Uniform convexity in $\ell_{p(\cdot)}$

Mostafa Bachar ${ }^{\text {a,* }}$, Messaoud Bounkhel ${ }^{\text {a }}$, Mohamed A. Khamsi ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
${ }^{b}$ Department of Mathematics \& Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
${ }^{c}$ Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA.

Communicated by P. Kumam

Abstract

In this work, we investigate the variable exponent sequence space $\ell_{p(\cdot)}$. In particular, we prove a geometric property similar to uniform convexity without the assumption $\lim _{\sup _{n \rightarrow \infty}} \mathfrak{p}(n)<\infty$. This property allows us to prove the analogue to Kirk's fixed point theorem in the modular vector space $\ell_{p(\cdot)}$ under Nakano's formulation. © 2017 All rights reserved.

Keywords: Fixed point, modular vector spaces, nonexpansive mapping, uniformly convex, variable exponent spaces. 2010 MSC: 47H09, 46B20, 47H10, 47E10.

1. Introduction

The origin of function modulars defined in vector spaces goes back to the 1931 early work of Orlicz [15]. In this work, he introduced the following vector space:

$$
X=\left\{\left(x_{n}\right) \in \mathbb{R}^{\mathbb{N}} ; \sum_{n=0}^{\infty}\left|\lambda x_{n}\right|^{p(n)}<\infty \text { for some } \lambda>0\right\}
$$

where $\{p(n)\} \subset[1, \infty)$. For interested readers about about the topology and the geometry of X, we recommend the references $[8,13,18,19]$. Note that the vector space X may be seen as a predecessor to the theory of variable exponent spaces [3]. Recently, these spaces have enjoyed a major development. A systematic study of their vector topological properties was initiated in 1991 by Koväčik and Rákosník [9]. But one of the driving forces for the rapid development of the theory of variable exponent spaces has been the model of electrorheological fluids introduced by Rajagopal and Ružička [16, 17]. These fluids are an example of smart materials, whose development is one of the major tools in space engineering.

The general definition of a modular in an abstract vector space was introduced by Nakano [12, 14]. In this work, we focus on establishing a geometric property similar to modular uniform convexity in the vector space X described above. This investigation allows us to discover new unknown properties.

For the readers interested into the metric fixed point theory, we recommend the book by Khamsi and Kirk [4] and the recent book by Khamsi and Kozlowski [5].

[^0]doi:10.22436/jnsa.010.10.15
Received 2017-05-09

2. Notations and Definitions

First recall the definition of the variable exponent sequence space $\ell_{\mathfrak{p}(\cdot)}$.
Definition 2.1 ([15]). For a function $p: \mathbb{N} \rightarrow[1, \infty)$, define the vector space

$$
\ell_{p(\cdot)}=\left\{\left(x_{n}\right) \in \mathbb{R}^{\mathbb{N}} ; \sum_{n=0}^{\infty} \frac{1}{\mathfrak{p}(n)}\left|\lambda x_{n}\right|^{p(n)}<\infty \text { for some } \lambda>0\right\} .
$$

Inspired by the vector space $\ell_{\mathfrak{p}(\cdot)}$, Nakano $[12,14,13]$ came up with the concept of the modular vector structure. The following proposition summarizes Nakano's main ideas.
Proposition 2.2 ($[8,12,18])$. Consider the function $\rho: \ell_{p(\cdot)} \rightarrow[0, \infty]$ defined by

$$
\rho(x)=\rho\left(\left(x_{n}\right)\right)=\sum_{n=0}^{\infty} \frac{1}{p(n)}\left|x_{n}\right|^{p(n)} .
$$

