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Abstract

In this paper, a new concept of variable differentiation is used to revisit the model of groundwater pollution. The new
variable order derivation has a non-singular kernel and can be used for analytical and numerical purposes. The novel model is
solved via Fourier transform method. We solve numerically the new equation using the implicit finite difference scheme and
study the stability and convergence of that scheme. c©2017 All rights reserved.
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1. Introduction

The first observation of the dispersion was done in 1905 by Slichter who studied the movement of
groundwater using an electrolyte as a tracer [17]. In 1980, Bachmat et al. realised a numerical model
related to the groundwater management. In 1987, Naymik and Freeze [13] presented a review of 44 tech-
nical advanced articles on mathematical modelling of solute transport in the surface system. Abriola [1]
presented also a review paper on modelling of solute transport in groundwater. Many other models have
been developed to evaluate the impact of non-point source pollution on water. We have the Hydrological
simulation Program Fortran, Water Loading Function model to evaluate the sources of organic carbon
to the tidal, freshwater [7]. But these models will not really touch the area impacted by the ground-
water. Hazardous waste management research has advanced the capability of the modelling to predict
hazardous waste plumes. These models usually insist on the transport in the saturated zone and deal
with localised sources. Many models have been developed for the problem of pollution of the non-point
sources which include unsaturated zone modelling with varying degrees of complexity. In 1990, Leonard
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et al. [11] studied the groundwater loading effects of agricultural management systems. The method of
underground solute evaluation was done by Pacenka and Steenhuis in 1984. In 1987, Angelakis et al. [2]
described the transport and simultaneous transformation of two solutes with two ”one-dimensional” par-
tial differential equations. They used the linear equilibrium absorbtion-desorption relationship for both
solutes and irreversible microbial first-order kinetics. They also used the Laplace transform for zero initial
conditions to obtain the analytical solution. Lassey [10] derived an analytical solution to the advection-
dispersion equation for one-dimensional solute or tracer transport including sorption and first-order loss.
Miller and Weber [18] described laboratory investigations and mathematical modelling of the sorption of
hydrophobic solutes by aquifer materials. Rao and Hathaway [15] have developed the three dimensional
mixing cell solute transport model using the principles of conservation of mass for water and solute.
Shoemaker et al. [16] have described the modelling of the movement of pesticide in the groundwater.

Given that the advection-dispersion equation is the equation governing the standard model for con-
taminant model, the classical one-dimensional advection-dispersion equation is given by

∂C(x, t)
∂t

= −ν
∂C(x, t)
∂x

+D
∂2C(x, t)
∂x2 , C(x, 0) = δ(x),

which describes the tracer plume at location x = 0 at time t = 0, ν represents the advective velocity, D
the effect of molecular diffusion and advective dispersion. The problem of the classical models is that the
tracer plumes generally behave differently from a Brownian motion with drift. Many tracer plumes are
biased instead of symmetric and propagate faster than the square root of time. In 1999, Meerschaert et al.
came out with the one-dimensional fractional advection-dispersion equation given as follows:

∂C(x, t)
∂t

= −ν
∂C(x, t)
∂x

+Dp
∂αC(x, t)
∂xα

+D(p− 1)
∂αC(x, t)
∂(−x)α

, C(x, 0) = δ(x), (1.1)

C is the expected concentration, t still the time, ν a constant mean velocity, x the distance in the direction
of mean velocity, 0 6 p 6 1 describes the skewness of the transport process and α the order of fractional
differentiation. In 2000, Benson et al. [6] studied if the fractional-order Advection Dispersion Equation
(ADE) is also a useful model for transport in relatively homogeneous material using (1.1). In 2009,
Jaiswal et al. [9] solved analytically the advection-diffusion equation in one-dimensional semi-infinite
medium using Laplace transform. In 2011, Jaiswal et al. [8] studied the transport of solute mass transport,
originating from a uniform pulse-type stationary point source through a heterogeneous semi-infinite
horizontal medium. In 2012 also, Yadav et al. [20] presented the mathematical model for dispersion
problem in finite porous media in which the flow is two-dimensional where the seepage flow velocity is
periodic, and dispersion parameter is proportional to the flow velocity.

