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Abstract

This paper investigates the initial value problem for a class of nonlinear singular differential systems with “maxima”. By
using the comparison principle and the approximate quasilinearization method, we obtain two monotone iterative sequences of
approximate solutions which converge uniformly and rapidly to the solution of such systems. (©2017 All rights reserved.
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1. Introduction

It is well-known that singular differential systems can be used to model many problems, such as non-
Newtonian fluid mechanics, optimal control problems, and electrical circuits. The concept of singular
systems was introduced by Rosenbrock [20] in 1974, it is more complicated than the ordinary ones, and
its qualitative analyses involve greater difficulty than those of the ordinary systems. Therefore research-
ing the theory of singular differential systems has profound significance. Previous studies have mainly
focused on the linear and nonlinear singular systems described by ordinary differential equations. The
basic theory of the linear singular systems can be found in [10, 11]. Up till now, the theory of nonlinear
singular systems is imperfect, in which the convergence of the solution is one of the most concerned
problems, which has an important effect on the qualitative theory development.

Quasilinearization is a very efficient method to obtain approximate solutions of nonlinear problems.
This method originated in the dynamic programming theory and was initially applied by Bellman and
Kalaba [8]. A systematic development of the method to ordinary differential equations has been provided
by Lakshmikantham and Vatsala [18], and there are some generalized results of the method to various
types of differential systems, we can refer to the monographs [16, 17], for functional differential equations
[4, 12], for impulsive equations [3, 6], for partial differential equations [5, 9, 14, 24], for others [21, 22,
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27] and references cited therein. However, there were few applicable results of the method to singular
differential systems [1, 13, 19, 23].

Differential equations with “maxim” are a special type of differential equations that contain the max-
imum of the unknown function over a previous interval(s). Recently, the interest in differential equations
with “maxim” has increased exponentially (see Bainov and Hristova [7]). By using the method of quasi-
linearization, Agarwal and Hristova [2] and Hristova et al. [15] investigated the initial value problem
for differential equations with “maxim” and difference equations with “maxim”, respectively. Wang and
Liu [25, 26] obtained the convergence uniformly and quadratically to singular differential systems with
“maxim” and singular difference systems with “maxim”. In this paper, we attempt to extend the appli-
cations of approximate quasilinearization method, and study the rapid convergence of the solution for
a class of nonlinear singular differential system with “maxim”. The main work focuses on two aspects:
one is to construct the monotone sequences for such systems, which is a Taylor series numerical method
in which the truncation is chosen so that the iterates is of order k; the other is to prove the convergence
uniformly and rapidly to the solution of the problem.

2. Preliminaries
Consider the following initial value problem for the singular differential system with “maxim” (IVP)

{ Ax'(t) = f(t,x(t), max x(s)), t€0,T],
s€[t—h,t] (2.1)

where A is a singular n x n matrix, x € R™, f € C([0, T] x R* x R™,R"), ¢ € C([~h,0],R™), and hand T
are fixed positive constants.

Definition 2.1. The function &y € CO([—h, T],R™) U C([0, T],R™) is called a lower (an upper) solution of
IVP (2.1), if the following inequalities are satisfied:
>)f(t, x0(t), max og(s)), t€(0,T],

{ Aog(t) < (
selt—h,t]
xo(t) < (Z)el(t), te[-h0L

Let the functions &g, Bo € C([—h, T],R™) be such that xg(t) < Bo(t). Define the following sets for
convenience.
S(op, Bo) ={uw € C([—h, T],R™) [ ao(t) < u(t) < Polt), t € [=h, T,
< x(

Q(oxo, Bo) ={(t,x,y) € [0, T] x R™ x R™ [ g (1) t) < Po(t), max ap(s) <y(t) < max PBo(s)h
s€[t—h,t] sc[t—h,t]

In our further investigations, we need some results on linear singular differential inequalities and
systems and thus for the convenience of readers, we present some relevant results here.
Consider the singular differential inequalities

Ax'(t) + M(t)x(t) <0, x(0) <0, t<[0,T],
where A, M(t) are n x n matrices, A is singular and M(t) is continuous on [0, T].

Lemma 2.2. Assume that

(Hy.) there exists a constant A such that, L(t) = [ANA + M (t)] ™! exists and A = AL(t) is a constant matrix;
(Hpp) there exists a nonsingular matrix Q such that Q~1, (LQ)~! exist and Q 1, (LQ), (LQ)~! > 0, satisfying

sn [ C O i yaie ((TI=AC 0
QlAQ_<O O>,Q [I—?\A]Q_< 0 Iz)'

where C is a diagonal matrix with cl>o.

Then x(0) < 0 implies x(t) < 0on [0, T].



P. Wang, X. Liu, T. Li, J. Nonlinear Sci. Appl., 10 (2017), 5402-5421 5404

For the singular linear initial value problem
Ax'(t) + M(t)x(t) = g(t), x(0) = xq, (2.2)
we have the following known result.
Lemma 2.3 ([11]). Assume that the condition (Ha.1) of Lemma 2.2 holds, index(A) =1, and
(Ha3) yo satisfies (1—AAP)(yg —w(0)) = 0, where w(t) = MPg(t), M = M(t)L(t).
Then the unique solution y(t) of
Ay’(t)+My(t) = g(t), y(0) =yo,
is given by
JUNIEN R t o
y(t) = e ATMEAAD Yy, + e—ADMtJ A MOAD g(g)do + (1— AAP)MPg(t),
0

where AP and MP denote the Drazin inverse of the matrices A and M, respectively. We note that once we have
known y(t), then we get x(t) = L(t)y(t), where x(t) is the solution of (2.2).

We will prove the following comparison result which plays an important role for the establishment of
our main results.
Consider the singular differential inequalities

{ Ax/(t) +M(t)x(t) +N(t) max x(s) <0, t€][0,T],
s€[t—h,t] (2.3)

x(t) <0, te[—h,0],
where A, M(t) are n x n matrices, A is singular, and M(t), N(t) are continuous on [0, T].

Lemma 2.4. Assume that the conditions (Hp1)-(Hp3) hold, and
(Hy4) The matrix [1—M] ™! exists and is nonnegative, and N(t) < 0 for t € [0, T, where

a ~ S ~ A N A A A
M= max {—[?\A—i—M(s)]l[eADMSJ eA"MIAPN(o)do + (1~ AAP)MPN(s)] |.
s€[0,T] 0

Then x(t) < 0on [—h,T].
Proof. In view of the assumption N(t) < 0, we can get from (2.3) that

Ax'(t) + M(t)x(t) < —N(t) max x(s), t€[0,T], x(t) <0, te[-h,0l. (2.4)
s€[—h,T] ’

Now, we consider the following two cases:

Case 1. If max x(s) < max x(s), then we have max_ x(s) = max x(s), and according to the as-
s€(0,T] s€[—h,0] s€[—h,T] s€[—h,0]

sumption that x(t) < 0 on [—h, 0], the inequalities (2.4) can be written in the form

Ax'(t) + M(t)x(t) < —N(t) r?aﬁ(o]x(s) <0, t€[0,Tl, x(t)<0, te[-h,0l.
sel—h,

Noting that x(0) < 0, applying Lemma 2.2, we get x(t) < 0 on [0, T].

