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Abstract
In this paper, we consider the existence of positive solutions for a class of nonlinear fractional semipositone differential

equations involving integral boundary conditions. Some existence results of positive solutions are obtained by means of Leray-
Schauder’s alternative and Krasnoselskii’s fixed point theorem. An example is given to demonstrate the application of our main
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1. Introduction

This paper is concerned with the existence of positive solutions to the following boundary value
problem (BVP) for fractional semipositone differential equation{

−Dα0+u(t) = µf(t,u(t),u
′(t), · · · ,u(n−2)(t)), 0 < t < 1,

u(0) = u ′(0) = · · · = u(n−2)(0) = 0, u(n−2)(1) = λ[u(n−2)],
(1.1)

where Dα0+ is the Riemann-Liouville fractional derivative of order n − 1 < α 6 n,n > 2, µ > 0 is
a parameter, f : (0, 1) ×Rn−1

+ → R is a continuous function and may be singular at t = 0, 1. λ[v] =∫1
0 v(t)dA(t) is a linear functional on C[0, 1] given by a Stieltjes integral with A representing a suitable

function of bounded variation. It is important to indicate that it is not assumed that λ[v] is positive
to all positive v. The measure dA can be a signed measure (see Remark 2.8, and Example 4.1). Here
R = (−∞,+∞) and R+ = [0,+∞).

Fractional differential equations describe many phenomena in various fields of engineering and sci-
entific disciplines such as physics, biophysics, chemistry, biology (such as blood flow phenomena), eco-
nomics, control theory, signal and image processing, aerodynamics, viscoelasticity, electromagnetics, and
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so on (see [25, 27]. The study of boundary value problems in the setting of fractional calculus has received
a great attention in the last decade and a variety of results concerning the existence of solutions, based on
various analytic techniques, can be found in the literature [1–8, 11, 12, 14, 15, 18–24, 28–36]. For example,
by means of a mixed monotone method, Zhang [32] studied a unique positive solution for the singular
boundary value problem{

Dα0+u(t) + q(t)f(t,u(t),u
′(t), · · · ,u(n−2)(t)) = 0, 0 < t < 1,

u(0) = u ′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,

where α ∈ (n− 1,n],n > 2, Dα0+ is the standard Riemann-Liouville derivative, f = g+ h is nonlinear and
g and h have different monotone properties.

Integral boundary conditions arise in thermal conduction problems [9], hydrodynamic problems [10]
and semiconductor problems [17]. Recently, integral boundary value problems for fractional differential
equations were investigated intensively [18, 20, 21, 26, 31, 33, 36]. In [33], authors using monotone iterative
technique investigated the existence and uniqueness of the positive solutions of higher-order nonlocal
fractional differential equations of the type:{

Dα0+u(t) + f(t,u(t)) = 0, 0 < t < 1,n− 1 < α 6 n,

u(0) = u ′(0) = · · · = u(n−2)(0) = 0, u(1) = λ[u],
(1.2)

where f ∈ C((0, 1)×R+, R+). By means of the Schauder’s fixed point theorem, BVP (1.2) is also studied in
[31]. In [30], the authors investigated problems (1.2) with q(t)f(t,u(t)) instead of f(t,u(t)), the existence
and multiplicity of positive solutions are obtained by means of the fixed point index theory in cones.

However when f and boundary condition involve derivatives of the unknown function and the non-
linear term may take on negative values, to the best of our knowledge, there is no result established on
fractional differential equations. The objective of the present study was to fill this gap. Inspired by the
above works, in this paper, we consider the existence of positive solutions for fractional semipositone
differential equation (1.1). Using Leray-Schauder’s alternative and Krasnoselskii’s fixed point theorem in
cones and combining with an available transformation, we will obtain an interval of µ which ensures the
existence of at least one positive solution for the BVP (1.1).

Our work presented in this paper has the following features. First of all, the nonlinear term f involves
derivatives of unknown function. The second new feature is that the BVP (1.1) possesses singularity, that
is, f(t, z1, · · · , zn−1) may be singular at t = 0, 1. And the nonlinearity is allowed to be sign changing.
Thirdly, we discuss the boundary conditions of BVP (1.1) are more general case, which include two point,
three point, multi-point and some nonlocal conditions as special cases. In the end, the measure dA in the
definition of λ can be a signed measure, see Remark 2.8 and Example 4.1 (point 2). The measure dA can
be a signed measure as it is written in [30, 31, 33] but we did not see any example with such measure.