In 2013, Atangana and Kilicman [5] took a one-dimensional model of advection-dispersion with a
particular chemical at the time t0 to make the concentration changes as an exponential function. Given
by the following equation from [3]:

R
∂C(x, t)
∂t

= −ν
∂C(x, t)
∂x

−D
∂2C(x, t)
∂x2 − λRC(x, t),

where D is the dispersion coefficient and R the retardation factor, with the following initial condition:

C(x, t) = 0, t = 0,

C(0, t) = C0e
−γt, 0 < t 6 t0, C0,γ ∈ R,

∂C(x, t)
∂x

= 0, x→∞, as a boundary condition,

and generalised it using fractional derivative. They then obtained the following equation:

R
∂C(x, t)
∂t

= −ν
∂βC(x, t)
∂βx

−D
∂αC(x, t)
∂xα

− λRC(x, t),
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where they had replaced the first derivative with respect to x i.e., ∂xC(x, t) by ∂βxC(x, t), 0 < β 6 1 and
the second derivative with respect to x by ∂αxC(x, t), 1 < β 6 l, l ∈ R, with the same initial condition as
previously and the following boundary condition:

∂βC(x, t)
∂xβ

= 0, x→∞,

while taking these fractional derivatives over space like the Caputo or Riemann-Liouville derivative of
order 0 < β 6 1 and the second order space derivative with Caputo or Riemann-Liouville fractional
derivative of order 1 < α 6 2 and used the Laplace transform on the equation, they found the solution
in terms of Mittag-Leffler functions. Given that the solution obtained here does not depend only on the
function of times and space, but also on the function of the order of derivative, they concluded by say-
ing that the fractional advection-dispersion equation has better prediction than the advection-dispersion
equation.

2. New variable order derivative

In order to solve the problem posed by the existing derivatives with variable orders, Atangana and
Koca suggested a new definition of variable order derivative and presented their properties. In this
section, in order to accommodate readers that are not familiar to this new differentiation, we present also
some interesting properties of the fractional derivative as shown in Atangana and Koca [4].

Atangana and Koca first of all defined the following variable order derivative:

AK
0 D

ψ(x)
t f(t) =

∫t
0

df(y)

dy
e−ψ(x)(t−y)dy,

where the function f needs to be differentiable. To solve this problem, they defined the following new
variable order derivative with no condition on our function f.

Definition 2.1 ([4]). Let f(t) be a continuous function which does not need to be differentiable on an open
interval I, ψ(x) a continuous function in a closed interval [a,b]. The derivative of f(t) with variable order
ψ(x) is given by:

A
0 D

ψ(x)
t f(t) =

d

dt

∫t
0
f(y)e−ψ(x)(t−y)dy,

and is called the new variable order derivative.

3. Plotting of the derivative of some functions

In this section, we give the contour plot and the plot in three dimension using SAGE of the new
variable order derivative of three different functions to show how the new derivative can be used to solve
problem analytically.

1. We have:

{
ψ(x) = ex,
f(t) = 4t2 + 5t+ 6;

2.

{
ψ(x) = x6 + 10,
f(t) = t sin(t);

3.

{
ψ(x) =

ex−sin(x)
10 ,

f(t) = t3 + 5t+ 20.
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(a) ContourPlot for the derivative of t sin(t) with order
x6 + 10.

(b) Plot in 3D for the derivative of 4t2 + 5t+ 6 with order
ex.

Figure 1: Case 1.

(a) ContourPlot for the derivative of t sin(t) with order
x6 + 10.

(b) Plot in 3D for the derivative of t sin(t) with order
x6 + 10.

Figure 2: Case 2.
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(a) ContourPlot for the derivative of t3 + 5t + 20 with
order e

x−sin(x)
10 .

(b) Plot in 3D for the derivative of t30 +5t+20 with order
ex−sin(x)

10 .

Figure 3: Case 3.

