 0.01 is fixed. The first column is
to distinguish the four different algorithms. The second column gives the number of reference points. We
report in Column 3-6 the average running time in seconds (where the modeling time is omitted since we
just focus on the comparison among the four branch-and-bound algorithms), the average (sub)optimal
function values, the average number of iterations and the total number of times that the algorithm termi-
nates in the first iteration within 200 simulations, respectively. From Table 1, we see the B&B4 algorithm
highly outperforms the other three algorithms.

We report in Table 2 the performance of B&B4 with different stop criterions (i.e., ε varies from 10−6

to 10−3) and different Gaussian noises (i.e., σ varies from 1 to 15). For each σ and every fixed number of
reference points (n), we independently run 500 simulations. Surprisingly, it is observed that, with a high
probability, B&B4 terminates in the first iteration. Moreover, according to Table 2, this probability seems
to be an increasing function of n and a decreasing function in terms of both σ and ε.

4.2. Numerical comparison among B &B4, OI and SDR
Let Rtrue and ttrue be the true camera rotation and the true translation, respectively. Then we define

the relative errors of the estimated rotation R and the estimated translation t:

Erot =
‖R− Rtrue‖F
‖R‖F

, Etran =
‖t− ttrue‖
‖t‖

.
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Table 1: Comparison among B&B1, B&B2, B&B3 and B&B4.

B&B n Time(s) Avg. obj. Avg. it. #(it.= 1)

6 14.0318 0.0122 201.72 5
8 15.4215 0.0183 238.36 2

1 10 13.9087 0.0221 223.94 3
20 12.8818 0.0512 213.845 0
50 16.0813 0.1431 277.735 0
100 28.0318 0.2918 388.245 0

6 1.5788 0.0127 23.305 53
8 0.4625 0.0181 7.81 121

2 10 0.1472 0.0213 3.09 173
20 0.0108 0.0502 1 200
50 0.0090 0.1425 1 200
100 0.0086 0.2941 1 200

6 2.6326 0.0129 39.6 25
8 1.6127 0.0190 26.85 90

3 10 0.5957 0.0219 10.44 134
20 0.0133 0.0502 1.03 197
50 0.0095 0.1425 1 200
100 0.0091 0.2914 1 200

6 0.0340 0.0100 1.275 189
8 0.0127 0.0165 1 200

4 10 0.0112 0.2070 1 200
20 0.0094 0.0502 1 200
50 0.0088 0.1425 1 200
100 0.0086 0.2914 1 200

Based on Erot and Etran, we compare in this subsection the performance of the B&B4 algorithm with
those of two well-known heuristics, OI [15] and SDR [23]. These three methods all target at minimizing
the object space error (2.1). Though the branch-and-bound algorithm gives an ε-suboptimal solution of
(2.1), it is interesting to notice that the object space error function is neither Erot nor Etran.

We independently run 500 simulations, where the number of the reference points varies from 6 to 50,
the standard deviation of Gaussian noise varies from 0 to 10, and the parameter ε in the B&B4 algorithm
is set as 0.001.

We plot in Figure 1 the average relative errors as functions of the noise, where the number of the
reference points is fixed at 6. It is observed that the average relative rotation error Erot corresponding to
either B&B4 or SDR is smaller than that of OI. When the pixel errors are small (for example, the standard
deviation of the noise is between 0 and 5), the accuracy of the solution obtained by B&B4 is slightly
higher than that of SDR. But it is no longer true for large amounts of noise. This makes sense since the
gap between the object space error and the rotation error Erot becomes large. For the average relative
translation error Etran, we see that the performance of SDR and OI is less accurate than that of B&B4.

Figure 2 plots the average relative errors as functions of the noise where the number of the reference
points is fixed at 20. Again, it is observed that the accuracy of the solution obtained by SDR is lower than
that of either OI or B&B4 for small amounts of noise.

Figure 3 depicts the average relative errors as functions of n, the number of the reference points, at the
same level of noise (σ = 5). We observe that for n > 10, B&B4 and OI have almost the same performance.
And, the solution obtained by either B&B4 or OI is more accurate than that of SDR. On the other hand,
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Table 2: The percentage of the number of times that B&B4 with different ε and σ terminates in the first iteration.

