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Abstract
In this paper, we prove some fixed point results for a class of α-nonexpansive single and multi-valued mappings in the

setting of partial metric spaces. Our results generalize the analogous ones of Vetro [F. Vetro, Filomat, 29 (2015), 2011–2020]. Some
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1. Introduction and preliminaries

It is well-known that the study of fixed point theorems for nonexpansive mappings has attracted the
attention of many researchers, see for example [12–14, 17, 19]. On the other hand, the notion of partial
metric spaces was introduced by Matthews [15] in 1994 as a part to study the denotational semantics of
dataflow networks which play an important role in constructing models in the theory of computation.
Many (common) fixed point results have been provided on partial metric spaces. For more details, see
[1, 5–11, 18].

Definition 1.1 ([15]). A partial metric on a nonempty set X is a function p : X× X → [0,∞) such that for
all x,y, z ∈ X
(PM1) p(x, x) = p(x,y) = p(y,y), then x = y;
(PM2) p(x, x) 6 p(x,y);
(PM3) p(x,y) = p(y, x);
(PM4) p(x, z) + p(y,y) 6 p(x,y) + p(y, z).

The pair (X,p) is then called a partial metric space (PMS).

According to [15], each partial metric p on X generates a T0 topology τp on X which has as a base of
the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x,y) < p(x, x) + ε} for
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all x ∈ X and ε > 0. Following [15], several topological concepts can be defined as follows. A sequence
{xn} in a partial metric space (X,p) converges to a point x ∈ X if and only if p(x, x) = lim

n→∞p(xn, x)

and is called a Cauchy sequence if lim
n,m→∞p(xn, xm) exists and is finite. Moreover, a partial metric space

(X,p) is said complete if every Cauchy sequence {xn} in X converges with respect to τp to a point x ∈ X
such that p(x, x) = lim

n,m→∞p(xn, xm). It is known [15] that if p is a partial metric on X, then the function

ps : X×X→ R+ defined by
ps(x,y) = 2p(x,y) − p(x, x) − p(y,y)

for all x,y ∈ X, is a metric on X.
Note that if a sequence converges in a partial metric space (X,p) with respect to τps , then it converges

with respect to τp.
Also, a sequence {xn} is Cauchy in a partial metric space (X,p) if and only if it is Cauchy in the metric

space (X,ps). Consequently, a partial metric space (X,p) is complete if and only if the metric space (X,ps)
is complete. Moreover, if {xn} is a sequence in a partial metric space (X,p) and x ∈ X, one has that

lim
n→∞ps(xn, x) = 0⇔ p(x, x) = lim

n→∞p(xn, x) = lim
n,m→∞p(xn, xm).

Definition 1.2. Let (X,p) be a partial metric space. We say that T : X → X is (sequentially) continuous if
p(xn, x)→ p(x, x), then p(Txn, Tx)→ p(Tx, Tx) as n→∞.

Lemma 1.3. Let (X,p) be a partial metric space. Then

(1) if p(x,y) = 0, we have x = y;
(2) if x 6= y, we have p(x,y) > 0.

Let (X,p) be a partial metric space. We denote by CBp(X) the family of all nonempty, closed, and
bounded subsets of X. For A,B ∈ CBp(X) and x ∈ X, we define

p(x,A) = inf{p(x,a) : a ∈ A} and Hp(A,B) = max{sup
a∈A

p(a,B), sup
b∈B

p(b,A)}.

Now, we introduce the following set.

Fp(X) = {A ⊆ CBp(X) : ∀x ∈ X, ∃y ∈ A : p(x,A) = p(x,y)}.

The set Fp is not empty as illustrated by the following.

Example 1.4. Let X = [0, 1] be equipped with the partial metric p(x,y) = max{x,y}. Clearly, the subsets
A = {0, 1

3 , 1
2 } and A = [0, 1

4 ] are in Fp(X).

Remark 1.5.

(1) If (X,p) is a metric space and K(X) is the family of all nonempty compact subsets of X, then K(X) ⊆
Fp(X). Indeed, for A ⊆ X, we know that the function x 7−→ p(x,A) is continuous. So its infimum
is achieved on a compact. Then if A is a compact in X, so there exists an element y ∈ A such that
p(x,A) = p(x,y). Hence A ∈ Fp(x).

(2) Let X be a nonempty finite dimension vectorial space equipped with the norm N. Take the metric
p(x,y) = N(x− y). Then the set of closed subsets of X belongs to Fp(X). Indeed, if A is closed in X
(which is a finite dimension metric space), so A is bounded and closed. Then A is compact. Similarly,
A ∈ Fp(x).

Lemma 1.6 ([2]). Let (X,p) be a partial metric space and A any nonempty set in (X,p), then a ∈ A if and only if
p(a,A) = p(a,a), where A denotes the closure of A with respect to the partial metric p.

Proposition 1.7 ([3, 4]). Let (X,p) be a partial metric space. For all A,B,C ∈ CBp(X), we have
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(h1) Hp(A,A) 6 Hp(A,B);
(h2) Hp(B,A) = Hp(A,B);
(h3) Hp(A,B) 6 Hp(A,C) +Hp(C,B) − infc∈C p(c, c);
(h4) Hp(A,B) = 0⇒ A = B.

Recently, Popescu [16] introduced the concept of α-orbital admissible maps.