Case 2. If max x(s) < max x(s), then we have max_x(s) = max x(s), the inequalities (2.4) can be
s€[—h,0] s€[0,T] s€[—h,T] s€(0,T]

written in the form

Ax'(t) + M(t)x(t) < =N(t) n1[63>_<r]x(s), te[0,Tl, x(t)<0, te[—h0].
sell,

Lemma 2.2 shows that x(t) < y(t) on [0, T], where y(t) is the solution of
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Ay’(t) + M(t)y(t) = —N(t) ren[g%x(s), te[0,T], y(t)=0, te[-h,0l.

Thus, for t € [0, T], using the expression of x(t) in Lemma 2.3, we obtain

~ A t ~ A A A A A
(t) = —AA +M(1)] ! e APML eADMUADN(G) max x(s)do+ (I—AAP)MPN(t) max x(s)].
Y
0 s€[0,T] s€[0,T]

Hence, we have

~ ~ S ~ A~ A
— A+ M(s)] [eAPMS J eA"MOADN (0)do
0

max x(s) < max y(s) = max
s€[0,T] s€[0,T] s€(0,T]

+(I—AAD)MDN(S)]} max x(s) =M max x(s).
s€[0,T] s€(0,T]

—

Using the condition (Hz4), we have rn[gnﬁ x(s) < 0. Then, we obtain x(t) < 0 on [0, T]. Therefore, we
sell,

conclude that x(t) < 0 on [—h, T]. The proof is complete. O

Now, we will prove an existence result, which is necessary for our main results.

Lemma 2.5. Assume that the conditions (Hy.1)-(Hp.4) hold, and

(Has) the functions «g, o € Co[—h, TI,R™) U C([0, T], R™) are lower and upper solutions of IVP (2.1), respec-
tively, and xp(t) < PBo(t) on [—h, T,
(Hoe) the function f € C(Q(wx, Bo), R™) satisfies the inequality

f(t,y,v) —f(t,x, u) < —M(y —x) —N((v—u),
wherey <x,v<u, M(tg) =M, N(tg) =N, to € [0, T].
Then there exists a solution x(t) of IVP (2.1) which satisfies op(t) < x(t) < Bo(t) on [—h, T].

Proof. Consider the following iterative scheme

Au';htl (t) = Qny1(t) —MUp1(t) =N max Unyq(s), te [0, T],
selt—h,t] (2.5)

where Qny1(t) = f(t, Un(t), max Un(s)) +MUx(t)+N max Upn(s). According to the iterative
s€[t—h,t] s€[t—h,t]

scheme, the sequences {xn, ()} and {Bn (t)} were generated by xo(t) and o(t), respectively.
Now, we will prove that

xo(t) < oq(t) < Bi(t) < Bolt), te[-h,ThL
For this purpose, setting p;(t) = xo(t) — 1 (t), using the condition (Hy5), we have

Api(t) < —Mp1(t) =N max pi(s), t€[0,T], pi(t) <0, te[—h,0.
selt—h,t]

According to Lemma 2.4, we have p;(t) < 0 on [~h, T]. Similarly, setting p2(t) = B1(t) — fo(t), we can
obtain py(t) < 0 on [—h, T].
Letting p3(t) = o1 (t) — B1(t), from the condition (H;¢), we have

Api(t) < —Mps(t) =N max ps(s), t€[0,T], ps(t) =0, te[—h,0l.
s€lt—ht]

By Lemma 2.4, we have p3(t) < 0on [~h, T].
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The process can be continued to obtain that

xo(t) < oq(t) < <om(t) < Pnlt) < < Palt) < Bo(t), te[-hTIL

It is easy to see that the sequence {o, (1)} is uniformly bounded and equicontinuous, employing the
Ascoli-Arzela Theorem, the nondecreasing sequence {o, (t)} converges pointwise to a function x(t) that
satisfies op(t) < x(t) < Bo(t). In view of IVP (2.5) and the Dominated Convergence Theorem, we obtain
that x(t) is a solution of

Ax'(t) = f(t,x(t), er[?in}i . x(s)) —M(x(t) —x(t)) = N(x(t) —x(t)), t€[0,T], x(t)=¢(t), te[—h,0]

that is, x(t) is a solution of IVP (2.1). Therefore, we conclude that there exists a solution x(t) of IVP (2.1)
which satisfies xg(t) < x(t) < Bo(t) on [—h, T]. The proof is complete. O

3. Main results

In this section, we prove that the convergence of the sequence of successive approximations is of
order k. Throughout this paper, we define x* (xl,xz, R 3 )T, xty) = (xlyl,XZyz,- - nyn)T for any
x,y€ R, 1,j=12---.

Theorem 3.1. Assume that the following conditions hold.

(As1) There exists a function f € CO2*TL2F1(Q (), Bg), R™) such that the Fréchet derivatives fy(t,x,y) > 0,
% >0fork>1,1=0,1,2,---,2k+ 1.

(As2) Conditions (Hz1)-(Hza) hold for M(t) = —fx(t,x,y), N(t) = —fy (t, x,y) with (t,x,y) € Q(ao, Bo), and
(Ha5), (Ha) hold.

Then there exist two sequences {xn (t)} and {Bn (t)} converging uniformly to the solution x(t) of IVP (2.1) and the
convergence is of order 2k + 1, that is, there exist positive matrices Ky, Ky such that for the solution x(t) of IVP
(2.1) in S(xp, Bo), the inequalities

2k+1 241
Ix — ont1lo < Kix —anlg*™,  and  |Bni1 —xlo < KolBn —x[g<"

hold, where ulp = max |u(s)] = ( max [ui(s)|, max [uy(s)|,---, max |un(s))'.
se[—h,T] s€[—h,T] s€[—h,T] s€[—h,T]

Proof. From the condition (A3 1), we have that

2k

1 0
f(t,x(t), > f(t,y(t), 2 (x(t) —y(t)—
(tx(t), max x(s)) > ””sé‘t‘aﬁ,ﬂy“”*;u [(x(t) —y(0) 5 -
07t
— — | f(t,y(t),
+( _max x(s) Seﬁlgﬁﬂy(snay} (Ly(t), max y(s))
for o¢p <y < x < B, and
F(tx(t), max x(s)) < f(ty(t), max y(s))+zzk1[(x(t)—y(t))a
se[t—h,t] se[t—h,t] = il 0x (32)
011
— — | f(t,y(t),
e s = max y(e)a | ey, max y(o)

for op < x <y < By, where

0 FRE
(xl8) —y () max x(s) = max ()5 [ AL y(e), max y(s)
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i OM(ty(t), max y(s))