4. Equation of groundwater pollution with new derivative

In this section, we present the advection-dispersion equation with variable order on the velocity and
look for its analytical and numerical solution. The advection-dispersion equation with variable-order
derivative for y ∈ [0, Y], (x, t) ∈ [0,X]× [0, T ] is given by

R
∂C(x, t)
∂t

= −ν
∂α(y)C(x, t)
∂xα(y)

+D
∂2C(x, t)
∂x2 − λRC(x, t), (4.1)

with 0 < α(y) 6 1, ν the linear average velocity of the water, D the dispersion coefficient, λ the radioac-
tivity decay rate, R the retardation coefficient and the following initial condition and boundary condition:

C(x, 0) = φ(x), 0 6 x 6 X, (4.2)
C(0, t) = 0, 0 < t 6 T , (4.3)
C(X, t) = ψ(t), 0 < t 6 T . (4.4)

The operator ∂α(y)

∂xα(y)
denotes the new variable order fractional derivative.

4.1. Analytical solution
Let us use the Fourier transform to solve this equation. When applying the Fourier transform to

equation (4.1), we have

F

(
R
∂C(x, t)
∂t

)
(ζ) = F

(
−ν
∂α(y)C(x, t)
∂xα(y)

)
(ζ) +F

(
D
∂2C(x, t)
∂x2

)
(ζ) −F (λRC(x, t)) (ζ)

⇒ RF

(
∂C(x, t)
∂t

)
(ζ) = −νF

(
∂α(y)C(x, t)
∂xα(y)

)
(ζ) +DF

(
∂2C(x, t)
∂x2

)
(ζ) − λRF (C(x, t)) (ζ)
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⇒ R
∂Ĉ(ζ, t)
∂t

= −iνĈ(ζ, t)
2ζα(y)
α(y)2 + ζ2 − ζ2DĈ(ζ, t) − λRĈ(ζ, t)

⇒ ∂Ĉ(ζ, t)
∂t

=

(
iν

2ζα(y)
R(α(y)2 + ζ2)

+ ζ2D

R
+ λ

)
Ĉ(ζ, t).

Using some property of integration, we have

Ĉ(ζ, t) = K0e
−f(ζ)t,

where f(ζ) = iν 2ζα(y)
R(α(y)2+ζ2)

+ ζ2D
R + λ and K0 a constant.

Using the initial condition, we have Ĉ(ζ, 0) = K0. From the fact that C(x, 0) = φ(x) ⇒ Ĉ(ζ, 0) = φ̂(ζ),
we obtain φ̂(ζ) = K0 and finally

Ĉ(ζ, t) = φ̂(ζ)e−f(ζ)t. (4.5)

To find the value of C(x, t) in (4.5), we use the inverse Fourier transform:

C(x, t) = F−1
(
φ̂(ζ)e−f(ζ)t

)
= F−1 (φ̂(ζ)) ∗F−1

(
e−f(ζ)t

)
where ∗ is the convolution product

= φ(x) ∗F−1
(
e−f(ζ)t

)
.

The problem we encounter here is to find the inverse Fourier transform F−1
(
e−f(ζ)t

)
with

f(ζ) = iν
2ζα(y)

R(α(y)2 + ζ2)
+ ζ2D

R
+ λ.

We have tried to solve it with the software we have to no avail.

4.2. Numerical analysis
Here, we present the numerical way to approximate the problem (4.1), (4.2), (4.3), (4.4). To discretize

the fractional derivative, we apply the standard Grünwald formula [14] for a given 0 < α 6 1, given by

dαf

dxα
=

1
hα

[X/h]∑
l=0

ωαl f(x− (l)h) +A1, (4.6)

and the shifted Grünwald formula [12] for α = 2

dαf

dxα
=

1
hα

1+[X/h]∑
l=0

ωαl f(x− (l− 1)h) +A2, (4.7)

where

ωαl = (−1)l
α(α− 1) · · · (α− l+ 1)

l!
, l ∈N,

is called the Grünwald coefficient and the expression [X/h] is the floor of Xh . We also have A1 and A2 as
remainder terms. We have from [12] that when f ∈ C3, there exist two constant K1 and K2 such that

|A1| 6 K1h, |A2| 6 K2h,

uniformly on a given interval [0, c]. The Grünwald coefficient has the following properties:

• ωα0 = 1, ωα1 = −α.
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• We have ωαl < 0 for 0 < α < 1 and l = 1, 2, 3, · · · .

