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Abstract
Applying the generalized projection operator, we introduce a modified subgradient extragradient algorithm in Banach

spaces for a variational inequality involving a monotone Lipschitz continuous mapping which is more general than an inverse-
strongly-monotone mapping. Weak convergence of the iterative algorithm is also proved. An advantage of the algorithm is
the computation of only one value of the inequality mapping and one projection onto the admissible set per one iteration.
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1. Introduction

Let E be a real Banach space with norm ‖ · ‖, and E∗ be the dual of E. 〈x, f〉 denotes the duality pairing
of E and E∗. Suppose that C is a nonempty, closed, and convex subset of E. In this paper, we study the
problem of finding a point u ∈ C such that

〈v− u,Au〉 > 0, ∀v ∈ C, (1.1)

where A : C → E∗ is a single-valued mapping. This problem is called the variational inequality problem
(VIP). The set of solutions of the variational inequality problem is denoted by VI(C,A). Such a problem is
connected with the convex minimization problem, the complementarity problem, the problem of finding
a point u ∈ E satisfying 0 = Au and so on. An operator A of C into E∗ is said to be

(i) monotone if 〈x− y,Ax−Ay〉 > 0, for all x,y ∈ C;
(ii) α-inverse-strongly-monotone if there exists a positive real number α such that

〈x− y,Ax−Ay〉 > α‖Ax−Ay‖2, ∀x,y ∈ C;

(iii) L-Lipschitz continuous if there exists a constant L > 0 such that

‖Ax−Ay‖ 6 L‖x− y‖, ∀x,y ∈ C.
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A great number of methods for solving variational inequality (1.1) have been proposed and analyzed
by many authors in Hilbert spaces or Banach spaces when A has monotonicity and Lipschitz continuity
or inverse-strong-monotonicity, (see, for example, [3, 4, 6, 7, 9–13, 15, 19, 20, 23] and the reference therein).

The simplest method is the gradient projection in which only one projection onto the feasible set C
is performed at each iteration, but this method requires the restrictive assumption that A is strongly (or
inverse strongly) monotone.

For example, Iiduka and Takahashi [11] proposed the following gradient projection method.

Algorithm 1.1.
xn+1 = ΠCJ

−1(Jxn − λnAxn). (1.2)

More precisely, they proved the following theorem.

Theorem 1.2. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality mapping J is
weakly sequentially continuous, and C be a nonempty, closed convex subset of E. Assume A : C → E∗ is an
α-inverse-strongly-monotone mapping satisfying the following condition

‖Ay‖ 6 ‖Ay−Au‖ for all y ∈ C and u ∈ VI(C,A). (A)

If VI(C,A) 6= ∅, and {λn} ⊂ [a,b] for some a,b with 0 < a < b < c1α, where c1 is the 2-uniformly convex
constant, then the iterative sequence {xn} generated by (1.2) converges weakly to some element z in VI(C,A).
Further z = lim

n→∞ΠVI(C,A)(xn).

We note that if A is α-inverse-strongly-monotone, then it is monotone and 1
α -Lipschitz continuous.

But, the converse is not true. One problem arises naturally:

(P1) How to relax the inverse-strong monotonicity of A to the monotonicity and Lipschitz continuity?
In addition, we also note that the condition (A) is not easy to be verified because VI(C,A) is not
explicit. The necessity of the condition needs to be checked. Hence, we have the following problem.

(P2) Can the condition (A) be removed?

In 1976, Korpelevich [12] introduced the extragradient method for the saddle point problem and then,
it was extended to VIP which only requires the monotonicity and the Lipschitz continuity of A,

x0 = x ∈ C,
yn = PC(xn − λAxn),
xn+1 = PC(xn − λAyn).

(1.3)

In this method, instead of a projection, she implemented two projections onto the feasible set C. In recent
years, the extragradient method has been widely studied and modified by many authors via different
ways, see for instance [4–6, 8, 13, 19, 25] and the references therein.

In the next, we always let H be a Hilbert space and N be the set of all positive integers.
One of the drawbacks of the extragradient method is the necessity of two projections onto the admis-

sible set C in each iterate. It is not easy to compute when the structure of the set C is complicated. As
mentioned in [6], this may affect the efficiency of the method. Therefore, Censor et al. in [6] modified the
the extragradient method and proposed the following iterative algorithm:

x0 ∈H,
yn = PC(xn − τA(xn)),
Tn = {w ∈H : 〈xn − τA(xn) − yn,w− yn〉 6 0},
xn+1 = PTn(xn − τA(yn)).