Then ρ satisfies the following properties:
(1) $\rho(x)=0$ if and only if $x=0$,
(2) $\rho(\alpha x)=\rho(x)$, if $|\alpha|=1$,
(3) $\rho(\alpha x+(1-\alpha) y) \leqslant \alpha \rho(x)+(1-\alpha) \rho(y)$, for any $\alpha \in[0,1]$,
for any $x, y \in X$. The function ρ is called a convex modular.
Next, we introduce a kind of modular topology that is similar to the classical metric topology.
Definition 2.3 ([6]).
(a) We say that a sequence $\left\{x_{n}\right\} \subset \ell_{p(\cdot)}$ is ρ-convergent to $x \in \ell_{\mathfrak{p}(\cdot)}$ if and only if $\rho\left(x_{n}-x\right) \rightarrow 0$. Note that the ρ-limit is unique if it exists.
(b) A sequence $\left\{x_{n}\right\} \subset \ell_{p(\cdot)}$ is called ρ-Cauchy if $\rho\left(x_{n}-x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.
(c) A set $C \subset \ell_{p(\cdot)}$ is called ρ-closed if for any sequence $\left\{x_{n}\right\} \subset C$ which ρ-converges to x implies that $x \in C$.
(d) A set $C \subset \ell_{p(\cdot)}$ is called ρ-bounded if $\delta_{\rho}(C)=\sup \{\rho(x-y) ; x, y \in C\}<\infty$.

Note that ρ satisfies the Fatou property, i.e., $\rho(x-y) \leqslant \liminf _{n \rightarrow \infty} \rho\left(x-y_{n}\right)$ holds whenever $\left\{y_{n}\right\}$ ρ-converges to y, for any $x, y_{, y_{n}}$ in $\ell_{p(\cdot)}$. The Fatou property is very useful. For example, Fatou property holds if and only if the ρ-balls are ρ-closed. Recall that the subset $B_{\rho}(x, r)=\left\{y \in \ell_{p(\cdot)} ; \rho(x-y) \leqslant r\right\}$, with $x \in \ell_{p(\cdot)}$ and $r \geqslant 0$, is known as a ρ-ball.

Recall that ρ is said to satisfy the Δ_{2}-condition if there exists $K \geqslant 0$ such that

$$
\rho(2 x) \leqslant K \rho(x)
$$

for any $x \in \ell_{\mathfrak{p}(\cdot)}$ [5]. This property is very important in the study of modular functionals. For more on the Δ_{2}-condition and its variants may be found in $[5,10,11]$. In the case of $\ell_{p(\cdot)}$, it is easy to see that ρ satisfies the Δ_{2}-condition if and only if $\limsup _{n \rightarrow \infty} \mathfrak{p}(\mathfrak{n})<\infty$. Recall that the Minkowski functional associated to the modular unit ball is known as the Luxemburg norm defined by

$$
\|x\|_{\rho}=\inf \left\{\lambda>0 ; \rho\left(\frac{1}{\lambda} x\right) \leqslant 1\right\} .
$$

Recall that $\left(\ell_{\mathfrak{p}(\cdot)},\|\cdot\|_{\rho}\right)$ is a Banach space. Sundaresan [18] proved that $\left(\ell_{\mathfrak{p}(\cdot)},\|\cdot\|_{\rho}\right)$ is reflexive if and only if $1<\liminf _{n \rightarrow \infty} p(n) \leqslant \limsup \sin _{n \rightarrow \infty} p(n)<\infty$. In this case, $\left(\ell_{p(\cdot)},\|.\| \rho\right)$ is uniformly convex which implies in fact that $\left(\ell_{p(\cdot)},\|\cdot\|_{\rho}\right)$ is superreflexive [1]. In the next section, we will introduce a new modular uniform convexity satisfied by $\ell_{p(\cdot)}$ even when $\lim \sup _{n \rightarrow \infty} \mathfrak{p}(n)<\infty$ is not satisfied.

3. Modular Uniform Convexity

Modular uniform convexity was introduced in general vector spaces by Nakano [14]. Its study in Orlicz function spaces was carried in [3,11].

