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Abstract
In this work, we investigate the variable exponent sequence space `p(·). In particular, we prove a geometric property similar

to uniform convexity without the assumption lim supn→∞ p(n) < ∞. This property allows us to prove the analogue to Kirk’s
fixed point theorem in the modular vector space `p(·) under Nakano’s formulation. c©2017 All rights reserved.
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1. Introduction

The origin of function modulars defined in vector spaces goes back to the 1931 early work of Orlicz
[15]. In this work, he introduced the following vector space:

X =
{
(xn) ∈ RN;

∞∑
n=0

|λ xn|
p(n) <∞ for some λ > 0

}
,

where {p(n)} ⊂ [1,∞). For interested readers about about the topology and the geometry of X, we
recommend the references [8, 13, 18, 19]. Note that the vector space X may be seen as a predecessor to
the theory of variable exponent spaces [3]. Recently, these spaces have enjoyed a major development. A
systematic study of their vector topological properties was initiated in 1991 by Koväčik and Rákosnı́k [9].
But one of the driving forces for the rapid development of the theory of variable exponent spaces has
been the model of electrorheological fluids introduced by Rajagopal and Ružička [16, 17]. These fluids
are an example of smart materials, whose development is one of the major tools in space engineering.

The general definition of a modular in an abstract vector space was introduced by Nakano [12, 14].
In this work, we focus on establishing a geometric property similar to modular uniform convexity in the
vector space X described above. This investigation allows us to discover new unknown properties.

For the readers interested into the metric fixed point theory, we recommend the book by Khamsi and
Kirk [4] and the recent book by Khamsi and Kozlowski [5].
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2. Notations and Definitions

First recall the definition of the variable exponent sequence space `p(·).

Definition 2.1 ([15]). For a function p : N→ [1,∞), define the vector space

`p(·) =
{
(xn) ∈ RN;

∞∑
n=0

1
p(n)

|λ xn|
p(n) <∞ for some λ > 0

}
.

Inspired by the vector space `p(·), Nakano [12, 14, 13] came up with the concept of the modular vector
structure. The following proposition summarizes Nakano’s main ideas.

Proposition 2.2 ([8, 12, 18]). Consider the function ρ : `p(·) → [0,∞] defined by

ρ(x) = ρ((xn)) =

∞∑
n=0

1
p(n)

|xn|
p(n).

Then ρ satisfies the following properties:

(1) ρ(x) = 0 if and only if x = 0,
(2) ρ(αx) = ρ(x), if |α| = 1,
(3) ρ(αx+ (1 −α)y) 6 αρ(x) + (1 −α)ρ(y), for any α ∈ [0, 1],

for any x,y ∈ X. The function ρ is called a convex modular.

Next, we introduce a kind of modular topology that is similar to the classical metric topology.

Definition 2.3 ([6]).

(a) We say that a sequence {xn} ⊂ `p(·) is ρ-convergent to x ∈ `p(·) if and only if ρ(xn − x)→ 0. Note that
the ρ-limit is unique if it exists.

(b) A sequence {xn} ⊂ `p(·) is called ρ-Cauchy if ρ(xn − xm)→ 0 as n,m→∞.
(c) A set C ⊂ `p(·) is called ρ-closed if for any sequence {xn} ⊂ C which ρ-converges to x implies that

x ∈ C.
(d) A set C ⊂ `p(·) is called ρ-bounded if δρ(C) = sup{ρ(x− y); x,y ∈ C} <∞.

Note that ρ satisfies the Fatou property, i.e., ρ(x− y) 6 lim infn→∞ ρ(x− yn) holds whenever {yn}

ρ-converges to y, for any x,y,yn in `p(·). The Fatou property is very useful. For example, Fatou property
holds if and only if the ρ-balls are ρ-closed. Recall that the subset Bρ(x, r) = {y ∈ `p(·); ρ(x−y) 6 r}, with
x ∈ `p(·) and r > 0, is known as a ρ-ball.