The rest of this paper is organized as follows. In Section 2, we present some lemmas that are used to
prove our main results. In Section 3, the existence of positive solutions of the BVP (1.1) are established by
using some fixed point theorems. In Section 4, we give an example to demonstrate the application of our
theoretical results. The last section is devoted to a short conclusion.

2. Basic definitions and preliminaries

In this section, we introduce some definitions and notations of fractional calculus [25, 27] and present
preliminary results needed in our proofs later.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 is given by

Iαu(t) =
1
Γ(α)

∫t
0
(t− s)α−1u(s)ds,

where n− 1 < α < n, provided that the right-hand side is pointwise defined on (0,+∞).
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Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0, n− 1 < α 6 n, n ∈ N is
defined as

Dα0+u(t) =
1

Γ(n−α)

(
d

dt

)n ∫t
0
(t− s)n−α−1u(s)ds,

where N denotes the natural number set, the function u(t) is n times continuously differentiable on
[0,+∞).

Lemma 2.3. If u, v : (0,+∞)→ (−∞,+∞) with α > 0, then

Dα0+(u(t) + v(t)) = D
α
0+u(t) +D

α
0+v(t).

Lemma 2.4.

(1) If α > 0, δ > 0, then Dδ0+t
α−1 =

Γ(α)
Γ(α−δ)t

α−δ−1.

(2) If u ∈ L(0, 1), α > δ > 0, then IαIδu(t) = Iα+δu(t), Dδ0+I
αu(t) = Iα−δu(t), Dα0+I

αu(t) = u(t).

Lemma 2.5. Let α > 0, then the following equality holds for u ∈ L(0, 1), Dα0+ ∈ L(0, 1),

IαDα0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cntα−n,

where n− 1 < α 6 n, ci ∈ R (i = 1, 2, · · · ,n).

Set φ(t) = t(1 − t)α−n+1, t ∈ [0, 1] and

G(t, s) =
1

Γ(α−n+ 2)

{
[t(1 − s)]α−n+1 − (t− s)α−n+1, 0 6 s 6 t 6 1,

[t(1 − s)]α−n+1, 0 6 t 6 s 6 1.

Lemma 2.6 ([32]). Let y ∈ Cr[0, 1] (Cr[0, 1] = {y ∈ C[0, 1], try ∈ C[0, 1], 0 6 r < 1}). Then the boundary value
problem {

−Dα−n+2
0+ v(t) = y(t), 0 < t < 1,n− 1 < α 6 n, n > 2,

v(0) = 0, v(1) = 0,

has a unique solution

v(t) =

∫ 1

0
G(t, s)y(s)ds.

By Lemma 2.5, the unique solution of the problem{
−Dα−n+2

0+ v(t) = 0, 0 < t < 1,n− 1 < α 6 n, n > 2,
v(0) = 0, v(1) = λ[v]

(2.1)

is γ(t) = tα−n+1, with λ[v] replaced by 1. As in [33], the Green’s function for boundary value problem
(2.1) is given by

H(t, s) =
γ(t)

1 − λ[γ]
G (s) +G(t, s), (2.2)

where G (s) :=
∫1

0 G(t, s)dA(t). Throughout the paper we assume the following condition (H0) holds.

(H0) A is a function of bounded variation, G (s) > 0 for s ∈ [0, 1] and 0 6 λ[γ] < 1.

Remark 2.7. Note that the inequalities λ[γ] > 0, G (s) > 0 from assumption (H0) are trivially satisfied when
dA is a positive measure.

In the next remark we consider the case when the measure changes the sign.
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Remark 2.8. Take dA(t) = g(t)dt with g(t) = a− 1 − at and a > 1. Note that the measure changes the
sign. Then

λ[γ] =

∫ 1

0
γ(t)g(t)dt =

∫ 1

0
tα−n+1(a− 1 − at)dt =

a− 1 − (α−n+ 2)
(α−n+ 2)(α−n+ 3)

.