Definition 1.8 ([16]). For a nonempty set X, let T : X → X and α : X× X → [0,∞) be mappings. We say
that T is α-orbital admissible if for all x ∈ X, we have

α(x, Tx) > 1 =⇒ α(Tx, T 2x) > 1.

Definition 1.9. Let (X,p) be a partial metric space and T : X → X be a mapping. We say that T is a
nonexpansive mapping if

p(Tx, Ty) 6 p(x,y) for all x,y ∈ X.

We generalize Definition 1.9 by introduction of the concept of α-nonexpansive mappings.

Definition 1.10. Let (X,p) be a partial metric space. Let T : X → X and α : X× X → [0,∞) be two given
mappings. We say that T is α-nonexpansive if for all x,y ∈ X, we have

α(x,y) > 1 =⇒ p(Tx, Ty) 6 p(x,y).

The following example illustrates the concept of α-nonexpansive mappings.

Example 1.11. Let X = [0,∞) be endowed with the partial metric p(x,y) = max{x,y} for all x,y ∈ X.
Consider the mapping T : X→ X defined by

Tx =
x2 + x

2
for all x ∈ X.

Define α : X×X→ [0,∞) as follows

α(x,y) =

{
1, if x,y ∈ [0, 1],
0, if not.

Let x,y ∈ X be such that α(x,y) > 1. Then x,y ∈ [0, 1]. In this case, we have

p(Tx, Ty) = max{
x2 + x

2
,
y2 + y

2
} 6 max{x,y} = p(x,y).

Then T is an α-nonexpansive mapping. Note that T is not a nonexpansive mapping. In fact, we have

p(T0, T2) = p(0, 3) = 3 > 2 = p(0, 2).

We extend Definitions 1.9 and 1.10 to multi-valued mappings.

Definition 1.12. Let (X,p) be a partial metric space. Given T : X → CBp(X) and α : X× X → [0,∞). We
say that T is an α-nonexpansive multi-valued mapping if for all x,y ∈ X, we have

α(x,y) > 1 =⇒ Hp(Tx, Ty) 6 p(x,y).

Definition 1.13. Let (X,p) be a partial metric space. Let T : X→ CBp(X) be a mapping. We say that T is a
nonexpansive multi-valued mapping if

Hp(Tx, Ty) 6 p(x,y) for all x,y ∈ X.
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Definition 1.14. For a nonempty set X, let T : X→ CBp(X) and α : X×X→ [0,∞) be two given mappings.
We say that T is α-admissible if for each x ∈ X and y ∈ Tx with α(x,y) > 1, we have α(y, z) > 1 for all
z ∈ Ty.

We have the following auxiliary lemma.

Lemma 1.15 ([20]). If {an} is a nonincreasing sequence of nonnegative real numbers, then {
an+an+1

an+an+1+1 } is nonin-
creasing too.

In this paper, we establish some fixed points results in the setting of partial metric spaces by using the
concept of α-nonexpansive mappings for single and multi-valued mappings. We present some examples
making effective the given results.

2. Main results

2.1. Fixed point theorems for single-valued mappings
The first main result is as following.

Theorem 2.1. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → X be an
α-nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y) (2.1)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1) and

M(x,y) = max{p(x,y),p(x, Tx),p(y, Ty),
1
2
[p(x, Ty) + p(Tx,y)]}.

Assume that

(i) T is α-orbital admissible;
(ii) T is β-orbital admissible;

(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1, β(x0, Tx0) > 1, and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1; (2.2)

(iv) T is continuous.

Then, there exists z ∈ X such that p(z, z) = 0. Assume in addition that

(v) α(x, x) > 1 for each x ∈ X such that p(x, x) = 0.

Then such z is a fixed point of T , that is, Tz = z. Moreover, if z,w ∈ X are two distinct fixed points of T satisfying
β(z,w) > 1, then p(z,w)

1+p(z,z)+p(w,w) > 1−k
2 .

Proof. By assumption (iii), there exists x0 ∈ X such that α(x0, Tx0) > 1, β(x0, Tx0) > 1 and (2.2) holds.
Define the sequence {xn} in X by xn = Txn−1 = Tnx0 for all n > 1. The mapping T is α-orbital admissible
and is β-orbital admissible, so α(Tx0, T 2x0) > 1, β(Tx0, T 2x0) > 1. By induction, we have

α(xn, xn+1) = α(T
nx0, Tn+1x0) > 1, β(xn, xn+1) = β(T

nx0, Tn+1x0) > 1, ∀n > 0. (2.3)

Since α(xn, xn+1) > 1 for all n and the mapping T is α-nonexpansive, we get

p(xn, xn+1) = p(Txn−1, Txn) 6 p(xn−1, xn), ∀n > 1. (2.4)
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Using (2.1) and the fact that β(xn, xn+1) > 1 for all n,

p(xn, xn+1) = p(Txn−1, Txn) 6 (
p(xn−1, Txn) + p(Txn−1, xn)

1 + p(xn−1, Txn−1) + p(xn, Txn)
+ k)M(xn−1, xn),

where

M(xn−1, xn) = max{p(xn−1, xn),p(xn−1, Txn−1),p(xn, Txn),
1
2
[p(xn−1, Txn) + p(xn, Txn−1)]}

= max{p(xn−1, xn),p(xn, xn+1),
1
2
[p(xn−1, xn+1) + p(xn, xn)]}.

Note that
1
2
[p(xn−1, xn+1) + p(xn, xn)] 6

1
2
[p(xn−1, xn) + p(xn, xn+1)].