• We have
∑p
l=0ω

α
l > 0 for 0 < α < 1 and p = 1, 2, 3, · · · .

•
∑p
l=0ω

2
l = ω2

0 +ω
2
1 +ω

2
2 +ω

2
3 + · · · = 1 − 2 + 2

2 + 0 + · · · = 0 ⇒
∑p
l=0ω

2
l < 0 for p = 1 and∑p

l=0ω
2
l = 0, for p = 2, 3, · · · .

• ωαl = (1 − α+1
l )ωαl−1.

We have the following lemma.

Lemma 4.1. Let a,a1,a2,a3,a4, · · · ,an be all real numbers. Then we have

|a|− (|a1|+ |a2|+ · · ·+ |an|) 6 |a+ a1 + a2 + a3 + a4 + · · ·+ an|.

Let us discretize the temporal and spatial variable as follows:

tk = kτ, k = 0, 1, 2, · · · ,n, τ =
T

n
is the temporal step,

xi = ih, i = 0, 1, 2, · · · ,N, h =
X

N
is the spacial step,

yj = pj, j = 0, 1, 2, · · · ,M, p =
Y

M
.

We have
∂C(xi, tk)

∂t
=
C(xi, tk) −C(xi, tk−1)

τ
+At, (4.8)

where |At| 6 K0τ for K0 be a constant. (4.1) becomes

R
∂C(xi, tk)

∂t
= −ν

∂α(yj)C(xi, tk)
∂xα(yj)

+D
∂2C(xi, tk)

∂x2 − λRC(xi, tk)

for j = 0, 1, 2, · · · ,M. Using (4.6), (4.7) and (4.8), the previous equation becomes

R
C(xi, tk) −C(xi, tk−1)

τ
+ RAt = −ν

1
hα(yj)

i∑
l=0

ω
α(yj)
l C(xi−l, tk) − νA1

+D
1
h2

i+1∑
l=0

ω2
lC(xi+1−l, tk) +DA2

− λRC(xi, tk), for j = 0, 1, 2, · · · ,M,

C(xi, tk) −C(xi, tk−1) + τAt = −
τν

Rhα(yj)

i∑
l=0

ω
α(yj)
l C(xi−l, tk) −

τν

R
A1

+
τD

Rh2

i+1∑
l=0

ω2
lC(xi+1−l, tk) +D

τA2

R

− λτC(xi, tk), for j = 0, 1, 2, · · · ,M,

which implies that

(1 + λτ)C(xi, tk) − q1
j

i∑
l=0

ω
α(yj)
l C(xi−l, tk) − q2

i+1∑
l=0

ω2
lC(xi+1−l, tk) = C(xi, tk−1) +A,
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where q1
j = − τν

Rh
α(yj)

, q2 = τD
Rh2 and A = (−τAt−

τν
R A1 +D

τA2
R ), for j = 0, 1, · · · ,M. From this, we observe

that q1 < 0 and q2 > 0. Taking Cki and αj as the approximation of C(xi, tk) and α(yj), respectively,
truncating the remainder, we obtain the implicit finite difference scheme to solve (4.1) as follows:

(1 + λτ)Cki − q
1
j

i∑
l=0

ω
αj
l C

k
i−l − q

2
i+1∑
l=0

ω2
lC
k
i+1−l = C

k−1
i (4.9)

for j = 0, 1, · · · ,M, k = 1, 2, · · · ,n, i = 1, 2, · · · ,N− 1. With the following initial and boundary condition:

C0
i = φ(xi), i = 0, 1, 2, · · · ,N, (4.10)

Ck0 = 0, k = 0, 1, · · · ,n, (4.11)

CkN = ψ(tk), k = 0, 1, · · · ,n. (4.12)

Therefore (4.9), (4.10), (4.11), (4.12) refer to the implicit finite difference method to solve (4.1)-(4.4).