(1.4)

Method (1.4) replaces the second projection onto the closed and convex subset C in (1.3) with the one
onto the subgradient half-space Tn. So the method (1.4) is called the subgradient extragradient method.
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We note that, the set Tn is a half-space, and hence (1.4) is easier to execute than (1.3). Under some mild
assumptions, Censor et al. in [6] proved the method (1.4) converges weakly to a solution of variational
inequality (1.1) in a Hilbert space.

The method (1.4) has been further modified and extended to obtain strong convergence results in
Hilbert spaces and Banach spaces, see [5, 13, 16] and the reference therein. In [13], the authors combined
the method (1.4) with the Halpern method to propose the Halpern subgradient extragradient method for
the strong convergence in Hilbert spaces. Recently, Liu [16] extended the Halpern subgradient extragra-
dient method to Banach spaces and constructed the following algorithm.

For any x0 ∈ E, define a sequence {xn} iteratively by the following:

Algorithm 1.3. 
yn = ΠCJ

−1(Jxn − λnA(xn)),
Tn = {w ∈ E : 〈w− yn, Jxn − λnA(xn) − Jyn〉 6 0},
wn = ΠTnJ

−1(Jxn − λnA(yn)),
xn+1 = J−1(αnJx0 + (1 −αn)Jwn),

where {αn} ⊂ [0, 1] satisfying lim
n→∞αn = 0 and

∞∑
n=1

αn = ∞ and {λn} ⊂ (0,∞) satisfying 0 < inf
n>1

λn 6

sup
n>1

λn <
c1
L . Liu in [16] proved the iterative sequence {xn} generated by Algorithm 1.3 strongly converges

to an element of VI(C,A) under conditions (C1)-(C3) of Section 3 of this paper.

But, the drawback of the subgradient extragradient method is the computation of values of the map-
ping A at two different points to pass to the next iteration. Very often variational inequality problems
which arise from optimal control, provide a very complicated operator such that only computation of the
values of the mapping A is a very sophisticated problem (for more details see [14]).

To avoid the drawback, Malitsky and Semenov [17] combined the Popov algorithm [21] and the sub-
gradient extragradient method [6] to propose the following iterative algorithm:

Algorithm 1.4.

1. Specify x0,y0 ∈ C, and λ > 0.
2. Compute {

x1 = PC(x0 − λA(y0)),
y1 = PC(x1 − λA(y0)).

3. Given xn,yn and yn−1, construct a half-space

Hn = {z ∈H : 〈xn − λAyn−1 − yn, z− yn〉 6 0}

and compute {
xn+1 = PHn(xn − λA(yn)),
yn+1 = PC(xn+1 − λA(yn)).

4. If xn+1 = xn and yn+1 = yn = yn−1, then complete the computation and, otherwise, put n := n+ 1
and pass to step 3.

More precisely, they proved the following theorem.

Theorem 1.5. Let C be a nonempty closed and convex subset of a Hilbert space H. Let A : C → H be monotone
and Lipschitz with a constant L > 0. Let VI(C,A) 6= ∅ and λ ∈ (0, 1

3L). Then sequences {xn} and {yn} generated
by Algorithm 1.4 weakly converge to some point z ∈ VI(C,A).

We note that the operator A in Algorithm 1.4 is only monotone and Lipschitz continuous and does
not require condition (A) assumed in [11]. Furthermore, Algorithm 1.4 needs only one computation of
projection onto the admissible set C and only one value of A on every iteration. But, we observe that the
convergence result of Algorithm 1.4 is valid only in Hilbert spaces. However, many important problems
related to practical problems are generally defined in Banach spaces. This now leads to the following
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important problem.

(P3) How to extend Algorithm 1.4 to the more general Banach spaces?

The purpose of this paper is to construct a new method for finding an element of VI(C,A) for a
Lipschitz-continuous, monotone mapping in a 2-uniformly convex and uniformly smooth Banach space.
Consequently, we will solve problems (P1)-(P3).

The paper is organized as follows. In the next section we recall some definitions and preliminary
results used in the paper. Section 3 presents our algorithm and deals with the convergence analysis. In
Section 4, we give two numerical experiments to illustrate the proposed algorithm in comparison with
the Algorithm 1.3 and in Section 5 we offer concluding comments.