Therefore, by (2.4)

M(xn−1, xn) = max{p(xn−1, xn),p(xn, xn+1)} = p(xn−1, xn).

Take

θ :=
p(x0, x1) + p(x1, x2)

1 + p(x0, x1) + p(x1, x2)
+ k. (2.5)

From assumption (2.2), we have θ ∈ [0, 1). Since {p(xn, xn+1)} is a nonincreasing sequence, by Lemma
1.15, we deduce that

p(xn, xn+1) 6 (
p(xn−1, xn) + p(xn, xn+1)

1 + p(xn−1, xn) + p(xn, xn+1)
+ k)p(xn−1, xn)

6 (
p(x0, x1) + p(x1, x2)

1 + p(x0, x1) + p(x1, x2)
+ k)p(xn−1, xn) = θp(xn−1, xn)

for all n > 1. By induction, we have

p(xn, xn+1) 6 θ
np(x0, x1), ∀n > 0.

Now, for m > n > 0, we have

p(xn, xm) 6
m−1∑
i=n

p(xi, xi+1) 6
m−1∑
i=n

θip(xn0−1, xn0) 6 p(x0, x1)

∞∑
i=n

θi → 0 as n→∞.

Thus,

lim
n,m→∞p(xn, xm) = 0.

So {xn} is a Cauchy sequence in the complete partial metric space (X,p). Then there exists z ∈ X such that

lim
n→∞p(xn, z) = p(z, z) = lim

n,m→∞p(xn, xm) = 0.

We obtain p(z, z) = 0. Thus, by condition (v), we have α(z, z) > 1. Consequently, since T is an α-
nonexpansive mapping,

p(Tz, Tz) 6 p(z, z) = 0,

which implies that p(Tz, Tz) = 0. The mapping T is continuous at z, so

p(z, Tz) = lim
n→∞p(xn+1, Tz) = lim

n→∞p(Txn, Tz) = p(Tz, Tz) = 0,
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that is, p(z, Tz) = 0, i.e., z = Tz and so z is a fixed point of T . Now, suppose that z,w ∈ X are two distinct
fixed points of T satisfying β(z,w) > 1, then by (2.1), we have

p(z,w) = p(Tz, Tw) 6 (
p(z, Tw) + p(Tz,w)

1 + p(z, Tz) + p(w, Tw)
+ k)M(z,w),

where

M(z,w) = max{p(z,w),p(z, Tz),p(w, Tw),
1
2
[p(w, Tz) + p(z, Tw)]}

= max{p(z,w),p(z, z),p(w,w)} = p(z,w).

Therefore

0 < p(z,w) 6 (
2p(z,w)

1 + p(z, z) + p(w,w)
+ k)p(z,w),

which implies that
2p(z,w)

1 + p(z, z) + p(w,w)
+ k > 1,

that is, p(z,w)
1+p(z,z)+p(w,w) >

1−k
2 . This ends the proof of Theorem 2.1.

In the next result, we replace the continuity hypothesis by the following condition:

(H) if {xn} is a sequence in X such that α(xn, xn+1) > 1 for all n and xn → x ∈ (X,p) as n → ∞ with
p(x, x) = 0, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) > 1 for all k.

Theorem 2.2. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → X be an
α-nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1) and

M(x,y) = max{p(x,y),p(x, Tx),p(y, Ty),
1
2
[p(x, Ty) + p(Tx,y)]}.

Assume that

(i) T is α-orbital admissible;
(ii) T is β-orbital admissible;

(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1, β(x0, Tx0) > 1, and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1;

(iv) (H) holds.

Then T has a fixed point. Moreover, if z,w ∈ X are two distinct fixed points of T satisfying β(z,w) > 1, then

p(z,w)
1 + p(z, z) + p(w,w)

>
1 − k

2
.

Proof. Following the proof of Theorem 2.1, there exists a sequence {xn} in X such that (2.3) holds. Also,
{xn} is Cauchy sequence. Since (X,p) is a complete partial metric space, then there exists z ∈ X such that

lim
n→∞p(xn, z) = p(z, z) = lim

n,m→∞p(xn, xm) = 0.

By hypothesis (H), there exists a subsequence {xn(k)} of {xn} such that α(xn(k), z) > 1 for all k. Now, since
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T is an α-nonexpansive mapping, then

p(xn(k)+1, Tz) = p(Txn(k), Tz) 6 p(xn(k), z), ∀ k > 1.

Passing to limit as k → ∞ in the above inequality, we get p(z, Tz) 6 p(z, z) = 0. This implies that
p(z, Tz) = 0, that is z is a fixed point of T . The rest of proof is similar to Theorem 2.1.

We provide the following example.

Example 2.3. Let X = [0,∞) be endowed with the partial metric p(x,y) = max{x,y} for all x,y ∈ X.
Clearly, (X,p) is complete. Consider the mapping T : X→ X defined by

Tx = x2 for all x ∈ X.

Take k = 1
2 . Define α,β : X×X→ [0,∞) as follows

α(x,y) = β(x,y) =

{
1, if x,y ∈ [0, 1],
0, if not.

Let x ∈ X be such that α(x, Tx) > 1 and β(x, Tx) > 1. Then x ∈ [0, 1]. Hence (Tx, T(Tx)) = (x2, x4) ∈ [0, 1]2

and so α(Tx, T 2x) > 1 and β(Tx, T 2x) > 1. This implies that T is α-orbital and β-orbital admissible. Let
x,y ∈ X such that α(x,y) > 1. Then x,y ∈ [0, 1]. In this case, we have

p(Tx, Ty) = max{x2,y2} 6 max{x,y} = p(x,y).