Recall that ρ is said to satisfy the ∆2-condition if there exists K > 0 such that

ρ(2x) 6 K ρ(x)

for any x ∈ `p(·) [5]. This property is very important in the study of modular functionals. For more on
the ∆2-condition and its variants may be found in [5, 10, 11]. In the case of `p(·), it is easy to see that
ρ satisfies the ∆2-condition if and only if lim supn→∞ p(n) < ∞. Recall that the Minkowski functional
associated to the modular unit ball is known as the Luxemburg norm defined by

‖x‖ρ = inf
{
λ > 0; ρ

(
1
λ
x

)
6 1
}

.

Recall that (`p(·), ‖.‖ρ) is a Banach space. Sundaresan [18] proved that (`p(·), ‖.‖ρ) is reflexive if and only
if 1 < lim infn→∞ p(n) 6 lim supn→∞ p(n) < ∞. In this case, (`p(·), ‖.‖ρ) is uniformly convex which
implies in fact that (`p(·), ‖.‖ρ) is superreflexive [1]. In the next section, we will introduce a new modular
uniform convexity satisfied by `p(·) even when lim supn→∞ p(n) <∞ is not satisfied.
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3. Modular Uniform Convexity

Modular uniform convexity was introduced in general vector spaces by Nakano [14]. Its study in
Orlicz function spaces was carried in [3, 11].

Definition 3.1 ([3, 11]). We define the following uniform convexity type properties of the modular ρ:

(a) [14] Let r > 0 and ε > 0. Define

D1(r, ε) =
{
(x,y); x,y ∈ `p(·), ρ(x) 6 r, ρ(y) 6 r, ρ(x− y) > εr

}
.

If D1(r, ε) 6= ∅, let

δ1(r, ε) = inf
{

1 −
1
r
ρ

(
x+ y

2

)
; (x,y) ∈ D1(r, ε)

}
.

If D1(r, ε) = ∅, we set δ1(r, ε) = 1. We say that ρ satisfies the uniform convexity (UC) if for every
r > 0 and ε > 0, we have δ1(r, ε) > 0. Note that for every r > 0, D1(r, ε) 6= ∅, for ε > 0 small enough.

(b) [5] We say that ρ satisfies (UUC) if for every s > 0 and ε > 0, there exists η1(s, ε) > 0 depending on
s and ε such that

δ1(r, ε) > η1(s, ε) > 0 for r > s.

(c) [5] Let r > 0 and ε > 0. Define

D2(r, ε) =
{
(x,y); x,y ∈ `p(·), ρ(x) 6 r, ρ(y) 6 r, ρ

(
x− y

2

)
> εr

}
.

If D2(r, ε) 6= ∅, let

δ2(r, ε) = inf
{

1 −
1
r
ρ

(
x+ y

2

)
; (x,y) ∈ D2(r, ε)

}
.

If D2(r, ε) = ∅, we set δ2(r, ε) = 1. We say that ρ satisfies (UC2) if for every r > 0 and ε > 0, we have
δ2(r, ε) > 0. Note that for every r > 0, D2(r, ε) 6= ∅, for ε > 0 small enough.

(d) [5] We say that ρ satisfies (UUC2) if for every s > 0 and ε > 0, there exists η2(s, ε) > 0 depending
on s and ε such that

δ2(r, ε) > η2(s, ε) > 0 for r > s.

(e) [14] We say that ρ is strictly convex, (SC), if for every x,y ∈ `p(·) such that ρ(x) = ρ(y) and

ρ

(
x+ y

2

)
=
ρ(x) + ρ(y)

2
,

we have x = y.

The property (UC) was introduced by Nakano [14]. In all the subsequent research done on `p(·), the
authors considered (UC). For example, Sundaresan [18] proved that in `p(·), ρ satisfies (UC) if and only
if 1 < infn∈N p(n) 6 supn∈N p(n) < ∞. Note that (UC) and (UC2) are equivalent if ρ satisfies the
∆2-condition [5]. In this case, we must have supn∈N p(n) <∞.

The following technical result is very useful.