2. Preliminaries

When {xn} is a sequence in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the
weak convergence by xn ⇀ x.

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be strictly convex if for any x,y ∈ U and x 6= y
implies ‖x+y2 ‖ < 1. It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that
for any x,y ∈ U, ‖x− y‖ > ε implies ‖x+y2 ‖ 6 1 − δ. It is known that a uniformly convex Banach space is
reflexive and strictly convex. We define a function δ : [0, 2] → [0, 1] called the modulus of convexity of E
as follows:

δ(ε) = inf{1 − ‖x+ y
2
‖ : x,y ∈ U, ‖x− y‖ > ε}.

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a fixed real number with p > 2.
A Banach space E is said to be p-uniformly convex if there exists a constant c > 0 such that δ(ε) > cεp

for all ε ∈ [0, 2]. It is obvious that a p-uniformly convex Banach space is uniformly convex. For example,
see [2] and [22] for more details. A Banach space E is said to be smooth if the limit lim

t→0

‖x+ty‖−‖x‖
t exists

for all x,y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly for x,y ∈ U. It
is well-known that Hilbert and the Lebesgue Lq(1 < q 6 2) spaces are 2-uniformly convex, uniformly
smooth.

Let J : E→ 2E
∗

be the normalized duality mapping defined by

Jx := {v ∈ E∗ : 〈x, v〉 = ‖v‖2 = ‖x‖2}, ∀x ∈ E.

The following properties of the duality mapping J can be found in [1].

(i) If E is smooth, then J is single-valued.
(ii) If E is strictly convex, then J is one-to-one and strictly monotone.

(iii) If E is reflexive, then J is surjective.
(iv) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of

E.
(v) If E is a smooth, strictly convex, and reflexive Banach space, then J is single-valued, one-to-one, and

onto. Simultaneously, J−1 is also single-valued, one-to-one and onto, and it is the duality mapping
from E∗ to E.

Let E be a smooth Banach space. We know the following Lyapunov functional introduced by Al’ber
and Reich [1]:

φ(x,y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x,y ∈ E.

Clearly, we have from the definition of φ that

(B1) (‖x‖− ‖y‖)2 6 φ(y, x) 6 (‖x‖+ ‖y‖)2;
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(B2) φ(x,y) = φ(x, z) +φ(z,y) + 2〈x− z, Jz− Jy〉;
(B3) φ(x,y) = 〈x, Jx− Jy〉+ 〈y− x, Jy〉 6 ‖x‖‖Jx− Jy‖+ ‖y− x‖‖y‖.

Lemma 2.1 ([18]). Let E be a uniformly convex and smooth Banach space and let {yn}, {zn} be two sequences of E.
If φ(yn, zn)→ 0, and either {yn} or {zn} is bounded, then yn − zn → 0.

Let E be a reflexive, strictly convex, and smooth Banach space. C denotes a nonempty, closed and
convex subset of E. By Al’ber and Reich [1], for each x ∈ E, there exists a unique element x0 ∈ C (denoted
by ΠC(x)) such that

φ(x0, x) = min
y∈C

φ(y, x).

The mapping ΠC : E → C, defined by ΠC(x) = x0, is called the generalized projection operator from E

onto C. Moreover, x0 is called the generalized projection of x. In a Hilbert space, ΠC = PC (the metric
projection operator).

Lemma 2.2 ([11, 18]). Let C be a nonempty closed and convex subset of a smooth Banach space E and x ∈ E. Then,
x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 > 0, ∀y ∈ C.

Lemma 2.3 ([11, 18]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a nonempty closed
and convex subset of E and let x ∈ E. Then

φ(y,ΠCx) +φ(ΠCx, x) 6 φ(y, x), ∀y ∈ C.

Lemma 2.4 ([11]). Let C be a nonempty, closed and convex subset of a Banach space E and A a monotone,
hemicontinuous operator of C into E∗. Then

VI(C,A) = {u ∈ C : 〈v− u,Av〉 > 0 for all v ∈ C}.

It is obvious from Lemma 2.4 that the set VI(C,A) is a closed and convex subset of C.

Lemma 2.5 ([20]). Let E be a 2-uniformly convex and smooth Banach space. Then, for every x,y ∈ E, φ(x,y) >
c1‖x− y‖2, where c1 > 0 is the 2-uniformly convexity constant of E.