Then T is an α-nonexpansive mapping. Now, let x,y ∈ X such that β(x,y) > 1. Then x,y ∈ [0, 1]. Without
loss of generality, take x > y > 0. We have the following cases:

Case 1: If x2 > y, we have

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)⇔ x2 6 (

x+ x2

1 + x+ y
+ k)x⇔ 2xy 6 1 + x+ y.

Clearly, this holds because 2xy 6 x2 + y2 6 x+ y.

Case 2: If x2 < y, we have

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)⇔ x2 6 (

x+ y

1 + x+ y
+ k)x⇔ 2x2 + 2xy 6 1 + x+ 3y.

Again, the above holds since 2xy 6 x2 + y2 6 x+ 1 and 2x2 6 2y 6 3y.
Thus, (2.1) is verified for all x,y ∈ X satisfying β(x,y) > 1. Moreover, the condition (H) holds. For x0 = 1

2 ,
we have α(x0, Tx0) = α(

1
2 , 1

4) = 1 and β(x0, Tx0) = β(
1
2 , 1

4) = 1. On the other hand,

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k =

p( 1
2 , 1

4) + p(
1
4 , 1

16)

1 + p( 1
2 , 1

4) + p(
1
4 , 1

16)
+ k =

1
2 +

1
4

1 + 1
2 +

1
4

+
1
2
=

3
7
+

1
2
=

13
14
< 1.

Hence all hypotheses of Theorem 2.1 are verified. Here T has two fixed points which are z = 0 and z = 1.
Moreover, since β(0, 1) = 1, we have

p(0, 1)
1 + p(0, 0) + p(1, 1)

=
1
2
>

1
4
=

1 − k

2
.

Note that T is not a Banach contraction in (X,p) because p(T0, T1) = p(0, 1) = 1. Moreover, T is not a
nonexpansive mapping for the usual metric d(x,y) = |x− y|. In fact,

d(T
1
2

, T1) =
3
4
>

1
2
= d(

1
2

, 1).

Then Theorem 3.1 in [20] is not applicable.
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We also state the following results.

Theorem 2.4. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → X be an
α-nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)E(x,y) (2.6)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1) and

E(x,y) = p(x,y) + |p(x, Tx) − p(y, Ty)|.

Assume that

(i) T is α-orbital admissible;
(ii) T is β-orbital admissible;

(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1, β(x0, Tx0) > 1, and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1; (2.7)

(iv) T is a continuous mapping.

Then there exists z ∈ X such that p(z, z) = 0. Assume in addition that

(v) α(x, x) > 1 for each x ∈ X such that p(x, x) = 0.

Then such z is a fixed point of T , that is, Tz = z. Moreover, if z,w ∈ X are two distinct fixed points of T satisfying
β(z,w) > 1, p(z, z) = p(w,w) = 0, then p(z,w) > 1−k

2 .

Proof. By assumption (iii), there exists x0 ∈ X such that α(x0, Tx0) > 1, β(x0, Tx0) > 1 and (2.7) holds.
Define the sequence {xn} in X by xn = Txn−1 = Tnx0 for all n > 1. Similar to Theorem 2.1, we have

α(xn, xn+1) = α(T
nx0, Tn+1x0) > 1, β(xn, xn+1) = β(T

nx0, Tn+1x0) > 1, ∀n > 0,

and
p(xn, xn+1) 6 p(xn−1, xn), ∀n > 1. (2.8)

By (2.6) and the fact that β(xn, xn+1) > 1 for all n, we have

p(xn, xn+1) = p(Txn−1, Txn) 6 (
p(xn−1, Txn) + p(Txn−1, xn)

1 + p(xn−1, Txn−1) + p(xn, Txn)
+ k)E(xn−1, xn),

where

E(xn−1, xn) = p(xn−1, xn) + |p(xn−1, Txn−1) − p(xn, Txn)|
= p(xn−1, xn) + |p(xn−1, xn) − p(xn, xn+1)|.

Therefore, by (2.8)

E(xn−1, xn) = 2p(xn−1, xn) − p(xn, xn+1).

Since {p(xn, xn+1)} is a nonincreasing sequence, by Lemma 1.15, we deduce that

p(xn, xn+1) 6 (
p(xn−1, xn) + p(xn, xn+1)

1 + p(xn−1, xn) + p(xn, xn+1)
+ k)E(xn−1, xn)

6 (
p(x0, x1) + p(x1, x2)

1 + p(x0, x1) + p(x1, x2)
+ k)E(xn−1, xn)

= θ[2p(xn−1, xn) − p(xn, xn+1)],
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where θ is defined by (2.5). Again, from assumption (2.7), we have θ ∈ [0, 1). Finally, we get

p(xn, xn+1) 6
2θ

1 + θ
p(xn−1, xn).

Put
λ =

2θ
1 + θ

.

Note that
0 < θ < 1⇔ 0 < λ < 1.

We have

p(xn, xn+1) 6 λp(xn−1, xn)

for all n > 1. Proceeding as in the proof of Theorem 2.1, we conclude that {xn} is a Cauchy sequence in
the complete partial metric space (X,p). Then there exists z ∈ X such that

lim
n→∞p(xn, z) = p(z, z) = lim

n,m→∞p(xn, xm) = 0.