Note that 0 6 λ[γ] < 1 provided that
√
a < α− n+ 3 6 a. For example if α = 3, then 3 6 a < 9, while if

α = 7
2 , then 5

2 6 a < 25
4 . Moreover,

G (s) =

∫ 1

0
G(t, s)g(t)dt =

∫ 1

0
G(t, s)(a− 1 − at)dt

=
1

Γ(α−n+ 3)
(1 − s)α−n+1s

(
a(2 − s)

α−n+ 3
− 1
)

>
1

Γ(α−n+ 3)
(1 − s)α−n+1s

(
a

α−n+ 3
− 1
)

> 0.

Lemma 2.9. Suppose that (H0) holds, then the functions G(t, s) and H(t, s) have the following properties:

(1) G(t, s) and H(t, s) are nonnegative and continuous for (t, s) ∈ [0, 1]× [0, 1];
(2) G(t, s) satisfies

(i)
φ(1 − t)φ(s)

Γ(α−n+ 1)
6 G(t, s) 6

φ(s)

Γ(α−n+ 1)
for t, s ∈ [0, 1].

(ii) G(t, s) 6
γ(t)

Γ(α−n+ 2)
for t, s ∈ [0, 1].

(3) H(t, s) satisfies
νγ(t)φ(s) 6 H(t, s) 6 κφ(s), H(t, s) 6 ργ(t) for t, s ∈ [0, 1],

where

κ =
( λ[1]

1 − λ[γ]
+ 1
) 1
Γ(α−n+ 1)

, ν =
1

(1 − λ[γ])Γ(α−n+ 1)

∫ 1

0
φ(1 − t)dA(t),

ρ =
1

(1 − λ[γ])Γ(α−n+ 2)
.

Proof. (1) is clear, the left side of the first inequality of (2) can be found in [23], the right side of the first
inequality of (2) can be found in [36] and the second inequality of (2) can be found in [32]. We only prove
(3). In fact, by (2.2) and (2), we have

H(t, s) =
γ(t)

1 − λ[γ]

∫1

0
G(t, s)dA(t) +G(t, s)

6
1

1 − λ[γ]

∫1

0

φ(s)

Γ(α−n+ 1)
dA(t) +

φ(s)

Γ(α−n+ 1)
=
( λ[1]

1 − λ[γ]
+ 1
) 1
Γ(α−n+ 1)

φ(s) = κφ(s),

H(t, s) =
γ(t)

1 − λ[γ]

∫1

0
G(t, s)dA(t) +G(t, s)

>
γ(t)

1 − λ[γ]

∫1

0

φ(1 − t)φ(s)

Γ(α−n+ 1)
dA(t) =

γ(t)φ(s)

(1 − λ[γ])Γ(α−n+ 1)

∫1

0
φ(1 − t)dA(t) = νγ(t)φ(s),

H(t, s) =
γ(t)

1 − λ[γ]

∫1

0
G(t, s)dA(t) +G(t, s)

6
γ(t)

1 − λ[γ]

∫1

0

γ(t)

Γ(α−n+ 2)
dA(t) +

γ(t)

Γ(α−n+ 2)
=

γ(t)

(1 − λ[γ])Γ(α−n+ 2)
= ργ(t).

In what follows, we give the assumptions to be used throughout the rest of this paper.
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(H1) f : [0, 1]×Rn−1
+ → R is a continuous function, f(t, 0, · · · , 0) > 0, t ∈ [0, 1] and

f(t, z1, z2, · · · , zn−1) > −e(t), (t, z1, z2, · · · , zn−1) ∈ [0, 1]×Rn−1
+ ,

where e : [0, 1]→ R+ is a continuous function and e(t) 6≡ 0 on (0, 1).
(H∗1 ) f : (0, 1)×Rn−1

+ → R is a continuous function and

f(t, z1, z2, · · · , zn−1) > −e(t), (t, z1, z2, · · · , zn−1) ∈ (0, 1)×Rn−1
+ ,

where e ∈ C((0, 1), R+)∩ L[0, 1] and e(t) 6≡ 0 on (0, 1).
(H2) For any constant r > 0,

∫1
0 φ(s)maxz1,z2,··· ,zn−1∈[0,r] f(s, z1, z2, · · · , zn−1)ds < +∞,

∫1
0 φ(s)e(s)ds <

+∞.

In order to overcome the difficulty due to the dependence of f on derivatives, we consider the following
modified problem{

−Dα−n+2
0+ v(t) = µf(t, In−2

0+ v(t), In−3
0+ v(t), · · · , I10+v(t), v(t)), 0 < t < 1,

v(0) = 0, v(1) = λ[v],
(2.3)

where n− 1 < α 6 n,n > 2.