Lemma 3.2. The following inequalities are valid:

(i) [2] If p > 2, then we have ∣∣∣∣a+ b2

∣∣∣∣p + ∣∣∣∣a− b2

∣∣∣∣p 6
1
2

(
|a|p + |b|p

)
for any a,b ∈ R.
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(ii) [18] If 1 < p 6 2, then we have∣∣∣∣a+ b2

∣∣∣∣p + p(p− 1)
2

∣∣∣∣ a− b|a|+ |b|

∣∣∣∣2−p ∣∣∣∣a− b2

∣∣∣∣p 6
1
2

(
|a|p + |b|p

)
for any a,b ∈ R such that |a|+ |b| 6= 0.

Before we state the main result of this work, we will need the following notation:

ρK(x) = ρK((xn)) =
∑
n∈K

1
p(n)

|xn|
p(n)

for any K ⊂N and any x ∈ `p(·). If K = ∅, we set ρK(x) = 0.

Theorem 3.3. Consider the vector space `p(·). If infn∈N p(n) > 1, then the modular ρ is (UUC2).

Proof. Assume A = infn∈N p(n) > 1. Let r > 0 and ε > 0. Let x,y ∈ `p(·) such that

ρ(x) 6 r, ρ(y) 6 r and ρ

(
x− y

2

)
> r ε.

Since ρ is convex, then we have

r ε 6 ρ

(
x− y

2

)
6
ρ(x) + ρ(y)

2
6 r,

which implies ε 6 1. Next, set I = {n ∈ N;p(n) > 2} and J = {n ∈ N;p(n) < 2} = N \ I. Note that we
have ρ(z) = ρI(z) + ρJ(z), for any z ∈ `p(·). From our assumptions, we have either ρI((x− y)/2) > r ε/2
or ρJ((x− y)/2) > r ε/2.

Assume first ρI((x− y)/2) > r ε/2. Using Lemma 3.2, we conclude that

ρI

(
x+ y

2

)
+ ρI

(
x− y

2

)
6
ρI(x) + ρI(y)

2
,

which implies

ρI

(
x+ y

2

)
6
ρI(x) + ρI(y)

2
−
r ε

2
.

Since

ρJ

(
x+ y

2

)
6
ρJ(x) + ρJ(y)

2
,

we get

ρ

(
x+ y

2

)
6
ρ(x) + ρ(y)

2
−
r ε

2
6 r

(
1 −

ε

2

)
.

For the second case, assume ρJ((x− y)/2) > r ε/2. Set C = ε/4,

J1 =
{
n ∈ J; |xn − yn| 6 C(|xn|+ |yn|)

}
and J2 = J \ J1.

We have

ρJ1

(
x− y

2

)
6
∑
n∈J1

Cp(n)

p(n)

∣∣∣∣ |xn|+ |yn|

2

∣∣∣∣p(n) 6 C

2

∑
n∈J1

|xn|
p(n) + |yn|

p(n)

p(n)
,

because C 6 1 and the power function is convex. Hence

ρJ1

(
x− y

2

)
6
C

2

(
ρJ1(x) + ρJ1(y)

)
6
C

2

(
ρ(x) + ρ(y)

)
6 C r.
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Since ρJ((x− y)/2) > r ε/2, we get

ρJ2

(
x− y

2

)
= ρJ

(
x− y

2

)
− ρJ1

(
x− y

2

)
>
r ε

2
−C r.

For any n ∈ J2, we have

A− 1 6 p(n)(p(n) − 1) and C 6 C2−p(n) 6

∣∣∣∣ xn − yn
|xn|+ |yn|

∣∣∣∣2−p(n) ,

which implies by Lemma 3.2 that∣∣∣∣xn + yn
2

∣∣∣∣p(n) + (A− 1)C
2

∣∣∣∣xn − yn
2

∣∣∣∣p(n) 6 1
2

(
|xn|

p(n) + |yn|
p(n)

)
.