Lemma 2.6 ([24]). Let {an} and {tn} be two sequences of nonnegative real numbers satisfying the inequality

an+1 6 an + tn for all n ∈N. If
∞∑
n=1

tn <∞, then lim
n→∞an exists.

3. Main results

Inspired by the results of [11, 17], we propose the following Algorithm 3.1 to extend Algorithm 1.4
from Hilbert spaces to Banach spaces and prove a weak convergence theorem.

In this section, we always assume the following conditions.

(C1) E is a 2-uniformly convex and uniformly smooth Banach space with the 2-uniformly convexity
constant c1 and C is a nonempty, closed convex subset of E.

(C2) The mapping A : C→ E∗ is monotone and Lipschitz continuous with Lipschitz constant L > 0.
(C3) VI(C,A) 6= ∅.

Algorithm 3.1.

1. Specify x0,y0 ∈ C, and λ > 0.
2. Compute {

x1 = ΠCJ
−1(Jx0 − λA(y0)),

y1 = ΠCJ
−1(Jx1 − λA(y0)).
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3. Given xn,yn and yn−1, construct a half-space

Hn = {z ∈ E : 〈z− yn, Jxn − λAyn−1 − Jyn〉 6 0}

and compute {
xn+1 = ΠHnJ

−1(Jxn − λA(yn)),
yn+1 = ΠCJ

−1(Jxn+1 − λA(yn)).

4. If xn+1 = xn and yn+1 = yn = yn−1, then complete the computation and, otherwise, put n := n+ 1
and pass to step 3.

Remark 3.2. It is obvious that Hn is a half-space. Furthermore, since yn = ΠCJ
−1(Jxn − λA(yn−1)), by

Lemma 2.2 we have C ⊂ Hn for every n ∈N.

First, we show that the stopping criterion in Algorithm 3.1 is valid.

Lemma 3.3. If xn+1 = xn and yn+1 = yn = yn−1 in Algorithm 3.1, then yn ∈ VI(C,A).

Proof. If we have xn+1 = xn in Algorithm 3.1, then Lemma 2.2 implies

〈xn − x, λAyn〉 6 0, ∀x ∈ Hn. (3.1)

Taking into account that xn+1 ∈ Hn and yn = yn−1, we obtain 〈xn − yn, Jxn − λAyn − Jyn〉 6 0, whence
we conclude that 〈xn − yn,Ayn〉 > 0, since J is strictly monotone. Then we represent inequality (3.1) in
the form

〈x− yn,Ayn〉− 〈xn − yn,Ayn〉 > 0, ∀x ∈ Hn.

Hence, we have
〈x− yn,Ayn〉 > 〈xn − yn,Ayn〉 > 0, ∀x ∈ Hn.

Since yn ∈ C ⊂ Hn, we obtain that yn ∈ VI(C,A).

Next, we prove an important inequality relating the Lyapunov functional.

Lemma 3.4. Let {xn} and {yn} be generated by Algorithm 3.1. Then, under conditions (C1)-(C3), we have

φ(u, xn+1) 6 φ(u, xn)−(1−
2λL
c1

)φ(xn+1,yn)−(1−
λL

c1
)φ(yn, xn)+

λL

c1
φ(xn,yn−1),∀u ∈ VI(C,A). (3.2)

Proof. Since xn+1 = ΠHnJ
−1(Jxn − λA(yn)), it follows from Lemma 2.3, (B2), and VI(C,A) ⊂ C ⊂ Hn

that, for any u ∈ VI(C,A),

φ(u, xn+1) 6 φ(u, J−1(Jxn − λA(yn))) −φ(xn+1, J−1(Jxn − λA(yn)))

= φ(u, xn) +φ(xn, J−1(Jxn − λA(yn))) + 2〈u− xn, λA(yn)〉
−φ(xn+1, xn) −φ(xn, J−1(Jxn − λA(yn))) − 2〈xn+1 − xn, λA(yn)〉

= φ(u, xn) −φ(xn+1, xn) + 2λ〈u− xn+1,A(yn)〉.

(3.3)

Since u ∈ VI(C,A) and A is monotone on C, we have

〈yn − u,A(yn)〉 > 0.