[t—h,t] .
= ck S€ _ t) —u(t))* _ ik
T e A TR S

Let Ly = min (@(s) —oam(s)) =0, Cn = min (Bm(s) — @(s)) =0, km = (km1, km2, -+, kmn) "
se€l[—h,0] se€[—h,0]

and pm = (Pm1,Pm2, -+ ,Pmn) . Choose numbers ki, pmi € [0,1) such that ki < Lini and pmi < Crni
fori=12,--- ,y m=0,1,---,n,---
Consider the following singular differential systems with “maxima”

0
! _ -
Ax/(t) = f(t,oco(t),ser[rga])it oo(s)) + E 1,[ t))ax
9 qi
— — | f(t, t),
—|—(S€r[£u_a>}<bt]x(s) ser[?e—lﬁ,t]“o(s))ay} (t, x(t) Ser[rge_aﬁ,ﬂoco(s)) (3.3)

= Fo(t,x(t), max x(s)), te[0,T],
s€[t—h,t]

x(t) = @(t) — k&L, t € [-h,0],
and
/ 2k 4 3

AX'(1) = 1(t, Bolt), _max  fo(s)) + ; [ (x(© = Bo(0) -

dqi
+( max x(s)— max Bo(s))@} 1t Bo(t),_max Bols)) (3.4)
= Go(t,x(t), max x(s)), te[0,T],
set—h,t]

x(t) = @(t) + P Co, te [~h,0l.
Now, we prove that ag(t) and Bo(t) are lower and upper solutions of IVP (3.3), respectively. In fact,
from the condition (Hy5) and the choice of kg, Ly, we have

Ac)(t) < f(t, op(t), max op(s)) =Folt, xo(t), max og(s)), te[0,T],
s€[t—h,t] s€[t—h,t]

a(t) < @(t) —k§FLy, te [~h,0],

and by using the inequality (3.1), it follows that

ABY() = f(t, ap(t), max apls Z [ —aot) 2

selt—h,t] ox

0t
+( max Po(s)— max oco(s))—} f(t, o0(t), max op(s))
s€[t—h,t] se[t—h,t] oy s€[t—h,t]

=TFo(t,Bo(t), max PBo(s)), t€l[0,T],
Se[tfh,t}
Bo(t) = @(t) — kg Lo, t € [—h,0L.

Thus, xo(t) and Bo(t) are lower and upper solutions of IVP (3.3), respectively. Consequently, by Lemma
2.5, there exists a solution «;(t) of IVP (3.3) with o (t) = @(t) — k%kl_g on [—h, 0] such that og(t) < 1 (t) <
Bo(t) on [—h, T].

Similarly, applying the fact that o (t) is a solution of IVP (3.3), the inequalities (3.1), (3.2), the condition
(Hz5), and the choice of pg, Cp, we obtain

Fren 0
A (t) = f(t, o(t), max aofs +Z 7 () — oo(t)
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01t
+(max ou(s)— max ag(s))5-| f(t xo(t), max ag(s))
se€lt—h,t] s€[t—h,t] dy se[t—h,t]

<f(toq(t), max oy(s))
s€[t—h,t]

2k
<1t Bolt), max Bo(s)+ Y & [(oa(t) — Bo(t)) o
i=1 "

se[t—h,t]

0

+( max oals) = max Bo(s))3 | A(t,Bolt), max Bo(s))

= Go(t,xq(t), max oy(s)), t€0,T],
se[t—h,t]

o (t) < @(t) +p3<Co, te[—h,0],
and

ABg(t) = f(t, Bo(t), max Po(s)) = Golt, Po(t), max Bo(s)), tel0,Tl,
s€[t—h,t] se[t—h,t]

Bo(t) = @(t) +p3FCo, te [0

Thus, oy (t) and Bo(t) are lower and upper solutions of IVP (3.4), respectively. In view of Lemma 2.5,
we see that there exists a solution B1(t) of IVP (3.4) with B1(t) = ¢(t) —|—p3kC0 on [—h,0] such that

o1 (t) < B1(t) < Bolt) on [—h,TI.
Next, we must show that «;(t) and (31(t) are lower and upper solutions of IVP (2.1). For this purpose,
using the conclusion that o (t) is a solution of IVP (3.3) and the inequality (3.1), we have

/ - 0
Aa(t) = f(t,a0(t), _max el +Z [ %®)5s

011
+(mxmm—mwamwﬁmﬁm,mX%w
se[t—h,t] se[t—h,t] oy selt—h,t]

< f(tr 241 (t)/ max 0(](3)), te [0/ T]/
s€[t—h,t]
x(t) < @(t), tel-h,0].

This implies that «;(t) is a lower solution of IVP (2.1) on [~h, T]. Similar arguments show that

ABi(t) = f(t,B1(t), max Bi(s)), t€[0,T], Bi(t) > @(t), te [-h,0l
seft—ht]

Thus, B1(t) is an upper solution of IVP (2.1) on [—h, T]. Then, we obtain
oo(t) < oq(t) < B1(t) < Polt), tel=hT.

Now, we assume that o, (t) and (r(t) are lower and upper solutions of IVP (2.1), respectively, and
o (t) < Bn(t) on [—h, T]. We need to show that

xn (t) < oni1(t) < Prya(t) < Bnlt), tel=hT],

where o, 1(t) and B 1(t) are solutions of the following singular differential systems

0
fry z
Ax'(t) = f(t, ocn(t),ser[?aﬁt on(s)) + 1' [ ))ax
0t
— — | f(t, t),
LR LA “ﬂ“”ay] (ot sy o e ©5)

=Fn(t,x(t), max x(s)), t€[0,T],
Se[tfh,t]

x(t) = @(t) —k&Ln, te[-h0],
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and
en 0
AX'() = 1(t,Bu(t), max By Z 1[0 = B -
0
LA LA ﬁn“”@] R @)

= Gn(t, x(t), Jmax ]X(SJ), te[0,T],
sE t

x(t) = @(t) + p2C,, te[—h,0.

From the assumption that a,, (t) is a lower solution of IVP (2.1), we get that

Aoc‘:l(t) < flt, (Xn(t)z max O(n(S)) =Fnl(t, (Xn(t)r max O(n(S)), te[0,T],
s€lt—h,t] s€lt—h,t]

an(t) < @(t) —kFFLn, t € [—h,0l.

The assumption that 3,,(t) is an upper solution of IVP (2.1), together with the inequality (3.1), implies

0
ABR(1) > f(t,an(t),_max on(s) Z [ () = otn (8)) 5
J i
+( max Pn(s)— max ocn(s))—} f(t, n(t), max on(s))
se[t—h,t] se[t—h,t] dy se[t—h,t]

= Fn(tr Bn(t)/ max Bn(s))/ tel[0,T],
se[tfh,t}
Bn(t) = @(t) — kXL, te[-h,0l.