Lemma 2.10 ([21]). The nonlocal fractional order boundary value problem (1.1) has a positive solution if and only
if the nonlinear fractional integro-differential equation (2.3) has a positive solution.

Lemma 2.11. Assume that (H0) holds, then the boundary value problems{
−Dα−n+2

0+ ω(t) = µe(t), 0 < t < 1,
ω(0) = 0, ω(1) = λ[ω]

have unique solution

ω(t) = µ

∫ 1

0
H(t, s)e(s)ds, (2.4)

which satisfies

ω(t) 6 µργ(t)
∫ 1

0
e(s)ds, t ∈ [0, 1]. (2.5)

Proof. It follows from (2.1), (2.2), Lemma 2.6 and (H0) that (2.4)-(2.5) hold.

Let E = C[0, 1], then E is a Banach space with the norm ‖u‖ = max06t61 |u(t)| for any u ∈ E. Let
Λ = ν

κ and
P = {u ∈ E : u(t) > Λγ(t)‖u‖ for t ∈ [0, 1]} , (2.6)

then P is a cone of E.
Define a modified function [z(t)]+ for any z ∈ C[0, 1] by

[z(t)]+ =

{
z(t), z(t) > 0,
0, z(t) < 0.

Next we consider the following singular nonlinear approximate problem of (2.3){
−Dα−n+2

0+ x(t) = µ(F(t, [x(t) −ω(t)]+) + e(t)), 0 < t < 1,
x(0) = 0, x(1) = λ[x],

(2.7)

with F(t, [x(t)−ω(t)]+)=f(t, In−2
0+ [x(t)−ω(t)]+, In−3

0+ [x(t)−ω(t)]+, · · · , I10+[x(t)−ω(t)]+, [x(t)−ω(t)]+).
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Lemma 2.12. If x is a solution of the problem (2.7) with x(t) > ω(t) for t ∈ (0, 1], then v(t) = x(t) −ω(t) is a
positive solution of the problem (2.3), and u(t) = In−2

0+ (x(t) −ω(t)) is a positive solution of the BVP (1.1).

Proof. In fact, if x ∈ C[0, 1] is a positive solution of problem (2.7) such that x(t) > ω(t) for any t ∈ (0, 1],
then from (2.7) and the definition of [·]+, we have{

−Dα−n+2
0+ x(t) = µ(F(t, x(t) −ω(t)) + e(t)), 0 < t < 1,

x(0) = 0, x(1) = λ[x].
(2.8)

Let v = x−ω, then Dα−n+2
0+ v(t) = Dα−n+2

0+ x(t) −Dα−n+2
0+ ω(t) for t ∈ (0, 1), which implies that

Dα−n+2
0+ x(t) = Dα−n+2

0+ v(t) +Dα−n+2
0+ ω(t) = Dα−n+2

0+ v(t) − µe(t), t ∈ (0, 1).

Thus (2.8) becomes {
−Dα−n+2

0+ v(t) = µF(t, v(t)), 0 < t < 1,
v(0) = 0, v(1) = λ[v],

i.e., {
−Dα−n+2

0+ v(t) = µf(t, In−2
0+ v(t), In−3

0+ v(t), · · · , I10+v(t), v(t)), 0 < t < 1,
v(0) = 0, v(1) = λ[v].

So, x−ω is a positive solution of the problem (2.3). Together with Lemma 2.10, we obtain the conclusion
of Lemma 2.12. The proof is completed.

Employing (2.1), (2.2), and Lemma 2.6, the equation (2.7) can be expressed as

x(t) = µ

∫ 1

0
H(t, s)(F(s, [x(s) −ω(s)]+) + e(s))ds. (2.9)

Define an operator T : P → E by

Tx(t) = µ

∫ 1

0
H(t, s)(F(s, [x(s) −ω(s)]+) + e(s))ds.

Clearly, if x ∈ P is a fixed point of T , then x is a solution of the problem (2.7).

In order to prove our main results, we need the following lemmas.