Hence

ρJ2

(
x+ y

2

)
+

(A− 1)C
2

ρJ2

(
x− y

2

)
6
ρJ2(x) + ρJ2(y)

2
,

which implies

ρJ2

(
x+ y

2

)
6
ρJ2(x) + ρJ2(y)

2
− r

(A− 1)ε2

8
,

since C = ε/4. Therefore, we have

ρ

(
x+ y

2

)
6 r− r

(A− 1)ε2

8
= r

(
1 −

(A− 1)ε2

8

)
.

Using the definition of δ2(r, ε), we conclude that

δ2(r, ε) > min
(
ε

2
, (A− 1)

ε2

8

)
> 0.

Therefore, ρ is (UC2). Moreover, if we set η2(r, ε) = min
(
ε/2, (A− 1)ε2/8

)
, we conclude that ρ is in fact

(UUC2).

Remark 3.4. Note that in our proof above, we showed that η2(r, ε) is in fact a function of ε only. We will
make use of this fact throughout.

Using this form of uniform convexity, we can prove some interesting modular geometric properties not
clear to hold in the absence of the ∆2-condition. these properties were proved recently in an unpublished
work. For the sake of completeness, we include their proofs.

Proposition 3.5. Consider the space `p(·). Assume infn∈N p(n) > 1.

(i) Let C be a nonempty ρ-closed convex subset of `p(·). Let x ∈ `p(·) be such that

dρ(x,C) = inf{ρ(x− y); y ∈ C} <∞.

Then there exists a unique c ∈ C such that dρ(x,C) = ρ(x− c).

(ii) `p(·) satisfies the property (R), i.e., for any decreasing sequence {Cn}n>1 of ρ-closed convex nonempty subsets
of `p(·) such that supn>1 dρ(x,Cn) <∞, for some x ∈ `p(·), then we have

⋂
n>1Cn is nonempty.

Proof. In order to prove (i), we may assume that x 6∈ C since C is ρ-closed. Therefore, we have dρ(x,C) > 0.
Set R = dρ(x,C). Hence for any n > 1, there exists yn ∈ C such that ρ(x− yn) < R(1 + 1/n). We claim
that {yn/2} is ρ-Cauchy. Assume otherwise that {yn/2} is not ρ-Cauchy. Then there exists a subsequence
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{yϕ(n)} and ε0 > 0 such that ρ
(
(yϕ(n) − yϕ(m))/2

)
> ε0, for any n > m > 1. Moreover, we have δ2(R(1+

1/n), 2ε0/R) > η2(ε0/2R) > 0, for any n > 1. Since max
(
ρ(x− yϕ(n)), ρ(x− yϕ(m))

)
6 R(1 + 1/ϕ(m))

and

ρ

(
yϕ(n) − yϕ(m)

2

)
> ε0 > R

(
1 +

1
ϕ(m)

)
ε0

2R

for any n > m > 1, we conclude that

ρ

(
x−

yϕ(n) + yϕ(m)

2

)
6 R

(
1 +

1
ϕ(m)

)(
1 − η2

( ε0

2R

))
.

Hence

R = dρ(x,C) 6 R
(

1 +
1

ϕ(m)

)(
1 − η2

( ε0

2R

))
for any m > 1. If we let m→∞, we get

R 6 R
(

1 − η2

( ε0

2R

))
< R,

which is a contradiction since R > 0. Therefore, {yn/2} is ρ-Cauchy. Since `p(·) is ρ-complete, then {yn/2}
ρ-converges to some y. We claim that 2y ∈ C. Indeed, for any m > 1, the sequence {(yn + ym)/2}
ρ-converges to y+ ym/2. Since C is ρ-closed and convex, we get y+ ym/2 ∈ C. Finally the sequence
{y+ ym/2} ρ-converges to 2y, which implies 2y ∈ C. Set c = 2y. Since ρ satisfies the Fatou property, we
have

dρ(x,C) 6 ρ(x− c)

6 lim inf
m→∞ ρ

(
x− (y+ ym/2)

)
6 lim inf
m→∞ lim inf

n→∞ ρ
(
x− (yn + ym/2)

)
6 lim inf
m→∞ lim inf

n→∞
(
ρ(x− yn) + ρ(x− ym)

)
/2

= dρ(x,C).