Thus, o, (t) and Br (t) are lower and upper solutions of IVP (3.5), respectively. According to Lemma 2.5,
we conclude that the IVP (3.5) has a solution o, 41(t) with o4 1(t) = @(t) — k2L, on [~h,0] such that
on(t) < onyi1(t) < Pn(t) on [—h, T]. Similarly, we can show that IVP (3.6) has a solution $,41(t) such
that oy 11(t) < Bry1(t) < Pn(t) on [=h, T

Now, we come to prove that &, 1(t) and B,,41(t) are lower and upper solutions of IVP (2.1). Using
the conclusion that o, 41(t) is a solution of IVP (3.5) and the inequality (3.1), we obtain

A1 (1) = 1(t, an(t), max an(s +Z [ (0 — ()

s€[t—h,t] ox
d i
+( max onq1(s)— max on(s)) - }f(t,ocn(tJ, max  on(s))
se[t—h,t] se[t—h,t] oy se[t—h,t]
<f(t ong1(t), max  anya(s)), t€I0,T],
se[t—h,t]

oan1(t) < o(t), tel-h,0l.

Analogously, we can prove that 3,,1(t) is an upper solution of IVP (2.1). Then, we conclude that

o (t) < anp1(t) < Prg1(t) < Pnlt), tel-h T

By induction, we have

xo(t) <o (t) <--- <on(t) < Pnlt) <o < Palt) < Polt), tel-h TN

We can show easily that the sequences {«, (t)} and {3 (t)} are uniformly bounded and equicontinuous.
Hence, employing Ascoli-Arzela Theorem, we have that both monotone sequences {o, (t)} and {fn(t)}
have pointwise limits on [—h, T]. Taking the limit as n — oo, we get that

lim on(t) =p(t) <7r(t) = lim Brn(t).

n—o0 n—o0
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Next, we show that p(t) > r(t) on [~h, T]. From the IVPs (3.5) and (3.6), we can show easily that p(t)
and r(t) are solutions of IVP (2.1). For t € [h, 0], it is clear that p(t) = r(t). For t € [0, T], the condition
(A3'1) y1€1dS

Ar'(t) —Ap/(t) = f(t,r(t), max 7(s))—f(t,p(t), max p(s))
s€[t—h,t] s€[t—h,t]

1
- (J f.(t, or(t) + (1—0)p(t), max r(s))dc) (+(t) — p(1))

0 s€[t—h,t]
1
+ (J fy(t,p(t),0 max r(s)+(1—o0) max p(s))dcr)

0 selt—h,t] s€lt—h,t]
x ( max r(s)— max p(s))
s€[t—h,t] s€[t—h,t]

< (] fultortv + @-olp(t),_max r(s)do)(r(e) - p(t)

0 se[t—h,t]
1

# (], uttpte o max v+ (01-0) max ols)ao) x _ma (r(5)—pis)

= —M(t)(r(t) —p(t)) = N(t) max (r(s)—p(s)).
se[t—h,t]
According to Lemma 2.4, we get 7(t) < p(t) on [0,T]. Then, we conclude that p(t) = r(t) on [~h,T].
Hence, {on(t)} and {fn(t)} converge to the unique solution of IVP (2.1) when f, and f, exist and are
continuous.
Finally, we shall show that the convergence of the sequences {o,, (t)} and {B(t)} to the solution x(t)
of IVP (2.1) is of order 2k + 1. For this purpose, consider

ant1(t) =x(t) —xny1(t) 20, te[=h T

Case 1. If t € [h, 0], since x(t) — a4 1(t) = k2¥Ly, and ki < Lyi, we have

X() ~ a1 (1) = KL < (L) = (min (x(s) —an(s))) wls) P,

< max [|x(s) — o«
se€[—h,0]

s€[—h,0]
which implies that

ant1(t) < max |an(s)P (3.7)
s€[—h,0]

Case 2. If t € [0, T], from the condition (A3;) and the mean value theorem, we obtain

Aa) (1) =f(t,x(t), max x(s))— {f(t, on(t), max on(s —I—Z [ ot (t ocn(t))i

se[t—h,t] se[t—h,t] 0x
0t
+( max ony1(s)— max an(s))=—| f(t,xn(t), max ocn(s))}
se[t—h,t] se[t—h,t] oy se[t—h,t]
= f(Lx(1), max x(s) = {f(t,on1(t), max onii(s)
se[t—h,t] se[t—h,t]
1 1 d d 12k+1
— t — — N
- +1!L [(etn 1) =o)L+ (_max anals) = max an(s))3]

X f(t,00n11(t) + (1 —0)an(t),0 max oni1(s)+(1—0) max (xn(s))da}
s€[t—h,t] se[t—h,t]

< (L Fult, ox(t) + (1= 0)ansa(t), _max X(5))do) (x(t) — an 11 (1))
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1
+(J fy(t, xnt1(t),0 max x(s)+(1—o0) max oan(s))dG)

0 set—h,t] se[t—h,t]
x  max (x(s)—ans1(s)) +22"IM; max |an(s)P*H!
s€[t—h,t] s€[t—h,t]
_ 2k+1 2k+1
= —M(t)an1(t) =N(t) max anyi1(s)+27°7"M; max |an(s)]
s€lt—h,t] s€lt—h,t]
< —M(t)ant1(t) =N(t) max_ ani1(s) +227"My max_an(s)P*,
se€[—h,T] s€[—h,T]
where X — +( max x(s max D 12k+1f(¢ ox+ (1—0)y,0 max x(s)+(1—
(2k+1 fo Y (Se[t X, (s) — Jnax y(s))ay ( ( )y hax (s)+(

o) max y(s))do <2%"M;( max (x(s) —y(s)))zk+ for op <y < x < Po, and M is a positive n x n
s€[t—h,t] s€[t—h,t]

matrix. According to Lemma 2.2, we have an1(t) < u(t) on [0, T], where u(t) is the solution of

Au/(t) + M(t)u(t) = =N(t) max  an4i1(s) +22"!M; max_|an(s)?*!, te[0,T],
s€[—h,T] s€[—h,T]

u(t) = k3L, te[-h,0.
Hence, using the expression of x(t) in Lemma 2.3, we get

max a S
s€ltT] n+1( )

~ ~ S a~ A N
{I— max { AA +M(s)] ! [e_ADMSJ eADMGADN(G)dU
s€[0,T] 0

A a A -1 ADNf< &
+ (I—AAD)MDN(s)]}} max. {D\A+ M(s)] e APMSAAP DA + MK L (3.8)
sell,
~ A S a ~ N
+ e—ADMS J eADMO‘AD22k+1M1 max ‘an(3)|2k+1d0—
0 s€[—h,T]

+ (1= AAP)MP224 My max_fan ()P4 |,
s€[—h,T]