Also, we show that z is a fixed point of T . Now, suppose that z,w ∈ X are two distinct fixed points of T
satisfying β(z,w) > 1, then by (2.6), we have

p(z,w) = p(Tz, Tw) 6 (
p(z, Tw) + p(Tz,w)

1 + p(z, Tz) + p(w, Tw)
+ k)E(z,w),

where

E(z,w) = p(z,w) + |p(z, Tz) − p(w, Tw)| = p(z,w) + |p(z, z) − p(w,w)| = p(z,w).

Therefore
0 < p(z,w) 6 (2p(z,w) + k)p(z,w),

which implies that

p(z,w) >
1 − k

2
.

Similar to Theorem 2.2, we state the following.

Theorem 2.5. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → X be an
α-nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)E(x,y)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1) and

E(x,y) = p(x,y) + |p(x, Tx) − p(y, Ty)|.

Assume that
(i) T is α-orbital admissible;

(ii) T is β-orbital admissible;
(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1, β(x0, Tx0) > 1, and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1;

(iv) (H) holds.

Then T has a fixed point. Moreover, if z,w ∈ X are two distinct fixed points of T satisfying β(z,w) > 1 and
p(z, z) = p(w,w) = 0, then

p(z,w) >
1 − k

2
.
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2.2. Consequences
In this section, we present some consequences of our obtained results.

2.2.1. Some classical fixed point results
We have the following results.

Corollary 2.6. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → X be an
α-nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)p(x,y)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1). Assume that
(i) T is α-orbital admissible;

(ii) T is β-orbital admissible;
(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1, β(x0, Tx0) > 1, and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1;

(iv) T is continuous.

Then, there exists z ∈ X such that p(z, z) = 0. Assume in addition that
(v) α(x, x) > 1 for each x ∈ X such that p(x, x) = 0.

Then such z is a fixed point of T , that is, Tz = z. Moreover, if z,w ∈ X are two distinct fixed points of T satisfying
β(z,w) > 1, then p(z,w)

1+p(z,z)+p(w,w) > 1−k
2 .

Corollary 2.7. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → X be an
α-nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)p(x,y)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1). Assume that
(i) T is α-orbital admissible;

(ii) T is β-orbital admissible;
(iii) there exists x0 ∈ X such that α(x0, Tx0) > 1, β(x0, Tx0) > 1, and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1;

(iv) (H) holds.

Then T has a fixed point. Moreover, if z,w ∈ X are two distinct fixed points of T satisfying β(z,w) > 1, then

p(z,w)
1 + p(z, z) + p(w,w)

>
1 − k

2
.

Corollary 2.8. Let (X,p) be a complete partial metric space. Given β : X× X → [0,∞), let T : X → X be a
nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1) and

M(x,y) = max{p(x,y),p(x, Tx),p(y, Ty),
1
2
[p(x, Ty) + p(Tx,y)]}.

Assume that
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(i) T is β-orbital admissible;
(ii) there exists x0 ∈ X such that β(x0, Tx0) > 1 and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1.

Then T has a fixed point. Moreover, if z,w ∈ X are two distinct fixed points of T satisfying β(z,w) > 1, then
p(z,w)

1+p(z,z)+p(w,w) > 1−k
2 .

Proof. It suffices to take α(x,y) = 1 in Theorem 2.1.

Corollary 2.9. Let (X,p) be a complete partial metric space. Given β : X× X → [0,∞), let T : X → X be a
nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)p(x,y)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1). Assume that

(i) T is β-orbital admissible;
(ii) there exists x0 ∈ X such that β(x0, Tx0) > 1 and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1.

Then T has a fixed point. Moreover, if z,w ∈ X are two distinct fixed points of T satisfying β(z,w) > 1, then
p(z,w)

1+p(z,z)+p(w,w) > 1−k
2 .

Corollary 2.10. Let (X,p) be a complete partial metric space. Let T : X→ X be a nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)

for all x,y ∈ X, where k ∈ [0, 1) and

M(x,y) = max{p(x,y),p(x, Tx),p(y, Ty),
1
2
[p(x, Ty) + p(Tx,y)]}.

If there exists x0 ∈ X such that
p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1,

then T has a fixed point. Moreover, if z,w ∈ X are two distinct fixed points of T , then p(z,w)
1+p(z,z)+p(w,w) > 1−k

2 .

Proof. It suffices to take β(x,y) = 1 in Corollary 2.8.

Corollary 2.11. Let (X,p) be a complete partial metric space. Let T : X→ X be a nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)E(x,y)

for all x,y ∈ X, where k ∈ [0, 1) and

E(x,y) = p(x,y) + |p(x, Tx) − p(y, Ty)|.

If there exists x0 ∈ X such that
p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1,

then T has a fixed point. Moreover, if z,w ∈ X are two distinct fixed points of T such that p(z, z) = p(w,w) = 0,
then p(z,w) > 1−k

2 .
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2.2.2. Some fixed point results on a partial metric endowed with an arbitrary binary relation
Definition 2.12. Let (X,p) be a partial metric space and R be a binary relation over X. We say that
T : X→ X is a preserving mapping if for each x ∈ X such that xR Tx, we have TxR T 2x.

We state the following.

Corollary 2.13. Let (X,p) be a complete partial metric space endowed with a binary relation R over X. Let
T : X→ X be a nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)

for all x,y ∈ X satisfying xRy, where k ∈ [0, 1) and

M(x,y) = max{p(x,y),p(x, Tx),p(y, Ty),
1
2
[p(x, Ty) + p(Tx,y)]}.