Adding a nonnegative addend 2λ〈yn − u,A(yn)〉 to the right side of inequality (3.3), we obtain

φ(u, xn+1)

6 φ(u, xn) −φ(xn+1, xn) + 2λ〈yn − xn+1,A(yn)〉
= φ(u, xn) −φ(xn+1,yn) −φ(yn, xn) − 2〈xn+1 − yn, Jyn − Jxn〉+ 2λ〈yn − xn+1,A(yn)〉
= φ(u, xn) −φ(xn+1,yn) −φ(yn, xn) + 2〈xn+1 − yn, Jxn − Jyn − λA(yn−1)〉
+ 2λ〈xn+1 − yn,Ayn−1 −Ayn〉.

(3.4)
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By the definition of Hn, we have

〈xn+1 − yn, Jxn − λAyn−1 − Jyn〉 6 0. (3.5)

We estimate the addend 2λ〈xn+1 − yn,Ayn−1 −Ayn〉 in inequality (3.4) by the Lipschitz continuity of A,
Lemma 2.5, and Cauchy-Schwarz inequality as follows:

2λ〈xn+1 − yn,Ayn−1 −Ayn〉 6 2λL‖xn+1 − yn‖‖yn − yn−1‖
6 2λL‖xn+1 − yn‖(‖yn − xn‖+ ‖yn−1 − xn‖)
6 λL(‖yn − xn‖2 + 2‖xn+1 − yn‖2 + ‖yn−1 − xn‖2)

6
λL

c1
(φ(yn, xn) +φ(xn,yn−1) + 2φ(xn+1,yn)).

(3.6)

Combining (3.4), (3.5) with (3.6), we have that (3.2) holds.

Theorem 3.5. Let the duality mapping J be weakly sequentially continuous and λ ∈ (0, c1
3L). Then, under conditions

(C1)-(C3), sequences {xn} and {yn} generated by Algorithm 3.1 weakly converge to some point z ∈ VI(C,A).
Furthermore, z = lim

n→∞ΠVI(C,A)(xn).

Proof. We first show the boundedness of the sequence {xn}. Summing up the inequalities (3.2) for all
numbers 0, 1, 2, . . . ,n, we obtain

φ(u, xn+1) 6 φ(u, x1) − (1 −
2λL
c1

)

n−1∑
k=0

φ(xn+1−k,yn−k)

− (1 −
λL

c1
)

n−1∑
k=0

φ(yn−k, xn−k) +
λL

c1

n−1∑
k=0

φ(xn−k,yn−k−1)

= φ(u, x1) − (1 −
3λL
c1

)

n−2∑
k=0

φ(xn−k,yn−k−1) − (1 −
λL

c1
)

n−1∑
k=0

φ(yn−k, xn−k)

+
λL

c1
φ(x1,y0) − (1 −

2λL
c1

)φ(xn+1,yn) 6 φ(u, x1) +
λL

c1
φ(x1,y0).

(3.7)

This implies the boundedness of the sequence {xn}. Let n − k = m, then,
n−2∑
k=0

φ(xn−k,yn−k−1) =

n∑
m=2

φ(xm,ym−1). In view of inequality (3.7), we have
n∑
m=2

φ(xm,ym−1) is bounded. This implies that the

positive series
∞∑
n=1

φ(xn,yn−1) is convergent. Similarly, we have that the positive series
∞∑
n=1

φ(yn, xn) is

also convergent. Thus, we have

lim
n→∞φ(xn,yn−1) = lim

n→∞φ(yn, xn) = 0.

By Lemma 2.1, we have
lim
n→∞ ‖xn − yn−1‖ = lim

n→∞ ‖yn − xn‖ = 0. (3.8)

Since ‖yn − yn−1‖ 6 ‖yn − xn‖+ ‖xn − yn−1‖, by (3.8), we have

lim
n→∞ ‖yn − yn−1‖ = 0. (3.9)

Since J is uniformly norm-to-norm continuous on bounded sets, we have that

lim
n→∞ ‖Jxn − Jyn−1‖ = lim

n→∞ ‖Jyn − Jxn‖ = 0. (3.10)
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Let {xnk} be a subsequence of {xn} such that xnk ⇀ z ∈ C. Then, ynk ⇀ z ∈ C. Now, we show that
z ∈ VI(C,A). Since yn+1 = ΠCJ

−1(Jxn+1 − λA(yn)), it follows from Lemma 2.2 that

〈x− ynk+1, Jynk+1 − Jxnk+1 + λAynk〉 > 0, ∀x ∈ C.