Lemma 2.13 ([13]). Let X be a real Banach space, and Ω be a bounded open subset of X, where θ ∈ Ω, T : Ω→ X

is a completely continuous operator. Then, either there exist x ∈ ∂Ω,σ ∈ (0, 1) such that σT(x) = x, or there exists
a fixed point x∗ ∈ Ω.

Lemma 2.14 ([16]). Let X be a real Banach space, and P be a cone in X. Assume that Ω1 and Ω2 are two bounded
open sets of X with θ ∈ Ω1 and Ω1 ⊂ Ω2. Let T : P ∩ (Ω2\Ω1)→ P be a completely continuous operator such that
either

(i) ‖Tx‖ 6 ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ > ‖x‖, x ∈ P ∩ ∂Ω2, or
(ii) ‖Tx‖ > ‖x‖, x ∈ P ∩ ∂Ω1 and ‖Tx‖ 6 ‖x‖, x ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \Ω1).

3. Main results

In this section, we present and prove our main results.

Lemma 3.1. Assume that (H0) and (H1) (or (H0), (H∗1 ), and (H2)) hold. Then T : P → P is a completely continuous
operator.
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Proof. By routine discussion, we get that T : P → E is well-defined. Now we prove T(P) ⊂ P. For any
x ∈ P, Lemma 2.9 implies that

‖Tx‖ = max
06t61

µ

∫ 1

0
H(t, s)(F(s, [x(s) −ω(s)]+) + e(s))ds 6 κµ

∫ 1

0
φ(s)(F(s, [x(s) −ω(s)]+) + e(s))ds.

On the other hand, from Lemma 2.9, we also have

(Tx)(t) = µ

∫ 1

0
H(t, s)(F(s, [x(s) −ω(s)]+) + e(s))ds > µνγ(t)

∫ 1

0
φ(s)(F(s, [x(s) −ω(s)]+) + e(s))ds.

So
(Tx)(t) > Λγ(t)‖(Tx)‖, t ∈ [0, 1], (3.1)

and (3.1) yields that T(P) ⊂ P.
According to the Ascoli-Arzelà theorem and the Lebesgue dominated convergence theorem, we can

easily get that T : P → P is a completely continuous operator. The proof is completed.

Theorem 3.2. Assume that (H0) and (H1) hold. Then there exists µ∗ such that for any 0 < µ 6 µ∗, BVP (1.1) has
at least one positive solution.

Proof. By (H1), there exists 0 < ε < 1, such that

f(t, z1, z2, · · · , zn−1) > 0, t ∈ [0, 1], 0 6 z1, z2, · · · , zn−1 6 ε. (3.2)

Let
0 < µ < µ∗ =

ε

2κf(ε)
∫1

0 φ(s)ds
, f(ε) = max

t∈[0,1]
06z1,··· ,zn−16ε

{f(t, z1, · · · , zn−1) + e(t)}.

Since limz→0
f(z)
z = +∞ and f(ε)

ε < 1
2κµ

∫1
0φ(s)ds

, then there exists an R0 > 0 satisfying R0 ∈ (0, ε), such

that f(R0)
R0

= 1
2κµ

∫1
0φ(s)ds

. Let Ω = {x ∈ P : ‖x‖ < R0}. If there exist x ∈ ∂Ω,σ ∈ (0, 1) such that

x = σTx,

we can claim that ‖x‖ 6= R0. In fact, for x ∈ ∂Ω, s ∈ [0, 1],

[x(s) −ω(s)]+ 6 x(s) 6 ‖x‖ = R0,

|Ii0+[x(s) −ω(s)]+| =

∣∣∣∣ 1
Γ(i)

∫s
0
(s− τ)i−1[x(τ) −ω(τ)]+dτ

∣∣∣∣
6

1
(i− 1)!

∫s
0
(s− τ)i−1|x(τ)|dτ

6
1

(i− 1)!

∫s
0
(s− τ)i−1dτ‖x‖ = 1

i!
si‖x‖ 6 ‖x‖ = R0, i = 1, 2, · · · ,n− 2.