Assume that

(i) T is a preserving mapping;
(ii) there exists x0 ∈ X such that x0RTx0 and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1.

Then T has a fixed point of T . Moreover, if z,w ∈ X are two distinct fixed points of T satisfying zRw or wRz, then
p(z,w)

1+p(z,z)+p(w,w) > 1−k
2 .

Proof. It suffices to consider β : X×X→ [0,∞) such that

β(x,y) =

{
1, if xRy,
0, if not.

From condition (ii), we get β(x0, Tx0) > 1. T is a preserving mapping, so T is β-orbital admissible. Thus
all hypotheses of Corollary 2.8 are satisfied. This completes the proof.

Corollary 2.14. Let (X,p) be a complete partial metric space endowed with a binary relation R over X. Let
T : X→ X be a nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)p(x,y)

for all x,y ∈ X satisfying xRy, where k ∈ [0, 1). Assume that

(i) T is a preserving mapping;
(ii) there exists x0 ∈ X such that x0 R Tx0 and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1.

Then T has a fixed point of T . Moreover, if z,w ∈ X are two distinct fixed points of T satisfying zRw or wRz, then
p(z,w)

1+p(z,z)+p(w,w) > 1−k
2 .

2.2.3. Some fixed point results on a partial metric endowed with a partial order
Definition 2.15. Let X be a nonempty set. We say that (X,p,�) is a partially ordered partial metric space
if (X,p) is a partial metric space and (X,�) is a partially ordered set.
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Definition 2.16. Let X be a nonempty set endowed with the partial order �. The mapping T : X → X is
said non-decreasing if

(x,y) ∈ X×X, x � y⇒ Tx � Ty.

Corollary 2.17. Let (X,p) be a complete partial metric space endowed with the partial order �. Let T : X → X be
a nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)

for all x,y ∈ X satisfying x � y, where k ∈ [0, 1) and

M(x,y) = max{p(x,y),p(x, Tx),p(y, Ty),
1
2
[p(x, Ty) + p(Tx,y)]}.

Assume that

(i) T is non-decreasing;
(ii) there exists x0 ∈ X such that x0 � Tx0 and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1.

Then T has a fixed point of T . Moreover, if z,w ∈ X are two distinct fixed points of T satisfying z � w or w � z,
then p(z,w)

1+p(z,z)+p(w,w) > 1−k
2 .

Proof. It suffices to consider the binary relation R over X as

xRy⇔ x � y.

All hypotheses of Corollary 2.13 are satisfied.

Corollary 2.18. Let (X,p) be a complete partial metric space endowed with the partial order �. Let T : X → X be
a nonexpansive mapping such that

p(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)p(x,y)

for all x,y ∈ X satisfying x � y, where k ∈ [0, 1). Assume that

(i) T is non-decreasing;
(ii) there exists x0 ∈ X such that x0 � Tx0 and

p(x0, Tx0) + p(Tx0, T 2x0)

1 + p(x0, Tx0) + p(Tx0, T 2x0)
+ k < 1.

Then T has a fixed point of T . Moreover, if z,w ∈ X are two distinct fixed points of T satisfying z � w or w � z,
then p(z,w)

1+p(z,z)+p(w,w) > 1−k
2 .

2.3. Fixed point theorems for multi-valued mappings
In this section, we give some fixed point results for a class of multi-valued mappings in the setting of

partial metric spaces, by using the concept of α-nonexpansive multi-valued mappings.

Theorem 2.19. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → Fp(X) be



H. Aydi, A. Felhi, J. Nonlinear Sci. Appl., 10 (2017), 5509–5527 5522

an α-nonexpansive multi-valued mapping. Assume that

(i)

Hp(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y) (2.9)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1) and

M(x,y) = max{p(x,y),p(x, Tx),p(y, Ty),
1
2
[p(x, Ty) + p(Tx,y)]};

(ii) T is α-admissible;
(iii) T is β-admissible;
(iv) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1, β(x0, x1) > 1, p(x0, x1) = p(x0, Tx0), and

p(x0, Tx0) + p(x1, Tx1)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k < 1; (2.10)

(v) T is continuous.

Then, there exists z ∈ X such that p(z, z) = 0. Assume in addition that

(vi) α(x, x) > 1 for each x ∈ X such that p(x, x) = 0.

Then such z is a fixed point of T , that is z ∈ Tz.

Proof. By assumption (iv), there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1, β(x0, x1) > 1, p(x0, x1) =
p(x0, Tx0) and (2.10) holds. We have Tx1 ⊆ Fp(X), so there exists x2 ∈ Tx1 such that p(x1, x2) = p(x1, Tx1).
The mapping T is α-admissible and is β-admissible, then as x2 ∈ Tx1, so α(x1, x2) > 1 and β(x1, x2) > 1.
The mapping T is α-nonexpansive, hence

p(x1, x2) = p(x1, Tx1) 6 Hp(Tx0, Tx1) 6 p(x0, x1). (2.11)

Again, from (2.9), we have

p(x1, x2) = p(x1, Tx1) 6 Hp(Tx0, Tx1) 6 (
p(x0, Tx1) + p(x1, Tx0)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k)M(x0, x1),

where

M(x0, x1) = max{p(x0, x1),p(x1, Tx1),p(x0, Tx0),
1
2
[p(x0, Tx1) + p(x1, Tx0)]}

= max{p(x0, x1),p(x1, Tx1),
1
2
[p(x0, Tx1) + p(x1, Tx0)]}.