Using the monotonicity of the mapping A, we infer that

0 6 〈x− ynk+1, Jynk+1 − Jxnk+1 + λAynk〉
= 〈x− ynk+1, Jynk+1 − Jxnk+1〉+ λ〈ynk − ynk+1,Aynk〉+ λ〈x− ynk ,Aynk〉
6 〈x− ynk+1, Jynk+1 − Jxnk+1〉+ λ〈ynk − ynk+1,Aynk〉+ λ〈x− ynk ,Ax〉.

Passing to the limit with allowance for equalities (3.9) and (3.10), we obtain 〈x− z,Ax〉 > 0 for all x ∈ C.
Hence, z ∈ VI(C,A) by Lemma 2.4.

Let us show that xn ⇀ z. Define un := ΠVI(C,A)xn for all n ∈ N. Since z ∈ VI(C,A), we have
φ(un, xn) 6 φ(z, xn). Thus, {un} is bounded. Next, we show {un} is a Cauchy sequence. In fact, by
Lemma 2.3 and inequality (3.2), we deduce that

φ(un+1, xn+1) 6 φ(un, xn+1) 6 φ(un, xn) +
λL

c1
φ(xn,yn−1).

The summability of the series
∑
n
φ(xn,yn−1) and Lemma 2.6 imply the existence of lim

n→∞φ(un, xn). Using

inequality (3.2), for all m > n, we have

φ(un, xm) 6 φ(un, xm−1) +
λL

c1
φ(xm−1,ym−2) 6 · · · 6 φ(un, xn) +

λL

c1

m−1∑
k=n

φ(xk,yk−1). (3.11)

Then we infer from um = ΠVI(,C,A)xm, un = ΠVI(,C,A)xn ∈ VI(,C,A), Lemma 2.3, and (3.11) that

φ(un,um) 6 φ(un, xm) −φ(um, xm) 6 φ(un, xn) +
λL

c1

m−1∑
k=n

φ(xk,yk−1) −φ(um, xm)

for all m > n. The existence of lim
n→∞φ(un, xn) and the summability of the series

∑
n
φ(xn,yn−1) imply

lim
n→∞φ(un,um) = 0, and hence we have from Lemma 2.1 that lim

n→∞ ‖un − um‖ = 0 for all m > n.

Consequently, {un} is a Cauchy sequence. Since VI(C,A) is closed, we have that {un} converges strongly to
z̃ ∈ VI(C,A). By the uniform smoothness of E, we also have that lim

n→∞ ‖Jun − Jz̃‖ = 0. Now, we prove that

z̃ = z. In fact, it follows from Lemma 2.2, un = ΠVI(C,A)xn, and z ∈ VI(C,A) that 〈z−unk , Junk − Jxnk〉 >
0. By the weakly sequential continuity of J, we infer that 〈z− z̃, Jz̃− Jz〉 > 0. Hence we have from the
monotonicity of J that 〈z− z̃, Jz̃− Jz〉 = 0. Since E is strictly convex, we have that z̃ = z. Therefore, the
whole sequence {xn} converges weakly to z = lim

n→∞ΠVI(C,A)xn. Further, ‖xn − yn‖ → 0 implies {yn} also
converges weakly to z = lim

n→∞ΠVI(C,A)xn.

Remark 3.6. When E = H (a Hilbert space), c1 = 1,ΠC = PC, and J = I, then, Theorem 3.5 reduces to
Theorem 1.5. That is to say that Theorem 3.5 absolutely generalizes the results of [17] from Hilbert spaces
to Banach spaces.

Remark 3.7. Theorem 3.5 improves Theorem 1.2 in the following senses.

(1) The inverse-strong-monotonicity of A is relaxed to monotonicity and Lipschitz continuity.
(2) The assumption (A) is removed.

Remark 3.8. Remarks 3.6 and 3.7 show Theorem 3.5 generalizes Theorem 1.5 from Hilbert spaces to Banach
spaces and solves simultaneously problems (P1) and (P2) without additional assumptions.
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Remark 3.9. The statement (on convergence) similar to Theorem 3.5 will also take place for the following
iterative process: {

xn+1 = ΠHnJ
−1(Jxn − λnA(yn)),

yn+1 = ΠCJ
−1(Jxn+1 − λnA(yn)),

where Hn = {z ∈ E : 〈z− yn, Jxn − λnAyn−1 − Jyn〉 6 0}, provided that 0 < inf
n
λn 6 sup

n

λn <
c1
3L .