Definition $3.1([3,11])$. We define the following uniform convexity type properties of the modular ρ :
(a) [14] Let $r>0$ and $\varepsilon>0$. Define

$$
D_{1}(r, \varepsilon)=\left\{(x, y) ; x, y \in \ell_{p(\cdot)}, \rho(x) \leqslant r, \rho(y) \leqslant r, \rho(x-y) \geqslant \varepsilon r\right\}
$$

If $D_{1}(r, \varepsilon) \neq \emptyset$, let

$$
\delta_{1}(r, \varepsilon)=\inf \left\{1-\frac{1}{r} \rho\left(\frac{x+y}{2}\right) ;(x, y) \in D_{1}(r, \varepsilon)\right\}
$$

If $D_{1}(r, \varepsilon)=\emptyset$, we set $\delta_{1}(r, \varepsilon)=1$. We say that ρ satisfies the uniform convexity (UC) if for every $r>0$ and $\varepsilon>0$, we have $\delta_{1}(r, \varepsilon)>0$. Note that for every $r>0, D_{1}(r, \varepsilon) \neq \emptyset$, for $\varepsilon>0$ small enough.
(b) [5] We say that ρ satisfies (UUC) if for every $s \geqslant 0$ and $\varepsilon>0$, there exists $\eta_{1}(s, \varepsilon)>0$ depending on s and ε such that

$$
\delta_{1}(r, \varepsilon)>\eta_{1}(s, \varepsilon)>0 \text { for } r>s
$$

(c) [5] Let $\mathrm{r}>0$ and $\varepsilon>0$. Define

$$
D_{2}(r, \varepsilon)=\left\{(x, y) ; x, y \in \ell_{p(\cdot)}, \rho(x) \leqslant r, \rho(y) \leqslant r, \rho\left(\frac{x-y}{2}\right) \geqslant \varepsilon r\right\}
$$

If $D_{2}(r, \varepsilon) \neq \emptyset$, let

$$
\delta_{2}(r, \varepsilon)=\inf \left\{1-\frac{1}{r} \rho\left(\frac{x+y}{2}\right) ;(x, y) \in D_{2}(r, \varepsilon)\right\}
$$

If $D_{2}(r, \varepsilon)=\emptyset$, we set $\delta_{2}(r, \varepsilon)=1$. We say that ρ satisfies (UC2) if for every $r>0$ and $\varepsilon>0$, we have $\delta_{2}(r, \varepsilon)>0$. Note that for every $r>0, D_{2}(r, \varepsilon) \neq \emptyset$, for $\varepsilon>0$ small enough.
(d) [5] We say that ρ satisfies (UUC2) if for every $s \geqslant 0$ and $\varepsilon>0$, there exists $\eta_{2}(s, \varepsilon)>0$ depending on s and ε such that

$$
\delta_{2}(r, \varepsilon)>\eta_{2}(s, \varepsilon)>0 \text { for } r>s
$$

(e) [14] We say that ρ is strictly convex, (SC), if for every $x, y \in \ell_{p(\cdot)}$ such that $\rho(x)=\rho(y)$ and

$$
\rho\left(\frac{x+y}{2}\right)=\frac{\rho(x)+\rho(y)}{2}
$$

we have $x=y$.
The property (UC) was introduced by Nakano [14]. In all the subsequent research done on $\ell_{\mathrm{p}(\cdot)}$, the authors considered (UC). For example, Sundaresan [18] proved that in $\ell_{p(\cdot)}, \rho$ satisfies (UC) if and only if $1<\inf _{n \in \mathbb{N}} p(n) \leqslant \sup _{n \in \mathbb{N}} p(n)<\infty$. Note that (UC) and (UC2) are equivalent if ρ satisfies the Δ_{2}-condition [5]. In this case, we must have $\sup _{n \in \mathbb{N}} p(n)<\infty$.