Hence ρ(x− c) = dρ(x,C). The uniqueness of the point c follows from the fact that ρ is (SC) since it is
(UUC2).

For the proof of (ii), we assume that x 6∈ Cn0 for some n0 > 1. In fact, the sequence {dρ(x,Cn)} is
increasing and bounded. Set limn→∞ dρ(x,Cn) = R. We may assume R > 0. Otherwise x ∈ Cn, for
any n > 1. From (i), there exists a unique yn ∈ Cn such that dρ(x,Cn) = ρ(x− yn), for any n > 1. A
similar proof will show that {yn/2} ρ-converges to some y ∈ `p(·). Since {Cn} are decreasing, convex and
ρ-closed, we conclude that 2y ∈

⋂
n>1Cn.

Remark 3.6. It is natural to wonder whether the property (R) extends to any family of decreasing subsets.
Indeed, assume infn∈N p(n) > 1. Let C be a ρ-closed nonempty convex subset of `p(·) which is ρ-
bounded. Let {Ci}i∈I be a family of ρ-closed nonempty convex subsets of C such that

⋂
i∈FCi 6= ∅, for any

finite subset F of I. Then
⋂
i∈ICi 6= ∅. In order to see this, let x ∈ C. Then supi∈I dρ(x,Ci) 6 δρ(C) <∞

holds. For any subset F ⊂ I, set dF = dρ(x,
⋂
i∈FCi). Note that if F1 ⊂ F2 ⊂ I are finite subsets, then

dF1 6 dF2 . Set

dI = sup
{
dρ

(
x,
⋂
i∈J
Ci

)
, J ⊂ I such that

⋂
i∈J
Ci 6= ∅

}
.

For any n > 1, there exists a subset Fn ⊂ I such that dI− 1/n < dFn 6 dI. Set F∗n = F1 ∪ · · · ∪ Fn, for n > 1.
Then

{⋂
i∈F∗n Ci

}
is a decreasing sequence of nonempty ρ-closed convex subsets of `p(·). The property

(R) implies
⋂
i∈JCi 6= ∅, where J =

⋃
n>1 F

∗
n =

⋃
n>1 Fn. Set K =

⋂
i∈JCi. Note that dρ(x,K) = dI because
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dI − 1/n < dFn 6 dρ(x,K) 6 dI, for any n > 1. Proposition 3.5 implies the existence of a unique y ∈ K
such that ρ(x− y) = dρ(x,K) = dI. Let i0 ∈ I, then

K∩Ci0 =
⋂

i∈J∪{i0}

Ci 6= ∅,

because of the same argument using the property (R). Hence dρ(x,K) 6 dρ(x,K ∩ Ci0) 6 dI. Hence
dρ(x,K ∩Ci0) = dρ(x,K) = dI which implies y ∈ K ∩Ci0 . Therefore, we have y ∈

⋂
i∈ICi which proves

our claim.

If the property (R) is satisfied by the family of convex and closed (for the Luxemburg norm) subsets,
we will deduce that `p(·) is reflexive. The work of Sundaresan [18] will imply in this case that 1 <

infn∈N p(n) 6 supn∈N p(n) <∞.

4. Application

In this section, we will show that under the assumption infn∈N p(n) > 1, the space `p(·) enjoys a nice
modular geometric property which will allow us to prove the analogue to Kirk’s fixed point theorem [7].

Definition 4.1. `p(·) is said to have the ρ-normal structure property if for any nonempty ρ-closed convex
ρ-bounded subset C of `p(·) not reduced to one point, there exists x ∈ C such that

sup
y∈C

ρ(x− y) < δρ(C).

Theorem 4.2. Assume infn∈N p(n) > 1. Then `p(·) has the ρ-normal structure property.