Note that

1
2
[p(x0, Tx1) + p(x1, Tx0)] 6

1
2
[p(x0, Tx1) + p(x1, x1)] 6

1
2
[p(x0, x1) + p(x1, Tx1)].

Therefore, by (2.11)
M(x0, x1) = max{p(x0, x1),p(x1, Tx1)} = p(x0, x1).

Thus

p(x1, x2) 6 (
p(x0, x1) + p(x1, Tx1)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k)p(x0, x1) = (

p(x0, x1) + p(x1, x2)

1 + p(x0, x1) + p(x1, x2)
+ k)p(x0, x1).

Having in mind Tx2 ⊆ Fp(X), there exists x3 ∈ Tx2 such that p(x2, x3) = p(x2, Tx2). Then by assumptions
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(ii) and (iii), we have α(x2, x3) > 1, β(x2, x3) > 1. Again, T is α-nonexpansive and

p(x2, x3) = p(x2, Tx2) 6 Hp(Tx1, Tx2) 6 p(x1, x2).

From (2.9), we have

p(x2, x3) = p(x2, Tx2) 6 Hp(Tx1, Tx2) 6 (
p(x1, Tx2) + p(x2, Tx1)

1 + p(x1, Tx1) + p(x2, Tx2)
+ k)M(x1, x2).

Similarly, we get

p(x2, x3) 6 (
p(x1, x2) + p(x2, x3)

1 + p(x1, x2) + p(x2, x3)
+ k)p(x1, x2).

Continuing in this process, we construct a sequence {xn} in X such that

α(xn, xn+1) > 1, β(xn, xn+1) > 1, p(xn, xn+1) = p(xn, Txn) and xn+1 ∈ Txn for alln > 0. (2.12)

Also

p(xn, xn+1) 6 p(xn−1, xn) for alln > 1, (2.13)

p(xn, xn+1) 6 (
p(xn−1, xn) + p(xn, xn+1)

1 + p(xn−1, xn) + p(xn, xn+1)
+ k)p(xn−1, xn) for alln > 1. (2.14)

Following the proof of Theorem 2.1, we conclude that {xn} is a Cauchy sequence in (X,p). By completeness
of (X,p), there exists z ∈ X such

lim
n→∞p(xn, z) = p(z, z) = lim

n,m→∞p(xn, xm) = 0.

Since p(z, z) = 0, by condition (vi), we have α(z, z) > 1. Consequently, in view of the fact that T is an
α-nonexpansive mapping,

Hp(Tz, Tz) 6 p(z, z) = 0,

which implies that Hp(Tz, Tz) = 0. The mapping T is continuous at z, so

lim
n→∞Hp(Txn, Tz) = Hp(Tz, Tz) = 0.

On the other hand

p(z, Tz) 6 p(z, xn+1) + p(xn+1, Tz) 6 p(z, xn+1) +Hp(Txn, Tz) for alln > 0.

Passing to limit as n→∞ in the above inequality, we get

p(z, Tz) 6 p(z, z) +Hp(Tz, Tz) = 0,

which implies that p(z, Tz) = 0 = p(z, z) and so z ∈ Tz(= Tz), that is, z is a fixed point of T .

Theorem 2.20. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → Fp(X) be
an α-nonexpansive multi-valued mapping. Assume that

(i)

Hp(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1) and

M(x,y) = max{p(x,y),p(x, Tx),p(y, Ty),
1
2
[p(x, Ty) + p(Tx,y)]};
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(ii) T is α-admissible;
(iii) T is β-admissible;
(iv) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1, β(x0, x1) > 1, p(x0, x1) = p(x0, Tx0), and

p(x0, Tx0) + p(x1, Tx1)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k < 1;

(v) (H) holds.

Then T has a fixed point.

Proof. Proceeding as in the proof of Theorem 2.19, we construct a sequence {xn} in X such that (2.12),
(2.13), and (2.14) hold. Also, {xn} is a Cauchy sequence in (X,p). By completeness of (X,p), there exists
z ∈ X such

lim
n→∞p(xn, z) = p(z, z) = lim

n,m→∞p(xn, xm) = 0.

By hypothesis (H) and since T is an α-nonexpansive multi-valued mapping, we have

p(z, Tz) 6 p(z, xn(k)+1) + p(xn+1, Tz)

6 p(z, xn(k)+1) +Hp(Txn(k), Tz)

6 p(z, xn(k)+1) + p(xn(k), z) for allk > 0.

Passing to limit as k→∞ in the above inequality, we get

p(z, Tz) 6 2p(z, z) = 0,

which implies that p(z, Tz) = 0 = p(z, z) and so z ∈ Tz(= Tz).

Using the same techniques, we have the following results.

Theorem 2.21. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → Fp(X) be
an α-nonexpansive multi-valued mapping. Assume that

(i)

Hp(Tx, Ty) 6 (
p(x, Ty) + p(y, Tx)

1 + p(x, Tx) + p(y, Ty)
+ k)E(x,y)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1) and

E(x,y) = p(x,y) + |p(x, Tx) − p(y, Ty)|;

(ii) T is α-admissible;
(iii) T is β-admissible;
(iv) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1, β(x0, x1) > 1, p(x0, x1) = p(x0, Tx0), and

p(x0, Tx0) + p(x1, Tx1)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k < 1;

(v) T is continuous.