4.2.1. Stability analysis
Let us assume that Cki and C̃ki are two solution of (4.9)-(4.12) such that C̃0

i = φ̃(xi).
Set ψki = C̃ki −C

k
i for i = 1, 2, · · · ,N− 1 and k = 0, 1, · · · ,n. Then from (4.9), we have

(1 + λτ)ψki − q
1
j

i∑
l=0

ω
αj
l ψ

k
i−l − q

2
i+1∑
l=0

ω2
lψ
k
i+1−l = ψ

k−1
i

for j = 0, 1, 2 · · · ,M.
Let us define the following vector Ek = (ψk1 ,ψk2 , · · · ,ψkN−1) for k = 0, 1, · · · ,n. We then have

||E0||∞ = ||(ψ0
1,ψ0

2, · · · ,ψ0
N−1)|| = max

16i6N−1
|ψ0
i |

= max
16i6N−1

|φ̃(xi) −φ(xi)|

6 max
06x6X

|φ̃(x) −φ(x)|.

Then ||E0||∞ 6 max
06x6X

|φ̃(x) −φ(x)|.

Theorem 4.2 ([19]). The implicit finite difference scheme (4.9)-(4.12) is stable, if

||Ek||∞ 6 max
06x6X

|φ̃(x) −φ(x)|, for k = 1, · · · ,n.

Proof. [19] According to the properties of ωαl , we have

q1
j

i∑
l=0

ω
αj
l < 0 and q2

i+1∑
l=0

ω2
l < 0, for j = 0, 1, 2, · · · ,M,

since q1 < 0, q2 > 0,
i∑
l=0

ω
αj
l > 0 and

i+1∑
l=0

ω2
l < 0, for j = 0, 1, 2, · · · ,M. We have

||Ek||∞ = max
16i6N−1

|(ψki )|⇒ ∃i0 ∈ [1, · · · ,N− 1],

such that ||Ek||∞ = |ψki0
| for k ∈ {1, 2, · · · ,n}. We have

|ψki0
| 6 (1 + λτ)|ψki0

| 6 (1 + λτ)|ψki0
|−

(
q1
j

i0∑
l=0

ω
αj
l + q2

i0+1∑
l=0

ω2
l

)
(1 + λτ)|ψki0

| for j = 0, 1, 2, · · · ,M
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6
(
(1 − q1

jω
αj
0 − q2ω2

1
)
(1 + λτ)|ψki0

|

− q1
j

i0∑
l=1

ω
αj
l |ψki0−l

|− q2
i0+1∑
l=0,l 6=1

ω2
l |ψ

k
i0+1−l|

6

∣∣∣∣∣(1 + λτ)ψki0
− q1

j

i0∑
l=0

ω
αj
l ψ

k
i0−l

− q2
i0+1∑
l=0

ω2
lψ
k
i0+1−l

∣∣∣∣∣ for j = 0, 1, 2, · · · ,M

= |ψk−1
i0

|.

Then |ψki0
| 6 |ψk−1

i0
| 6 ||Ek−1||∞. Hence, ||Ek||∞ 6 ||Ek−1||∞ 6 · · · 6 ||E0||∞, which ends the proof of the

theorem.

4.2.2. Study of the convergence
Let us assume that the problem (4.1)-(4.4) has C(x, t) has a solution and Cki the numerical approxima-

tion of C(xi, tk). Set Υki = C(xi, tk) −Cki , i = 1, 2, · · · ,N− 1 and k = 1, 2, · · · ,n. We then have

(1 + λτ)Υki − q
1
j

i∑
l=0

ω
αj
l Υ

k
i−l − q

2
i+1∑
l=0

ω2
lψ
k
i+1−l = Υ

k−1
i +A

for j = 0, 1, · · · ,M. We have

|A| = |(−τAt −
τν

R
A1 +D

τA2

R
)|

6 |τAt|+ |
τν

R
A1|+ |D

τA2

R
|

6 ττK0 +
τν

R
K1h+D

τA2

R
K2h

6 K0τ(2h+ τ).

Let Yk = (Υk1 ,Υk2 ,Υk3 , · · · ,ΥkN−1). We have

Y0 = (Υ0
1,Υ0

2,Υ0
3, · · · ,Υ0

N−1),

and
Υ0

1 = C(xi, t0) −C
0
i = C(xi, 0) −C0

i = φ(xi) −φ(xi) = 0,

which implies that Y0 = (0, 0, · · · , 0).