It follows that

x(t) = σTx(t) = σµ

∫ 1

0
H(t, s)(F(s, [x(s) −ω(s)]+) + e(s))ds

6 σκµ
∫ 1

0
φ(s)(F(s, [x(s) −ω(s)]+) + e(s))ds

6 κµ
∫ 1

0
φ(s) max

s∈[0,1]
06z1,··· ,zn−16R0

{f(s, z1, · · · , zn−1) + e(s)}ds

6 κµ
∫ 1

0
φ(s)f(R0)ds = κµf(R0)

∫ 1

0
φ(s)ds,
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that is, f(R0)
R0

> 1
κµ
∫1

0φ(s)ds
> 1

2κµ
∫1

0φ(s)ds
, which implies that ‖x‖ 6= R0 and x 6∈ ∂Ω. By the nonlinear

alternative theorem of Leray-Schauder type (Lemma 2.13), T has a fixed point x ∈ Ω. Furthermore, by
(2.9), (3.2), and the fact that R0 < ε, we get

x(t) = µ

∫ 1

0
H(t, s)(F(s, [x(s) −ω(s)]+) + e(s))ds > µ

∫ 1

0
H(t, s)e(s)ds = ω(t), t ∈ (0, 1].

Thus, x is a positive solution of problem (2.7) and x(t) > ω(t) for t ∈ (0, 1]. By Lemma 2.12, u(t) =
In−2

0+ (x(t) −ω(t)) is a positive solution of BVP (1.1). The proof is completed.

Theorem 3.3. Assume that (H0), (H∗1 ), and (H2) hold and the following condition is satisfied.

(H3) There exists [a,b] ⊂ (0, 1) such that

lim
zn−1→+∞ min

t∈[a,b]
z1>0,··· ,zn−2>0

f(t, z1, z2 · · · , zn−2, zn−1)

zn−1
= +∞.

Then there exists µ > 0 such that for any 0 < µ < µ, BVP (1.1) has at least one positive solution.

Proof. Let

Ω1 = {x ∈ P : ‖x‖ < R1}, where R1 > max

{
1,

2ρ
Λ

∫ 1

0
e(s)ds,

ρ(
∫1

0 e(s)ds+ 1)
Λ

}
,

and Λ, ρ are defined by (2.6) and Lemma 2.9, respectively. Let

µ = min

1,R1

[
κ

∫ 1

0
φ(s)

(
max

06z1,z2,··· ,zn−16R1
f(s, z1, z2, · · · , zn−2, zn−1) + e(s)

)
ds

]−1
 ,

where κ is defined by Lemma 2.9. Then for any x ∈ ∂Ω1, s ∈ [0, 1], we have

[x(s) −ω(s)]+ 6 x(s) 6 ‖x‖ = R1,

|Ii0+[x(s) −ω(s)]+| =

∣∣∣∣ 1
Γ(i)

∫s
0
(s− τ)i−1[x(τ) −ω(τ)]+dτ

∣∣∣∣
6

1
(i− 1)!

∫s
0
(s− τ)i−1|x(τ)|dτ

6
1

(i− 1)!

∫s
0
(s− τ)i−1dτ‖x‖ = 1

i!
si‖x‖ 6 ‖x‖ = R1, i = 1, 2, · · · ,n− 2.

Thus, for any x ∈ ∂Ω1, we have

Tx(t) = µ

∫ 1

0
H(t, s)(F(s, [x(s) −ω(s)]+) + e(s))ds

6 µκ
∫ 1

0
φ(s)(F(s, [x(s) −ω(s)]+) + e(s))ds

6 µκ
∫ 1

0
φ(s)

(
max

06z1,z2,··· ,zn−16R1
f(s, z1, z2, · · · , zn−2, zn−1) + e(s)

)
ds 6 R1 = ‖x‖,

which implies that
‖Tx‖ 6 ‖x‖, x ∈ ∂Ω1. (3.3)
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On the other hand, by (H3), there exists R ′ > 0 such that

f(t, z1, · · · , zn−2, zn−1) > Nzn−1, t ∈ [a,b], z1, z2, · · · , zn−2 > 0, zn−1 > R ′, (3.4)

where N > 0 is a constant satisfying

µνNa2(α−n+1)Λ

2

∫b
a

φ(s)ds > 1,

where Λ, ν are defined by (2.6) and Lemma 2.9, respectively. Choose

R2 > max
{
R1,

2R ′

aα−n+1Λ
,

2R ′(α− 1)(α− 2) · · · (α−n+ 2)
aα−1Λ

}
,

let Ω2 = {x ∈ P : ‖x‖ < R2}. Then for any x ∈ ∂Ω2, by (2.5) we have

x(s) −ω(s) = x(s) − µ

∫ 1

0
H(t, s)e(s)ds

> x(s) − µργ(t)
∫ 1

0
e(s)ds

> x(s) −
µρx(s)

ΛR2

∫ 1

0
e(s)ds

>

(
1 −

ρ

ΛR2

∫ 1

0
e(s)ds

)
x(s) >

1
2
x(s) > 0, s ∈ [0, 1].