Then, there exists z ∈ X such that p(z, z) = 0. Assume in addition that

(vi) α(x, x) > 1 for each x ∈ X such that p(x, x) = 0.

Then, such z is a fixed point of T , that is, z ∈ Tz.

Theorem 2.22. Let (X,p) be a complete partial metric space. Given α,β : X× X → [0,∞), let T : X → Fp(X) be
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an α-nonexpansive multi-valued mapping. Assume that

(i)

Hp(Tx, Ty) 6 (
p(x, Ty) + p(y, Tx)

1 + p(x, Tx) + p(y, Ty)
+ k)E(x,y)

for all x,y ∈ X satisfying β(x,y) > 1, where k ∈ [0, 1), and

E(x,y) = p(x,y) + |p(x, Tx) − p(y, Ty)|;

(ii) T is α-admissible;
(iii) T is β-admissible;
(iv) there exist x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) > 1, β(x0, x1) > 1, p(x0, x1) = p(x0, Tx0) and

p(x0, Tx0) + p(x1, Tx1)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k < 1;

(v) (H) holds.

Then T has a fixed point.

Example 2.23. Let X = [0, 1] be endowed with the partial metric p(x,y) = max{x,y} for all x,y ∈ X.
Consider the mapping T : X→ Fp(X) defined by

Tx = {0, x2} for all x ∈ X.

Take k = 1
2 . Define α,β : X×X→ [0,∞) as follows

α(x,y) = β(x,y) = 1 for all x ∈ X.

Let x,y ∈ X. Without loss of generality, take x > y > 0. In this case, we have

Hp(Tx, Ty) = x2 6 x = max{x,y} = p(x,y).

Then T is a nonexpansive mapping. We have the following cases:

Case 1: If x2 > y, we have

Hp(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)⇔ x2 6 (

x+ x2

1 + x+ y
+ k)x⇔ 2xy 6 1 + x+ y.

Clearly, this holds due to the fact 2xy 6 x2 + y2 6 x+ y.

Case 2: If x2 < y, we have

Hp(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)⇔ x2 6 (

x+ y

1 + x+ y
+ k)x⇔ 2x2 + 2xy 6 1 + x+ 3y.

The above holds because 2xy 6 x2 + y2 6 x+ 1 and 2x2 6 2y 6 3y. Thus, (2.9) is satisfied for all x,y ∈ X.
For x0 = 1

2 and x1 = 1
4 ∈ Tx0(= {0, 1

4 }), we have

p(x0, Tx0) + p(x1, Tx1)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k =

1
2 +

1
4

1 + 1
2 +

1
4

+
1
2
=

13
14
< 1.

Hence all hypotheses of Theorem 2.19 are verified. Here T has two fixed points which are z = 0 and z = 1.
Note that T is not a contraction in (X,p) since Hp(T0, T1) = Hp({0}, {0, 1}) = 1 = p(0, 1) = 1. Moreover, T
is not a nonexpansive mapping for the usual metric d(x,y) = |x− y|. In fact, we have

H(T
1
2

, T1) = H({0,
1
4
}, {0, 1}) =

3
4
>

1
2
= d(

1
2

, 1).

Then Theorem 5.1 in [20] is not applicable here.
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Take α(x,y) = β(x,y) = 1 for all x,y ∈ X, we have the following results.

Corollary 2.24. Let (X,p) be a complete partial metric space. Let T : X → Fp(X) be a nonexpansive multi-valued
mapping such that

Hp(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)M(x,y)

for all x,y ∈ X, where k ∈ [0, 1) and

M(x,y) = max{p(x,y),p(x, Tx),p(y, Ty),
1
2
[p(x, Ty) + p(Tx,y)]}.

Assume that there exist x0 ∈ X and x1 ∈ Tx0 such that p(x0, x1) = p(x0, Tx0) and

p(x0, Tx0) + p(x1, Tx1)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k < 1.

Then T has a fixed point.

Corollary 2.25. Let (X,p) be a complete partial metric space. Let T : X → Fp(X) be a nonexpansive multi-valued
mapping such that

Hp(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)E(x,y)

for all x,y ∈ X, where k ∈ [0, 1) and

E(x,y) = p(x,y) + |p(x, Tx) − p(y, Ty)|.

Assume that there exist x0 ∈ X and x1 ∈ Tx0 such that p(x0, x1) = p(x0, Tx0) and

p(x0, Tx0) + p(x1, Tx1)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k < 1.

Then T has a fixed point.

Corollary 2.26. Let (X,p) be a complete partial metric space. Let T : X → Fp(X) be a nonexpansive multi-valued
mapping such that

Hp(Tx, Ty) 6 (
p(x, Ty) + p(Tx,y)

1 + p(x, Tx) + p(y, Ty)
+ k)p(x,y)

for all x,y ∈ X, where k ∈ [0, 1). Assume that there exist x0 ∈ X and x1 ∈ Tx0 such that p(x0, x1) = p(x0, Tx0)
and

p(x0, Tx0) + p(x1, Tx1)

1 + p(x0, Tx0) + p(x1, Tx1)
+ k < 1.

Then T has a fixed point.

3. Conclusion

We have presented some fixed point results for both single and multi-valued mappings in the class of
partial metric spaces via a new concept named as α-nonexpansive maps. This new concept generalizes
the known concept of expansive mappings. We also presented some concrete examples illustrating the
new concepts and results where some known theorems in literature are not applicable, such as the recent
results of Vetro [20].
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