Theorem 4.3 ([19]). Let us assume that the problem (4.1) has a solution C(x, t) and let Cki be the numerical
solution computed using (4.9)-(4.12), then there exist a positive constant K independent of i and K such that

||Yk||∞ 6 Kkτ(τ+ 2h) (4.13)

for k = 1, 2, · · · ,n. Given that kτ 6 T , we have ||Yk||∞ 6 KT(τ+ 2h) which implies that

|Cki −C(xi, tk)| 6 K
′(τ+ 2h), for i = 1, 2, · · · ,N, j = 1, 2, · · · ,n, K ′ = KT .

Proof. [19] The proof will be done by induction on k.

• For k = 1, we have as above the existence of 1 6 i0 6 N− 1 such that ||Y1||∞ = |Υ1
i0
|. We then have

||Y1||∞ = |Υ1
i0
| 6 (1 + λτ)|Υ1

i0
| 6 (1 + λτ)|Υ1

i0
|− q1

j

i0∑
l=0

ω
αj
l |Υ1

i0−l
|
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− q2
i0+1∑
l=0

ω2
l |Υ

1
i0+1−l| for j = 0, 1, 2, · · · ,M

6 |(1 + λτ)Υ1
i0
− q1

j

i0∑
l=0

ω
αj
l Υ

1
i0−l

− q2
i0+1∑
l=0

ω2
lΥ

1
i0+1−l|, for j = 0, 1, 2, · · · ,M

= |Υ0
i0
+A| 6 ||Υ0

i0
||∞ + |A|

6 |A| 6 K0τ(2h+ τ) since ||Υ0
i0
||∞ = 0,

which gives the solution of (4.13) for k = 1.

• Let us assume that ||Yk−1||∞ 6 K(k− 1)τ(τ+ 2h), we have

||Yk||∞ = |Υki0
| 6 (1 + λτ)|Υki0

| 6 (1 + λτ)|Υki0
|− q1

j

i0∑
l=0

ω
αj
l |Υki0−l

|

− q2
i0+1∑
l=0

ω2
l |Υ

k
i0+1−l| for j = 0, 1, 2, · · · ,M

6 |(1 + λτ)Υki0
− q1

j

i0∑
l=0

ω
αj
l Υ

k
i0−l

− q2
i0+1∑
l=0

ω2
lΥ
k
i0+1−l| for j = 0, 1, 2, · · · ,M

= |Υk−1
i0

+A|

6 ||Υk−1
i0

||∞ + |A|

6 K0τ(2h+ τ) +K(k− 1)τ(τ+ 2h)
= Kkτ(τ+ 2h),

which proves also that (4.13) for k.

From the fact that kτ 6 T and using (4.13), we have

|Cki −C(xi, tk)| 6 |Υki0
| 6 ||Yk||∞ 6 Kkτ(τ+ 2h) 6 KT(τ+ 2h),= K ′(τ+ 2h),

with K ′ = KT which ends the proof of the theorem.

5. Conclusion

We have modelled the movement of groundwater pollution with variable order derivative. Firstly,
we presented the new variable order derivative. Secondly, we used the three dimensional plot and the
contour plot to show how this new derivative can be applied to function and used to solve problem
analytically and numerically. Finally, we presented the advection-dispersion equation with variable order
derivative and solved it analytically using the Fourier transform. The numerical analysis of this equation
was made using the implicit finite difference scheme from which we studied the stability and convergence
of this scheme and we found that the scheme was stable and convergent.
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