Thus, by suitable estimates, we conclude from the inequalities (3.7) and (3.8) that the following inequality

holds

2k+1
lant1lo < Kilanlg<™,

where K; is a positive matrix, and |alp = max_|a(s)| = ( max_|ai(s)|,---, max lan(s))T. This
s€[—h,T] s€[—h,T] s€[—h,T]
proves that the convergence of the sequence {on (t)} is of order 2k + 1.
Similarly, consider

brnii(t) = Bnyr(t) —x(t) >0, te[-h,Tl
Case 1. If t € [-h,0], in view of the fact that B 1(t) —x(t) = p2*Cy, and ppni < Cpy, we get

< _max IBn() x(s)PH,

>2k+1
cl—h,

Bt (1) = x(1) = P Co < (Cu)? ! = ((_min (Bu(s) —x(s))

which shows that
bni1(t) < max [bp(s)PFH (3.9)
s€[—h,0]

Case 2. If t € [0, T], utilizing the condition (A3 1) and the mean value theorem, we have

Abl 3 (1) = 1(t, B (1), _max +Z [(Baa 0 — Bt

sE [tfh,t
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d
+( max Buials)— max fa(s) ay} flt,pn(t), max Bu(s))
—f(t,x(t), max x(s))

s€(t—h,t]
1 1 9
= 1(t, Braalt),_max Buials) = gy | [(Bra(®)=Balt) 5
0 12k+1
+ (Ser[?gﬁﬂ Bri1(s) — (nax Bn(s))@}
x f(t,0Bny1(t) + (1= 0)Bn(t),0 max Pnii(s)+(1—0) max Bn(s))do
se[t—h,t] se[t—h,t]

—f(t,x(t), max x(s))
s€lt—h,t]

< (] Fult 0B () + (1= 0)xit),_max Buia(s))do) (Bn(t) ~x(t)

0 selt—h,t]
1

+ ([ fleritl o _max Buials)+(1-0) max x(s))do)

x  max (Bny1(s)—x(s))+2*"™M; max [by(s)*"
s€[t—h,t] s€lt—h,t]

= —M(t)bny1(t) = N(t) max bpyi(s) + 22" My  max  [bn(s)P*"

se[t—h,t] s€[t—h,t]
< —M(t)bnia(t) = N(t) max_ bpiq(s) +22""M; max_ [bn (s)P*H
s€[—h,T] s€[—h,T]

By Lemma 2.2, we obtain by,1(t) < u(t) on [0, T], where u(t) is the solution of
Au/(t) + M(t)u(t) = =N(t) max bnii(s) +22*"M; max |bn(s)P**!, te[0,T],
s€[—h,T] s€[—h,T]
u(t) = psz t € [<h,0].

Hence, using the expression of x(t) in Lemma 2.3, we get

max b S
s€ltT] n+1( )

~ ~ S ~ A A
{I— max { AA +M(s)] ! [e_ADMSJ eADM‘IADN(G)dG
s€[0,T] 0

+ (1= AAP)MPN(s)]} } m[%{D\A+M(s)rl[e*ADMSAAD[AAJFM(s)]kﬁkLn (3.10)
sell,

S
_ADK AD N o A
+e A MSJ eA MGAD22k+1M1 max |bn(s)|2k+1do_
0 s€[—h,T]

+ (1= AAP)MP22 My max [bn ()P |,
se€[—h,T]

Consequently, from the inequalities (3.9) and (3.10), and making suitable estimates, we get

[briilo < Kalbn 3t

where K; is a positive matrix. This shows that the convergence of the sequence {3, (t)} is of order 2k + 1.
The proof is complete. O
Theorem 3.2. Assume that the condition (Asz,) holds, and

(Ass) there exists a function f € CO?2X(Q(w, Bo),R™) such that the Fréchet derivatives fy(t,x,y) > 0,
f(txy) >0fork>11=0,1,2,---,2k

ax1y2k—1
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Then there exist two sequences {xn (t)} and {Bn (t)} converging uniformly to the solution x(t) of IVP (2.1) and the
convergence is of order 2K, that is, there exist positive matrices Kz, Ky such that for the solution x(t) of IVP (2.1) in
S, Bo), the inequalities

x — otnr1lo < Kalx — anl3,  [Bni1 —xlo < KalBrn — X3 H(IBn — xlo + x — atnlo)

hold, where ulp = max [u(s)|=( max [ui(s), max [us(s),---, max |[un(s)])T.
s€[—h,T] s€[—h,T] s€[—h,T] s€[—h,T]

Proof. In view of the condition (A33), we have

0
f(t, x(t), > f(t,y(t),
(tx(1) ser[?fﬁ,t}x(s)) (ty(t) ser[?z—pr(tt )+ Z 1'[ ))ax (3.11)
J i
— — | f(t,y(t),
+(Ser[gg§,ﬂ><(8) seﬁ?fﬁ,t]y(s))ay} (t,y(t) seﬁlfﬁ,ﬂy(s))
for op <y < x < B, and
22 4 5
f t/ t ’ < f t, t , — t) — t))—
(Lxlt), max x(5) < fltult), max y(s))+ 3 gixtt—u)g
d i
+(_max x(s)— max y(s)5-| f(ty(t), max y(s))
se[t—h,t] se[t—h,t] dy se[t—h,t] (3.12)
1 )
+(2k—1)! (x(t) =yl ))ax
d 12k—1
+( max x(s)— max y(s))—} f(t,x(t), max x(s))
s€ft—h,t] s€[t—h,t] dy s€[t—h,t]
for op < < Po-
We cons1der the singular differential systems with “maxima”
2k—1 3
Ax'(t) = f(t, (1), o(t)=—
X'(t) = flt ao(t), max aols) +Zl,[ e ()5
d 1
— — | f(t, t),
+(ser[lt1§)}(t,t]x(s) ser[?z—iﬁ,t]%(s))ay} (t %ot) Sel[xgi’ﬂoco(s)) (3.13)
= Fo(t, x(t), max x(s)), t€[0,T]
s€[t—h,t]
x(t) = (t) —kg* 'Ly, te[-h,0],
and
2k—2 3
Ax'(t) = f(t, Bo(t), o(t))=—
K0 =108 Bolt), max Bols) + 5 [0~ Boltn
)
+(_max x(s)~ max ﬁo(s))—} f(t, Bo(t), max Bo(s))
se[t—h,t] se[t—h,t] oy selt—h,t]
1 0
AT (x(t) = Bo(t)) 5+ (3.14)
J 12k—1
+(_max x(s)— max Bo(s)=-| flt,a(t), max afs))
s€[t—h,t] se[t—h,t] oy se[t—h,t]
= Gp(t,x(t), max x(s)), t€[0,T],
s€[t—h,t]
x(t) = @(t) +pg* 'Co, te[-h0l.
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Similar to the proof of Theorem 3.1, we can show that there exists a solution «;(t) of IVP (3.13) with
o (1) = @(t) —k%k_ll_o on [—h, 0] such that op(t) < o1 (t) < Bo(t) on [—h, T].