σ n ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

6 100 100 100 100
7 100 100 100 100
8 100 100 100 100

1 9 100 100 100 100
10 100 100 100 100
20 100 100 100 100
50 100 100 100 100

100 100 100 100 100

6 99.2 98.8 98.8 98.8
7 100 99.8 99.8 99.8
8 100 100 100 100

5 9 100 100 100 100
10 100 100 100 100
20 100 100 100 100
50 100 100 100 100

100 100 100 100 100

6 98.6 98 98 98
7 99.4 99.4 99.4 99.4
8 99.8 99.8 99.6 99.6

10 9 100 100 100 100
10 100 100 100 100
20 100 100 100 100
50 100 100 100 100

100 100 100 100 100

6 95.4 93.8 93.8 93.8
7 97.4 96.2 95.8 95.8
8 98.8 98.8 98.8 98.6

15 9 99.6 99.4 99.4 99.4
10 100 99.8 99.8 99.8
20 100 100 100 100
50 100 100 100 100

100 100 100 100 100

when n < 10, B&B4 slightly outperforms the best.
Figure 4 plots the average running time (in seconds) for the three algorithms, where the number of

the reference points varies from 6 to 1000. Here we notice that the running time of B&B4 contains the
modeling time (i.e., the time to solve SDP (2.8) so as to construct (2.13)), which is omitted in the third
column of Table 1. When n = 6, OI performs the fastest. But the average running time of OI grows
linearly when increasing the number of the reference points. For larger number of points, the average
running time of SDR and B&B4 are almost the same constant (≈ 50 ms). Moreover, for n > 400, B&B4
runs a bit faster than SDR. This makes sense since the major computational cost of SDR and the first
iteration of B&B4 are solving the corresponding semidefinite programming problems, where the sizes of
the coefficient matrices of the constraints are 117× 32 and 81× 12, respectively.
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Figure 1: Average rotation and translation errors for different levels of Gaussian noise using 6 reference points.
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Figure 2: Average rotation and translation errors for different levels of Gaussian noise using 20 reference points.
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Figure 3: Average rotation and translation errors for different number of reference points using the noise fixed at σ = 5.
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Figure 4: Average runtime for different number of reference points using the noise fixed at σ = 5.
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4.3. Numerical comparison among B& B4 and BARON
We report in Table 3 the numerical results where the parameter ε = 10−5 and the standard deviation

of Gaussian noise σ = 5 are fixed, the stopping tolerance parameter is set as 10−5 in BARON. The
first column is to distinguish the two different algorithms. The second column gives the number of
reference points. We report in Column 3-4 the average running time in seconds where the modeling time
is contained and the average number of iterations, respectively. From Table 3, we can see that the B&B4
algorithm highly outperforms the commercial global optimization solver BARON.

Table 3: Comparison between B&B4 and BARON based on 200 simulations.

Algorithm n Time(s) Avg. it.

6 0.31 4.21
8 0.09 1.07
10 0.08 1.03

B&B4 20 0.06 1
50 0.08 1
100 0.08 1

6 5.58 640.83
8 9.47 4160.09
10 5.03 982.48

BARON 20 1.43 53
50 3.87 1168.43
100 7.99 4687.02

5. Conclusions

In the area of pose estimation, the model of minimizing the object space error has been used in
many heuristics including the well-known orthogonal iteration (OI) and the very recent semidefinite
programming relaxation (SDR). In this paper, we first present three Lagrangian dual problems for this
model. All can be formulated as semidefinite programs and hence can be efficiently solved. Using the
optimal dual variables as Lagrangian multipliers, we propose three new quadratic constrained quadratic
programming (QCQP) reformulations for the pose estimation model. Then, based on convex quadratic
programming relaxation, we develop new branch-and-bound algorithms for these QCQP models. We
show the branch-and-bound algorithm corresponding to the QCQP model having the tightest relaxation is
the most efficient. According to the numerical simulation results, it usually terminates in the first iteration
and returns an ε-suboptimal solution. Finally, a comprehensive numerical comparison demonstrates that
the branch-and-bound algorithm outperforms OI, SDR and the global optimization package BARON. One
of the future works is to theoretically study the proposed new models.
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