The following technical result is very useful.
Lemma 3.2. The following inequalities are valid:
(i) [2] If $p \geqslant 2$, then we have

$$
\left|\frac{a+b}{2}\right|^{p}+\left|\frac{a-b}{2}\right|^{p} \leqslant \frac{1}{2}\left(|a|^{p}+|b|^{p}\right)
$$

for any $a, b \in \mathbb{R}$.
(ii) [18] If $1<p \leqslant 2$, then we have

$$
\left|\frac{a+b}{2}\right|^{p}+\frac{p(p-1)}{2}\left|\frac{a-b}{|a|+|b|}\right|^{2-p}\left|\frac{a-b}{2}\right|^{p} \leqslant \frac{1}{2}\left(|a|^{p}+|b|^{p}\right)
$$

for any $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ such that $|\mathrm{a}|+|\mathrm{b}| \neq 0$.
Before we state the main result of this work, we will need the following notation:

$$
\rho_{K}(x)=\rho_{K}\left(\left(x_{n}\right)\right)=\sum_{n \in K} \frac{1}{p(n)}\left|x_{n}\right|^{p(n)}
$$

for any $K \subset \mathbb{N}$ and any $x \in \ell_{p(\cdot)}$. If $K=\emptyset$, we set $\rho_{K}(x)=0$.
Theorem 3.3. Consider the vector space $\ell_{p(\cdot)}$. If $\inf _{n \in \mathbb{N}} p(n)>1$, then the modular ρ is (UUC2).
Proof. Assume $A=\inf _{n \in \mathbb{N}} p(n)>1$. Let $r>0$ and $\varepsilon>0$. Let $x, y \in \ell_{p(\cdot)}$ such that

$$
\rho(x) \leqslant r, \quad \rho(y) \leqslant r \text { and } \rho\left(\frac{x-y}{2}\right) \geqslant r \varepsilon
$$

Since ρ is convex, then we have

$$
r \varepsilon \leqslant \rho\left(\frac{x-y}{2}\right) \leqslant \frac{\rho(x)+\rho(y)}{2} \leqslant r
$$

which implies $\varepsilon \leqslant 1$. Next, set $I=\{n \in \mathbb{N} ; p(n) \geqslant 2\}$ and $J=\{n \in \mathbb{N} ; p(n)<2\}=\mathbb{N} \backslash I$. Note that we have $\rho(z)=\rho_{\mathrm{I}}(z)+\rho_{\mathrm{J}}(z)$, for any $z \in \ell_{\mathrm{p}(\cdot)}$. From our assumptions, we have either $\rho_{\mathrm{I}}((x-y) / 2) \geqslant r \varepsilon / 2$ or $\rho_{\mathrm{J}}((x-y) / 2) \geqslant r \varepsilon / 2$.

Assume first $\rho_{\mathrm{I}}((x-y) / 2) \geqslant \mathrm{r} \varepsilon / 2$. Using Lemma 3.2, we conclude that

$$
\rho_{\mathrm{I}}\left(\frac{x+y}{2}\right)+\rho_{\mathrm{I}}\left(\frac{x-y}{2}\right) \leqslant \frac{\rho_{\mathrm{I}}(x)+\rho_{\mathrm{I}}(y)}{2}
$$

which implies

$$
\rho_{\mathrm{I}}\left(\frac{x+y}{2}\right) \leqslant \frac{\rho_{\mathrm{I}}(x)+\rho_{\mathrm{I}}(y)}{2}-\frac{r \varepsilon}{2} .
$$

Since

$$
\rho_{\mathrm{J}}\left(\frac{x+y}{2}\right) \leqslant \frac{\rho_{\mathrm{J}}(x)+\rho_{\mathrm{J}}(\mathrm{y})}{2}
$$

we get

$$
\rho\left(\frac{x+y}{2}\right) \leqslant \frac{\rho(x)+\rho(y)}{2}-\frac{r \varepsilon}{2} \leqslant r\left(1-\frac{\varepsilon}{2}\right)
$$

For the second case, assume $\rho_{\mathrm{J}}((x-y) / 2) \geqslant r \varepsilon / 2$. Set $C=\varepsilon / 4$,

$$
\mathrm{J}_{1}=\left\{n \in \mathrm{~J} ;\left|x_{n}-y_{n}\right| \leqslant C\left(\left|x_{n}\right|+\left|y_{n}\right|\right)\right\} \text { and } J_{2}=J \backslash J_{1}
$$