We shall now show that «;(t) and o(t) are lower and upper solutions of IVP (3.14), respectively. In
view of the fact that «;(t) is a solution of IVP (3.13), the conditions (Ha25), (As3), the inequalities (3.11),
(3.12), and the choice of py, Cp, we obtain

/ 2k—2 1 d
A1) <11, Bolt), max Bo(s))+ 3 g [(alt) = Bolt)) 5

£ max afs)— max Bols) | f(L,Boft), max Bofs)
] dy ]

se[t—h,t] se[t—h,t se[t—h,t
1 0
+m[(“l(t)—ﬁo(t))a
J 12k—1
+(_max eqls)— max Bols))a-| f(toa(t), max ou(s))
s€[t—h,t] s€ft—h,t] oy s€[t—h,t]
2k—21 d
< _ _ —
<l Bolt), max Bols) + 3 g [(ea(t) = Bo(t)) 5
07t
+(_max oqfs)— max Bols))s-| F(t, Bolt), max Bo(s))
se[t—h,t] se[t—h,t] oy se[t—h,t]
+ [ (ealt) — Bo(t) o
k—1) Lt 0 ax
d 12k—1
+(_max on(s)— max Bols))a-| fltaolt), max ofs))
se[t—h,t] se[t—h,t] oy se[t—h,t]

= Go(t, x1(t), max oy(s)), te[0,T],
s€[t—h,t]
xo(t) < @(t) +pg< 'Co, te[-h,0],

and
ABy(t) = f(t, Bo(t), max PBols)) = Golt, Bo(t), max Pols)), tel[0,T],
s€[t—h,t] s€[t—h,t]
Bo(t) = @(t) +pg* 'Co, te [—h,0L

Furthermore, by Lemma 2.5, we see that there exists a solution (3;(t) of IVP (3.14) such that «;(t) <
B1(t) < Po(t) on [~h, T].

Next, we must show that o (t) and 1(t) are lower and upper solutions of IVP (2.1), respectively.
From the fact that «;(t) is a solution of IVP (3.13) and the inequality (3.11), we get

A (t) < f(t, oq(t), max ]061(8)), te[0,T], x(t) < @(t), te[—h,0l
se[t—h,t

Hence, oy (t) is a lower solution of IVP (2.1) on [—h,T]. Similarly, using the conclusion that (31(t) is a
solution of IVP (3.14) and the condition (A33), we obtain

1
AB{(1) = flt, Balt),_max Bals)) = gy | [(Balt) = Bolt) 5
J 12k—1
+ (seI[ItlEi(L,t} B1(s) — hax (50(5))@]

x f(t,oB1(t)+ (1 —0)Bp(t),0 max P1(s)+(1—0) max Po(s))do
selt—h,t] seft—h,t]
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1 0
+ 2k—1)1 (B1(t) — Bo(t))a

0 12k—1
+(_max Bis)— max Bols))5]
seft—h,t] s€ft—h,t] oy

P f(t/ Bl(t)/ max Bl(s))/ te [0/ T]/
selt—h,t]

f(t, xp(t), max ag(s))
se[t—h,t]

B1(t) = ¢(t), te[-h0l
This shows that 31(t) is an upper solution of IVP (2.1) on [—h, T]. Therefore, it follows that
xo(t) < o (t) < B1(t) < Polt), te[-h Tl
By induction, we can get that

x(t) < x1(t) <o < ompa(t) < Praalt) < -0 < Baft) < Polt), tel=h T,

where o, 11(t) and B 41(t) are the solutions of the following singular differential systems

2k—1

iy 0
A1) =t (1), max an(s)) + 3 [ — () >
01t
+( max x(s)~ max ocn(s))@] flt,qn(t), max onls)) (3.15)
=F.(t,x(t), max x(s)), t€[0,T],
s€[t—h,t]
x(t) = (1) —kﬁk_an, t € [-h,0],
and
) 2k—2 1 9
A = (8 Ba(t), max Buls)) + 3 g |(x) = Bult)) 3
£ max x(s) = max Bals)) o] Tt Bult), max Ba(s))
s€[t—h,t] s€[t—h,t] oy s€[t—h,t]
1 0
+ ey L0~ BalO) 5 (3.16)
d 12k—1
+ (selﬁlg)}i,t} x(s) — max Bn(s))@} f(t, oen (t), nax on(s))
= Gn(t,x(t), max x(s)), te[0,T],
s€[t—h,t]
x(t) = @(t) +p2~1C,, te[-h,0.

Employing the Ascoli-Arzela Theorem, both monotone sequences {o (t)} and {3, (t)} converge uniformly
to the solution of IVP (2.1).

Finally, we prove that the convergence of the sequences {xn (t)} and {3.(t)} to the solution x(t) of IVP
(2.1) is of order 2k. To do this, let

ant1(t) =x(t) —xny1(t) 20, te[=h T
The proof is identical to Theorem 3.1. By comparing the IVPs (3.5) and (3.15), we get
lant1lo < Kalan 3¢

where K3 is a positive matrix. Therefore, the convergence of the sequence {x, (t)} is of order 2k.
On the other hand, consider

bny1(t) = Bny1(t) —x(t) >0, te[-h, T
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Case 1. If t € [~h, 0], since B, 1(t) —x(t) = p2*~1Cp and pni < Cni, we have

Bt (6 =x() = P21 < (G = (_min (Bals)—x(s))) " < _max [Buls) —x(s),
e[—h, s€[—h,0]

which implies that

bnii(t) < max [by(s)*. (3.17)
s€[—h,0]

Case 2. If t € [0, T], using the condition (A33) and the mean value theorem, we obtain

2k—2 a
Abfat) = (4 Bult), max Bufs)+ 3 [(Bra® —Bate)
0
+( max Brials)— max pn ())ay} flt,pnlt), max Bu(s))

1 a a 2k—1
ey [(Bra(®) = Bu(t) g+ ( max Buials)— max rsn(s))@}
X f(t, o0 (t), max on(s))—T(t,x(t), max x(s))

s€([t—h,t] s€[t—h,t]
1 1 d
= f(t, Bruaalt),_max Buial) = gy | (1Bl =Balt) 5
d 12k—1
+ (Ser[rtlgﬁ,ﬂ Brri(s) — max Bn(s))@}

x f(t,0Bn+1(t) + (1 —0)pn(t),0 max Pnyi(s)+(1—0) max Pn(s))do
se[t—h,t] se[t—h,t]

1 0 J 12k—1
eyt Bra (8= B3+ ( max Buoals) — max  pn(s))y ]
x f(t, on(t), max an(s)) —f(t,x(t), max x(s))

s€[t—h,t] s€[t—h,t]

< (| teltopun0+ 1= 0x(t), max Buia(s)do)(Bralt)—x()