4. Numerical experiments

In this section, we give two numerical examples to support our theoretical results.

Example 4.1. Let E = R2 with the standard inner product 〈~x,~y〉 = ~xT~y and the induced norm ‖~x‖ =√
〈~x,~x〉 for all ~x,~y ∈ R2, where ~xT denotes the transposition of ~x. Let C = {(x,y)T ∈ R2|x > 0,y > 0} and

A : C→ R2 be defined by
A(~x) :=M~x, ∀~x ∈ C,

where

M =

(
0 −1
1 0

)
is a matrix.

A simple computation shows

〈A(~x) −A(~y),~x− ~y〉 = 〈M~x−M~y,~x− ~y〉 = 〈M(~x− ~y),~x− ~y〉 = 0, (4.1)

and
‖A(~x) −A(~y)‖2 = ‖M(~x− ~y)‖2 = ‖~x− ~y‖2, ∀~x,~y ∈ C. (4.2)

It follows from (4.1) and (4.2) that A is monotone and 1-Lipschitz continuous and A is not inversely-
strongly monotone. It is also clear that VI(C,A) = {(x, 0)T ∈ R2|x > 0}, i.e., VI(C,A) is the positive
horizontal axis. In addition, taking ~y = (2, 1)T ∈ C and ~u = (1, 0)T ∈ VI(C,A), we have

‖A(~y)‖ = ‖M~y‖ =
√

5 > ‖A(~y) −A(~u)‖ =
√

2,

which implies that the example does not satisfy the condition (A) of Section 1. Hence, Algorithm 1.1 is
invalid for the example. However, we can apply Algorithm 1.3 constructed by [16] and Algorithm 3.1 of
this paper to the example. In the following, we illustrate the numerical experiment results to compare
Algorithm 1.3 constructed in [16] with Algorithm 3.1.

In the following experiments, we always take λ = 1
4 and αn = 1

n . It is easy to see that the conditions
on λ and {αn} are satisfied. We denote the time of execution in second by (CPU(s)).

Now, we take the initial points ~x0 = ~y0 = (0, 1)T . Then, the sequence {xn} generated by Algorithm 3.1
converges strongly to an element of VI(C,A). We list the operating results of Algorithm 3.1 in Table 1.

Table 1: The operating results of Algorithm 3.1.
initial values ~x0 = ~y0 = (0, 1)T

n ~xn ~yn CPU(s)
1 (0.25, 1)T (0.5, 1)T 3.377614e-04
2 (0.5, 0.875)T (0.75, 0.75)T 4.128713e-04
3 (0.6875, 0.6875)T (0.875, 0.5)T 4.438262e-04
4 (0.8125, 0.4688)T (0.9375, 0.25)T 4.489579e-04
5 (0.875, 0.2344)T (0.9375, 0)T 4.900118e-04
6 (0.875, 0)T (0.875, 0)T 5.128713e-04
7 (0.875, 0)T (0.875, 0)T 5.296661e-04
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Remark 4.2. From Table 1, we can see that if we take the initial values ~x0 = ~y0 = (0, 1)T , Algorithm 3.1
executes a finite steps and we can obtain a solution (0.875, 0)T ∈ VI(C,A) and the time of execution is
5.296661e-04 second.

Next, we list the operating results of Algorithm 1.3 when the initial point ~x1 = (0, 1)T . The stopping
criteria is ‖ ~xn − ~yn‖ 6 10−6.

Table 2: The operating results of Algorithm 1.3.
initial value ~x1 = (0, 1)T

n ~xn ~yn CPU(s)
3 (0.125000, 0.968750)T (0.367188, 0.937500)T 3.853466e-04

100 (0.063856, 0.010000)T (0.066356, 0.000000)T 1.292730e-03
1000 (0.006386, 0.001000)T (0.006636, 0.000000)T 8.819585e-03
10000 (0.000639, 0.000100)T (0.000664, 0.000000)T 5.886985e-02

100000 (0.000064, 0.0000010)T (0.000066, 0.000000)T 5.369086e-01
500000 (0.000013, 0.000002)T (0.000013, 0.000000)T 2.661354e+00
1030777 (0.000006, 0.000001)T (0.000006, 0.000000)T 1.280020e+01

Remark 4.3. From Table 2, we can see that if we take the initial value ~x1 = (0, 1)T , Algorithm 1.3 executes
an infinite steps and we can obtain an approximative solution (0.000006, 0.000000)T for the variational
inequality (1.1) in the example and the time of execution is 1.280020e+01 second.