Hence, we have

x(s) −ω(s) >
1
2
x(s) >

1
2
Λγ(s)‖x‖ > ΛR2

2
min
s∈[a,b]

γ(s) >
aα−n+1ΛR2

2
> R ′ > 0, s ∈ [a,b], (3.5)

Ii0+[x(s) −ω(s)]+ = Ii0+(x(s) −ω(s)) >
ΛR2

2(i− 1)!

∫s
0
(s− τ)i−1γ(τ)dτ

>
ΛR2

2(i− 1)!
sα−n+i+1B(i,α−n+ 2)

>
ΛR2a

α−n+i+1

2(α−n+ i+ 1)(α−n+ i) · · · (α−n+ 2)
> R ′ > 0, i = 1, 2, · · · ,n− 2, s ∈ [a,b],

(3.6)

where B(·, ·) is the beta function. Then for any x ∈ ∂Ω2, by (3.4), (3.5), and (3.6), we have

F(s, [x(s) −ω(s)]+) = f(s, In−2
0+ [x(s) −ω(s)]+, In−3

0+ [x(s) −ω(s)]+, · · · , I10+[x(s) −ω(s)]+, [x(s) −ω(s)]+)

> N[x(s) −ω(s)]+ >
Naα−n+1ΛR2

2
, s ∈ [a,b].

Thus for any x ∈ ∂Ω2, t ∈ [a,b], we have

Tx(t) = µ

∫ 1

0
H(t, s)(F(s, [x(s) −ω(s)]+) + e(s))ds

> µνγ(t)
∫ 1

0
φ(s)(F(s, [x(s) −ω(s)]+) + e(s))ds

> µν min
t∈[a,b]

γ(t)

∫b
a

φ(s)F(s, [x(s) −ω(s)]+)ds

>
µνNa2(α−n+1)ΛR2

2

∫b
a

φ(s)ds > R2,
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which implies that
‖Tx‖ > ‖x‖, x ∈ ∂Ω2. (3.7)

From (3.3), (3.7), and Lemma 2.14, we obtain that T has a fixed point x with R1 6 ‖x‖ 6 R2. Noticing that
‖x‖ > R1, we have

x(t) −ω(t) > Λγ(t)‖x‖− µργ(t)
∫ 1

0
e(s)ds

> Λγ(t)
ρ(
∫1

0 e(s)ds+ 1)
Λ

− ργ(t)

∫ 1

0
e(s)ds > ργ(t) > 0, t ∈ (0, 1].

Thus, x is a positive solution of problem (2.7) and x(t) > ω(t) for t ∈ (0, 1]. By Lemma 2.12, u(t) =
In−2

0+ (x(t) −ω(t)) is a positive solution of BVP (1.1). The proof is completed.

Remark 3.4. From the proof of Theorem 3.3, we know that the conclusion of Theorem 3.3 is valid if the
condition of (H3) is replaced by one of the following limits:

lim
z1→+∞ min

t∈[a,b]
z2>0,z3>0,··· ,zn−1>0

f(t, z1, z2 · · · , zn−2, zn−1)

z1
= +∞,

lim
z2→+∞ min

t∈[a,b]
z1>0,z3>0,··· ,zn−1>0

f(t, z1, z2 · · · , zn−2, zn−1)

z2
= +∞,

...

lim
zn−2→+∞ min

t∈[a,b]
z1>0,··· ,zn−3>0,zn−1>0

f(t, z1, z2 · · · , zn−2, zn−1)

zn−2
= +∞.

Then there exists µ > 0 such that for any 0 < µ < µ, BVP (1.1) has at least one positive solution.