0 s€[t—h,t]
1
(| falext,o_max Briale)+1-0) max Bals)do)
0 selt—h,t selt—h,t]

x max (Bn1(s) *X(S))
s€lt—h,t]

+22*M, max  [bn(s)P* I max  |bn(s)l+ max |an(s)])

s€[t—h,t] s€[t—h,t] s€[t—h,t]
— —M(t)bp1(t) = N(t) max b 1(s)
se[t—h,t]
+22*M, max  [bu(s)P* I max  |bn(s)l+ max |an(s))
se[t—h,t] se[t—h,t] se[t—h,t]
< _M(t)bn+1(t)_N(t) max bn+1( )
s€[—h,T]

+22*M, max_ [bn(s)P* I max_[bn(s)|+ max_[an(s)]),
s€[—h,T] s€[—h,T] s€[—h,T]

where i [(Bn(t) —x(1))& + ( max Bu(s)— max x(s))2]* 7 (f(t, Bnl(t), Jnax Ba(s))—

s€[t—h,t] selt—h,t] %y
f(t, an(t), max an(s))) < 22*My( max bn(s))**1( max bn(s)+ max an(s)), and M, is a
s€[t—h,t] s€[t—h,t] se[t—h,t] s€[t—h,t]

positive n x n matrix. By Lemma 2.2, we can get that by, 1(t) < u(t) on [0, T], where u(t) is the solution
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of

AU/ (1) + M(t)u(t) = —=N(t) max_ byi1(s) +22*My max_ [ba(s)P* 1 max [bn(s)|
s€[—h,T] s€[—h,T] s€[—h,T]

+ max_lan(s)l), tel0, T, u(t)=p21C,, tel-h,0.
s€[—h,T]

Thus, using the expression of x(t) in Lemma 2.3, we obtain

max_ bpi(s)
s€[—h,T]

a A S a ~ N
< {I— max { — A +M(s)] [eADMSJ eA"MOADN(¢)do
s€[0,T] 0

+(I— AAD)MDN(S)] }} Sren[g?%] {[AA +M(s)] ! [e*ADMSAAD AA + M(s)IkZ*L,, (3.18)

S A S ~ ~
+eADMSJ eAPMIAD2NL  max  [by(s)P* L max [bn(s)|+ max |an(s))do
0 s€[—h,T] s€[—h,T] s€[—h,T]

(1= AAPIMP22*M, max  [bn(s)P*1( max [bn(s)|+ max |an(s)|)]}.
s€[—h,T] s€[—h,T] s€[—h,T]

Therefore, from the inequalities (3.17) and (3.18), and making suitable estimates, we have
lbrrtlo < Kalbnl§* " ([bnlo + lanlo),

where K4 is a positive matrix. This shows that the convergence of the sequence {3,(t)} is of order 2k. The
proof is complete. O

Theorem 3.3. Assume that the condition (Asz) holds, and

(Az4) there exists a function f € COZH1ZH(Q (o, Bg), R™) such that the Fréchet derivatives fy(t,x,y) > 0,
P <0 fork>1,i=0,1,2,---,2k+ 1.

dxiy2kti-i

Then there exist two sequences {oun (t)} and {Prn (1)} converging uniformly to the solution x(t) of IVP (2.1) and the
convergence is of order 2k + 1, that is, there exist positive matrices Ks, Kg such that for the solution x(t) of IVP
(2.1) in S(xo, Bo), the inequalities

X — otni1lo < Kshx — anl3(x — otnlo + 1Bn —xl0),  1Bni1 —xlo < KelBn —xB(IBn —xlo + Ix — atnlo)

hold, where ulp = max |u(s)| = ( max |u(s), max [ux(s),---, max [un(s))7.

s€[—h,T] s€l—h,T] s€[—h,T] s€[—h,T]

Proof. In order to construct the monotone sequences {x (t)}, {fn(t)}, and obtain the rapid convergence,
we consider the following singular differential systems with “maxima”

214 3
Ax'(t) = f(t, ““(t)’ser[?fﬁ,t] an(s)) + ; a[bc(t) —ocn(t))afX
+( max x(s)— max ocn(s))i} lf(t, on(t), max on(s))
s€[t—h,t] se[t—h,t] dy se[t—h,t]
1 ¢ ¢ 0
+ i (0 o 05

d 12k
+( max x(s)— max ocn(s))—} f(t,Bn(t), max PBn(s))
s€[t—h,t] se[t—h,t] dy s€[t—h,t]

=Fn(t,x(t), max x(s)), t€0,T],
s€[t—h,t]

x(t) = @(t) —k%LkLn, t ¢ [~h,0],
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and
2k—1 3
AX(0) =18, B (1), max Buls)) + 3 [0 = Bt
F(max x(s)— max Bals niht Bult), _max Bu(s))
s€lt—h,t] s€lt—h,t] dy s€lt—h,t]
1 0
+ gy (0~ Bn ()5
d 12k
+( max x(s)— max Bnls))a-| flt,an(t) max an(s))
s€lt—h,t] s€[t—h,t] dy s€[t—h,t]
=Gn(tx(t), max x(s)), tel0,T],
selt—h,t]
The proceeding of proof is snmlar to Theorem 3.1, and thus we omit the details. O

Theorem 3.4. Assume that the condition (Asz,) holds, and

(Ass) there exists a function f € CO%?%2%(Q(wxy, Bo), R™) such that the Fréchet derivatives fylt,x,y) > 0,
2% (t,x,y)

W <0fork>11=0,1,2,---,2k
Then there exist two sequences {ou (t)} and {Br (t)} converging uniformly to the solution x(t) of IVP (2.1) and the

convergence is of order 2Kk, that is, there exist positive matrices Ky, Kg such that for the solution x(t) of IVP (2.1) in
S, Bo), the inequalities

x — otnrlo < Kol — on [ Hx — ol + 1B —xlo),  Bnst —xlo < KslBn — x[§*
hold, where ulp = max |u(s)] = ( max [ui(s)|, max [uy(s),---, max |un(s)])'.
s€[—h,T] s€[—h,T] s€[—h,T] s€[—h,T]

Proof. To construct the monotone sequences {x, (1)}, {3 (t)}, and obtain the rapid convergence, consider
the following singular differential systems with “maxima”

2k—2

0
/ _ -
AX(1) = f(t,oxn (1), max  on(s))+ Z 1,[ otn (1)) 5
d i
+( max x(s)— max ocn(s))—} f(t,an(t), max on(s))
s€lt—h,t] s€lt—h,t] dy s€lt—h,t]
1 0
+ oy (X0 — e () 5
d 12k—1
£ max x(s)— max oan(s)so|  f(tBnlt), max pa(s))
s€lt—h,t] s€lt—h,t] dy s€lt—h,t]
=Fn(t,x(t), max x(s)), tel0,T],
selt—h,t]
X(t) = (P(t) _kzlk_lLTL/ te [_h/ O]r
and
2k—1 3
Ax'(t) = f(t t n(t)=—
¥ = Balt), max Bls)+ 3 [0~ B0
0
£ max xs)— max Buls)) | F(LBa(t), max Bu(s))
selt—h,t] s€lt—h,t] oy selt—h,t]
= Gn(t,x(t), max x(s)), tel[0,T],
s€[t—h,t]
x(t) = @(t) +pA1Cpn, te[-h0.