We have

$$
\rho_{J_{1}}\left(\frac{x-y}{2}\right) \leqslant \sum_{n \in J_{1}} \frac{C^{p(n)}}{p(n)}\left|\frac{\left|x_{n}\right|+\left|y_{n}\right|^{p(n)}}{2}\right|^{C} \leqslant \frac{C}{2} \sum_{n \in J_{1}} \frac{\left|x_{n}\right|^{p(n)}+\left|y_{n}\right|^{p(n)}}{p(n)}
$$

because $C \leqslant 1$ and the power function is convex. Hence

$$
\rho_{J_{1}}\left(\frac{x-y}{2}\right) \leqslant \frac{C}{2}\left(\rho_{J_{1}}(x)+\rho_{J_{1}}(y)\right) \leqslant \frac{C}{2}(\rho(x)+\rho(y)) \leqslant C r
$$

Since $\rho_{\mathrm{J}}((x-y) / 2) \geqslant r \varepsilon / 2$, we get

$$
\rho_{\mathrm{J}_{2}}\left(\frac{x-y}{2}\right)=\rho_{\mathrm{J}}\left(\frac{x-y}{2}\right)-\rho_{\mathrm{J}_{1}}\left(\frac{x-y}{2}\right) \geqslant \frac{\mathrm{r} \varepsilon}{2}-\mathrm{Cr} .
$$

For any $n \in J_{2}$, we have

$$
A-1 \leqslant p(n)(p(n)-1) \text { and } C \leqslant C^{2-p(n)} \leqslant\left|\frac{x_{n}-y_{n}}{\left|x_{n}\right|+\left|y_{n}\right|}\right|^{2-p(n)}
$$

which implies by Lemma 3.2 that

$$
\left|\frac{x_{n}+y_{n}}{2}\right|^{p(n)}+\frac{(A-1) C}{2}\left|\frac{x_{n}-y_{n}}{2}\right|^{p(n)} \leqslant \frac{1}{2}\left(\left|x_{n}\right|^{p(n)}+\left|y_{n}\right|^{p(n)}\right) .
$$

Hence

$$
\rho_{\mathrm{J}_{2}}\left(\frac{x+y}{2}\right)+\frac{(A-1) \mathrm{C}}{2} \rho_{\mathrm{J}_{2}}\left(\frac{x-y}{2}\right) \leqslant \frac{\rho_{\mathrm{J}_{2}}(x)+\rho_{\mathrm{J}_{2}}(y)}{2},
$$

which implies

$$
\rho_{\mathrm{J}_{2}}\left(\frac{\mathrm{x}+\mathrm{y}}{2}\right) \leqslant \frac{\rho_{\mathrm{J}_{2}}(\mathrm{x})+\rho_{\mathrm{J}_{2}}(\mathrm{y})}{2}-\mathrm{r} \frac{(\mathrm{~A}-1) \varepsilon^{2}}{8},
$$

since $C=\varepsilon / 4$. Therefore, we have

$$
\rho\left(\frac{x+y}{2}\right) \leqslant r-r \frac{(A-1) \varepsilon^{2}}{8}=r\left(1-\frac{(A-1) \varepsilon^{2}}{8}\right) .
$$

Using the definition of $\delta_{2}(r, \varepsilon)$, we conclude that

$$
\delta_{2}(r, \varepsilon) \geqslant \min \left(\frac{\varepsilon}{2},(A-1) \frac{\varepsilon^{2}}{8}\right)>0 .
$$

Therefore, ρ is (UC2). Moreover, if we set $\eta_{2}(r, \varepsilon)=\min \left(\varepsilon / 2,(A-1) \varepsilon^{2} / 8\right)$, we conclude that ρ is in fact (UUC2).

Remark 3.4. Note that in our proof above, we showed that $\eta_{2}(r, \varepsilon)$ is in fact a function of ε only. We will make use of this fact throughout.