4. An example

Example 4.1. Consider the following problem D
7
2
0+u(t) + µ

(
u2(t)√
t

+
u ′(t) + (u ′′(t))3

√
1 − t

−
cos t√
t(1 − t)

)
= 0, 0 < t < 1,

u(0) = u ′(0) = u ′′(0) = 0,u ′′(1) = λ[u ′′],

(4.1)

where

α =
7
2

, µ > 0, f(t, z1, z2, z3) =
z2

1√
t
+
z2 + z

3
3√

1 − t
−

cos t√
t(1 − t)

, (t, z1, z2, z3) ∈ (0, 1)×R3
+.

Let e(t) = 2√
t(1−t)

. Then, for t ∈ (0, 1), we have

f(t, z1, z2, z3) > −e(t), lim
z3→+∞ min

t∈[ 1
3 , 2

3 ]

z1>0,z2>0

f(t, z1, z2, z3)

z3
= +∞,

thus conditions (H∗1 ) and (H3) hold for

G(t, s) =


G1(t, s) =

[t(1 − s)]
1
2

Γ( 3
2)

, 0 6 t 6 s 6 1,

G2(t, s) =
[t(1 − s)]

1
2 − (t− s)

1
2

Γ( 3
2)

, 0 6 s 6 t 6 1.
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Since φ(s) = s(1 − s)
1
2 , s ∈ [0, 1], so we have∫ 1

0
φ(s)e(s)ds =

∫ 1

0
s(1 − s)

1
2

2√
s(1 − s)

ds = 2
∫ 1

0
s

1
2ds =

4
3
< +∞.

And for any constant r > 0,∫ 1

0
φ(s) max

z1,z2,z3∈[0,r]
f(s, z1, z2, z3)ds

∫ 1

0
s(1 − s)

1
2 max
z1,z2,z3∈[0,r]

(
z2

1√
s
+
z2 + z

3
3√

1 − s
−

cos s√
s(1 − s)

)
ds

6r2
∫ 1

0
s

1
2 (1 − s)

1
2ds+ (r+ r3)

∫ 1

0
sds+

∫ 1

0
s

1
2ds < +∞.

So, condition (H2) holds. In the following we discuss condition (H0) holds when λ[·] takes different cases.
1. Let λ[v] = 0. In this case, we have:

λ[γ] = 0, G (s) = 0.

2. Now, let λ[u ′′] =
∫1

0 u
′′(t)(4− 5t)dt. Note that the function g(t) = 4− 5t changes the sign on the interval

[0, 1]. In this case, we have

λ[γ] =

∫ 1

0
t

1
2dA(t) =

∫ 1

0
t

1
2 (4 − 5t)dt =

2
3
< 1,

G (s) =

∫ 1

0
G(t, s)(4 − 5t)dt =

1
Γ( 5

2)
(1 − s)

1
2 s(3 − 2s) > 0, s ∈ [0, 1].

3. Let λ[u ′′] = 1
2u
′′( 1

2). In this case, we have:

λ[γ] =

∫ 1

0
t

1
2dA(t) =

√
2

4
≈ 0.353553 < 1, G (s) =

1
2
G
(1

2
, s
)
> 0, s ∈ [0, 1].

4. Let λ[u ′′] = 2u ′′( 1
2) − u

′′( 3
4). Note that the coefficients k1 = 2, k2 = −1, i.e., not all of the coefficients

must be positively, so some coefficients of ki can be negative. In this case, we have

λ[γ] =

∫ 1

0
t

1
2dA(t) =

√
2 −

√
3

2
≈ 0.548188 < 1,

G (s) =



2G2

(
1
2

, s
)
−G2

(
3
4

, s
)

, 0 6 s <
1
2

,

2G1

(
1
2

, s
)
−G2

(
3
4

, s
)

,
1
2
6 s 6

3
4

,

2G1

(
1
2

, s
)
−G1

(
3
4

, s
)

,
3
4
< s 6 1.

Then 0 6 G (s) < 1, s ∈ [0, 1].
Seen from above, the condition (H0) holds in different cases 1-4. Therefore, all conditions of Theorem

3.3 are satisfied. Thus, by Theorem 3.3, BVP (4.1) has at least one positive solution provided µ is small
enough.

5. Conclusions

In this manuscript, by making use of fixed point theorem on Banach spaces, explicit range for µ is
derived such that for µ lying in this interval, the existence of at least one positive solution to the BVP (1.1)
is guaranteed. The obtained results show clearly that the nonnegative of the nonlinearity is no longer
required to get the positive solutions in this paper. To sustain our results, an example was analyzed in
detail.
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