The proceeding of proof is similar to Theorem 3.1, and thus we omit the details. O
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4. Example
Now, we give an example to illustrate the application of the established in the previous section.

Example 4.1. Consider the following singular differential system with “maxim”

1
x1(t) = —x1(t) + max xq(s)+ -1,
sE[t—h,t] 1— max x4(s)
se[t—h,t]
1 1 (4.1)
0= -2, te[0,1], )
1—x(t) T 1= max x2(s) o
s€[t—h,t]
x1(t) =x2(t) =0, te[-1,0],
where
—x1(t)+ max xi1(s) + 7= ey — 1
A = < (1) 8 >, f(t,x(t), max x(s))= Sel[tih'ﬂ 1 ey
se[t—h,t] T—x2 (1) + 1 max ]Xz(S) o
se[t—h,t

One can see easily that the IVP (4.1) has zero solution. Taking x(t) = (0, 0)7, Bolt) = (%, %)T, it is easy

to verify that «g(t), Bo(t) are lower and upper solutions of IVP (4.1), respectively, and fy > 0, %,

2 2
0 g():cgzy)’ 0 fé;'?’y) > 0 on Q(ay, Bo), that is, the conditions of Theorem 3.2 are satisfied. According to

Theorem 3.2, we can construct two monotone sequences of functions which quadratically converge to the

zero solution of IVP (4.1).
The successive approximations oy 41(t) and Br41(t) are solutions of the singular differential systems

1

) = —an1(t -1
x1(t) o1 ( )+Sel[1t13>}<l’t]ocn1(5)+1_ max o (s)
seft—h,t]
—(x1(t) —on1(t)) +( max xi(s)— max on1(s))
se[t—h,t] s€[t—h,t]
1
+ max Xi(s)— max on1(8)),
(1— max ﬁnl(s))z(se[t—h,t} 1(s) s€lt—h,t] ni(s))
s€[t—h,t] (4.2)
1 1 1
0= —2 4+ (xp(t) — oot
T ama(0) T 1= max _ama(s) 2 (1= a2 21 xn2lt])
se[t—h,t]
1
+ — , t e [0,1],
(1— max ﬁnz(s))z(seﬁi)ﬁ,t]xﬂs) ser[{cli)r(m,t]anZ(s)) 0,1]
s€[t—h,t]
x1(t) = x2(t) = —kn1ln1 = —kn2lnz, te€ [-1,0],
and .
(1) = —Bna(t) + + -1
x1(t) = —Bn1(t) ser[?fﬁ,t]ﬁnl(s) 1= max Bois)
s€[t—h,t]
—(x1(t) = Bn1(t)) +( max xq(s)— max Pni(s))
s€[t—h,t] s€[t—h,t]
1
+ - 7
T max Bl seimy 18~ nax  Brals)
set—h,t] 4.3)
0= ! + L 2+;(x (t) — Bno(t))
1—Bn2(t)  1— max Pnals) (1—Pra(1)27? s
se[t—h,t]
1
+ max Xp(s)— max s)), tel0,1],
A= max  Brals)R s 28~ s ) Prals)) 0.1]
se[t—h,t]
x1(t) = x2(t) =pn1Cn1 = pn2Cn2, te[-1,0],
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where L, = r1{r1ir110](—ocn(s)) >0, Ch = n?i?o](ﬁn(s)) > 0, and the numbers ki, pni € [0,1) are such
sel—1, se[—1/

that kni < Lat and Pni < Chi,1=12,---,n

First, we will construct an increasing sequence of lower solutions which converges quadratically to
the zero solution. In view of the fact that ao(t) = (0,0), we have Ly = (0,0)". Taking ko = (0,0)7, the
linear singular differential system (4.2) reduces to

x1(t) = —x1(t)+5 max x;(s),
s€[t—h,t]

0=4x(t)+4 max xo(s), tel0,1], (4.4)
selt—h,t]

x1(t) =x2(t) =0, te[-1,0]

Then, the IVP (4.4) has a zero solution, that is, «;(t) = (0,0)T. Proceeding as before, we can find that all
successive approximations o, (t) are equal to the zero vector.

Next, we shall construct a decreasing sequence of upper solutions which will converge quadratically
to the exact solution. Since B(t) = (%, %)T, we get Cp = (%, %)T. Let po = (%, %)T, then the linear singular
differential system (4.3) can be written as

x{(t) = —x1(t)+5 max x(s)—1,

se[t—h,t]
0=4xp(t)+4 ser[l:clilﬁ,t] x2(s)—2, te€[0,1], 4.5)
1
x(t) =x(t) =5, tel-1,0L
The function 4(t) = (% %)T is a solution of IVP (4.5).
Choose p1 = (%, %)T then the linear singular differential system (4.3) reduces to the following
x1(t) = —x1(t) + 25 max  xq(s) — 1,
s€lt—h,t] 9
16 16 2
=—x(t)+ — -, t 1 4.6
0=3x(t)+ 5 Seﬁtlaﬁﬂxz( s)—5 telodl] (4.6)
1
x1(t) = x2(t) = o b€ [—1,0].

The IVP (4.6) has an exact solution B, (t) = (&, &)7.

167 16
Now, choose pn—1 = 1 )T, then the linear singular differential system (4.3) reduces to

(# 1
22(n 1 zz(n 1)

22" 1

) =—xt)+1+ = -,

Xl( ) Xl( ) ( (Zz(n_]) _ 1)2) seI[-I‘-clili(L,ﬂ Xl(S) (Zz(n_l) _ 1)2

22" 22" 2
- = = . 4.7
0= (zz(n—n _ 1)2X2(t) + (22(“_” —1)2 SEI[I’SED}(L,H x2(s) (22(“_” _ 1)2’ te[01], *7)

1
Xl(‘t) = Xz(t) = 72271, te [—1, 0].

Then, the IVP (4.7) has an exact solution B, (t) = (s,

By induction, we obtain B1(t) = (1,3)", B2(t)
that

ST
T D2 .
(10, 7¢) " Bn(t) = (5w, pc) T, - . Itis easy to see

1 1 1 5 1 1 1 72171 1 1 22%_]))2
(4)<(1 1><2>,<116><<1 1><1> 1 <(1 1) @,
4 22 16 2 22 (zz(nfl) )2

Therefore, the convergence of the sequence {3, (t)} is quadratic. The proof is complete.

N

—
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