Remark 4.4. From Tables 1 and 2, we see that our algorithm (Algorithm 3.1) has a competitive advantage
over the time of execution in second (CPU(s)) and the iterative number being far less than those of
Algorithm 1.3 constructed in [16] provided with the same initial point.

Example 4.5. Let E = R with the standard inner product 〈x,y〉 = xy and the induced norm ‖x‖ = |x| for
all x,y ∈ R. Let C = [−π2 , π2 ] and A : C → R be defined by A(x) := sin(x) for all x ∈ C. We can easily see
that A is monotone and 1-Lipschitz continuous. Furthermore, VI(C,A) = {0}.

In the following experiments, we take λ = 1
4 and αn = 1

n . It is easy to see that the conditions on λ and
{αn} are satisfied.

By Algorithm 3.1, we obtain
x2 = PC[x1 −

1
4 sin(y1)],

y2 = PC[x2 −
1
4 sin(y1)],

Hn := {z ∈ R | 〈z− yn, xn − 1
4 sin(yn−1) − yn〉 6 0}, n > 2,

xn+1 = PHn [xn − 1
4 sin(yn)],

yn+1 = PC[xn+1 −
1
4 sin(yn)].

(4.3)

Again, by Algorithm 1.3, we obtain
un = PC[xn − 1

4 sin(xn)],
Tn := {w ∈ R : 〈w− un, xn − 1

4 sin(xn) − un〉 6 0},
zn = PTn [xn − 1

4 sin(un)],
xn+1 = 1

n × x1 + (1 − 1
n)zn.

(4.4)

Then, the sequences {xn} generated by (4.3) and (4.4) converge strongly to x∗ = 0 ∈ VI(C,A).
Now, we take the initial points x1 = y1 = π

2 , x1 = y1 = π
3 , x1 = y1 = π

4 , respectively. By the
above recursion formulas (4.3) and (4.4), we illustrate the numerical experiment results of Algorithm 3.1
and Algorithm 1.3 in Table 3 to compare the time of execution in second (CPU(s)) and the number of
iterations (Iter.). The stopping criteria is ‖xn − x∗‖ = ‖xn‖ = |xn| 6 TOL = 10−6.
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Table 3: Comparison of Algorithms 3.1 and 1.3.
Algorithms 3.1 Algorithms 1.3

x1 TOL CPU(s) Iter. CPU(s) Iter.
π
2 10−6 1.026356e-05 68 1.164914e-01 866647
π
3 10−6 6.997884e-06 66 4.991638e-02 577765
π
4 10−6 3.265679e-06 64 2.945176e-02 433324

Remark 4.6. From Table 3, we also see that our algorithm (Algorithm 3.1) has a competitive advantage over
the time of execution in second (CPU(s)) and the iterative number being far less than those of Algorithm
1.3 provided with the same initial point and tolerance.

Remark 4.7. All the programs are written in Matlab 7.0. The experiments are performed on a PC Intel(R)
Core (TM) i5-5200U CPU @ 2.20GHz 2.20GHz, RAM 4.00GB.

5. Conclusions

We modify the extragradient algorithm introduced by Malitsky and Semenov in [17] and construct Al-
gorithm 3.1 to find an element of VI(C,A) for a Lipschitz-continuous, monotone mapping in a 2-uniformly
convex and uniformly smooth Banach space. The weak convergence of this Algorithm is proved. Conse-
quently, we generalize the results of [17] from Hilbert spaces to Banach spaces and solve simultaneously
problems (P1) and (P2). Furthermore, we give two simple examples which show Algorithm 3.1 con-
structed by this paper has a competitive advantage over the time of execution and the iterative number
being far less than those of Algorithm 1.3 constructed in [16] provided with the same initial point. How-
ever, Algorithm 3.1 has only weak convergence which is the weakness of the algorithm. In order to
overcome this weakness, we can not rely only on the process itself; instead, some additional step of iter-
ation should be taken. As did in [13], the authors combined the subgradient extragradient method (1.4)
with the Halpern method to obtain the strong convergence, which is a inspiration to improve Algorithm
3.1 for strong convergence in the future research.
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