Proof. Since infn∈N p(n) > 1, Theorem 3.3 implies that ρ is (UUC2). Let C be a ρ-closed convex ρ-
bounded subset of `p(·) not reduced to one point. Hence δρ(C) > 0. Set R = δρ(C). Let x,y ∈ C such that
x 6= y. Hence ρ((x− y)/2) = ε > 0. For any c ∈ C, we have ρ(x− c) 6 R and ρ(y− c) 6 R. Hence

ρ

(
x+ y

2
− c

)
= ρ

(
(x− c) + (y− c)

2

)
6 R

(
1 − δ2

(
R,
ε

R

))
for any c ∈ C. Hence

sup
c∈C

ρ

(
x+ y

2
− c

)
6 R

(
1 − δ2

(
R,
ε

R

))
< R = δρ(C).

This completes the proof of Theorem 4.2 since C is convex.

Before we state the modular analogue to Kirk’s fixed point theorem in `p(·), we will need the following
definition.

Definition 4.3. Let C ⊂ `p(·) be nonempty. A mapping T : C→ C is called ρ-Lipschitzian if there exists a
constant K > 0 such that

ρ(T(x) − T(y)) 6 K ρ(x− y), for any x,y ∈ C.

If K = 1, T is called ρ-nonexpansive. A point x ∈ C is called a fixed point of T if T(x) = x.

Theorem 4.4. Assume infn∈N p(n) > 1. Let C be a nonempty ρ-closed convex ρ-bounded subset of `p(·). Let
T : C→ C be a ρ-nonexpansive mapping. Then T has a fixed point.

Proof. Let C be a nonempty ρ-closed convex ρ-bounded subset of `p(·). Let T : C→ C be a ρ-nonexpansive
mapping. Without loss of generality, we assume that C is not reduced to one point. Consider the family

F = {K ⊂ C; K is nonempty ρ-closed convex and T(K) ⊂ K}.
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The family F is not empty since C ∈ F. Since infn∈N p(n) > 1, ρ is (UUC2). Using Remark 3.6 combined
with Zorn’s lemma, we conclude that F has a minimal element K0. We claim that K0 is reduced to
one point. Assume not, i.e., K0 has more than one point. Set co(T(K0)) to be the intersection of all
ρ-closed convex subset of C containing T(K0). Hence co(T(K0)) ⊂ K0 since T(K0) ⊂ K0. So we have
T
(
co(T(K0))

)
⊂ T(K0) ⊂ co(T(K0)). The minimality of K0 implies K0 = co(T(K0)). Next, we use Theorem

4.2 to secure the existence of x0 ∈ K0 such that

r0 = sup
y∈K0

ρ(x0 − y) < δρ(K0).

Define the subset K = {x ∈ K0; supy∈K0
ρ(x − y) 6 r0}. K is not empty since x0 ∈ K. Note that we

have K =
⋂
y∈K0

Bρ(y, r0) ∩ K0, where Bρ(y, r0) = {z ∈ `p(·); ρ(y− z) 6 r0}. Since ρ satisfies the Fatou
property and is convex, Bρ(y, r0) is ρ-closed and convex. Hence K is ρ-closed and convex subset of K0.
let us show that T(K) ⊂ K. Let x ∈ K, then T(x) ∈

⋂
y∈K0

Bρ(T(y), r0) ∩ K0 since T is ρ-nonexpansive.
Hence T(K0) ⊂ Bρ(T(x), r0) which implies K0 = co(T(K0)) ⊂ Bρ(T(x), r0), i.e., T(x) ∈

⋂
y∈K0

Bρ(y, r0) ∩
K0. Therefore, T(K) ⊂ K holds. The minimality of K0 implies K = K0, i.e., for any x ∈ K0, we have
supy∈K0

ρ(x− y) 6 r0. This clearly will imply ρ(x− y) 6 r0, for any x,y ∈ K0. Hence δρ(K0) 6 r0. This
is our sought contradiction. Therefore, K0 is reduced to one point. Since T(K0) ⊂ K0, we conclude that T
has a fixed point in C.
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