Using this form of uniform convexity, we can prove some interesting modular geometric properties not clear to hold in the absence of the Δ_{2}-condition. these properties were proved recently in an unpublished work. For the sake of completeness, we include their proofs.
Proposition 3.5. Consider the space $\ell_{p(\cdot)}$. Assume $\inf _{\mathfrak{n} \in \mathbb{N}} \mathfrak{p}(\mathfrak{n})>1$.
(i) Let C be a nonempty ρ-closed convex subset of $\ell_{\mathrm{p}(\cdot)}$. Let $\mathrm{x} \in \ell_{\mathrm{p}(\cdot)}$ be such that

$$
d_{\rho}(x, C)=\inf \{\rho(x-y) ; y \in C\}<\infty .
$$

Then there exists a unique $\mathrm{c} \in \mathrm{C}$ such that $\mathrm{d}_{\rho}(\mathrm{x}, \mathrm{C})=\rho(\mathrm{x}-\mathrm{c})$.
(ii) $\ell_{p(\cdot)}$ satisfies the property (R), i.e., for any decreasing sequence $\left\{\mathrm{C}_{n}\right\}_{n} \geqslant 1$ of ρ-closed convex nonempty subsets of $\ell_{p(\cdot)}$ such that $\sup _{n \geqslant 1} d_{\rho}\left(x, C_{n}\right)<\infty$, for some $x \in \ell_{p(\cdot)}$, then we have $\bigcap_{n \geqslant 1} C_{n}$ is nonempty.
Proof. In order to prove (i), we may assume that $x \notin C$ since C is ρ-closed. Therefore, we have $d_{\rho}(x, C)>0$. Set $R=d_{\rho}(x, C)$. Hence for any $n \geqslant 1$, there exists $y_{n} \in C$ such that $\rho\left(x-y_{n}\right)<R(1+1 / n)$. We claim that $\left\{y_{n} / 2\right\}$ is ρ-Cauchy. Assume otherwise that $\left\{y_{n} / 2\right\}$ is not ρ-Cauchy. Then there exists a subsequence
$\left\{y_{\varphi(n)}\right\}$ and $\varepsilon_{0}>0$ such that $\rho\left(\left(y_{\varphi(n)}-y_{\varphi(\mathfrak{m})}\right) / 2\right) \geqslant \varepsilon_{0}$, for any $n>m \geqslant 1$. Moreover, we have $\delta_{2}(R(1+$ $\left.1 / n), 2 \varepsilon_{0} / R\right) \geqslant \eta_{2}\left(\varepsilon_{0} / 2 R\right)>0$, for any $n \geqslant 1$. Since $\max \left(\rho\left(x-y_{\varphi(n)}\right), \rho\left(x-y_{\varphi(m)}\right)\right) \leqslant R(1+1 / \varphi(\mathfrak{m}))$ and

$$
\rho\left(\frac{y_{\varphi(\mathfrak{n})}-y_{\varphi(m)}}{2}\right) \geqslant \varepsilon_{0} \geqslant R\left(1+\frac{1}{\varphi(m)}\right) \frac{\varepsilon_{0}}{2 R}
$$

for any $n>m \geqslant 1$, we conclude that

$$
\rho\left(x-\frac{y_{\varphi(n)}+y_{\varphi(\mathfrak{m})}}{2}\right) \leqslant R\left(1+\frac{1}{\varphi(\mathfrak{m})}\right)\left(1-\eta_{2}\left(\frac{\varepsilon_{0}}{2 R}\right)\right) .
$$

Hence

$$
R=d_{\rho}(x, C) \leqslant R\left(1+\frac{1}{\varphi(m)}\right)\left(1-\eta_{2}\left(\frac{\varepsilon_{0}}{2 R}\right)\right)
$$

for any $m \geqslant 1$. If we let $m \rightarrow \infty$, we get

$$
R \leqslant R\left(1-\eta_{2}\left(\frac{\varepsilon_{0}}{2 R}\right)\right)<R,
$$

which is a contradiction since $R>0$. Therefore, $\left\{y_{n} / 2\right\}$ is ρ-Cauchy. Since $\ell_{p(\cdot)}$ is ρ-complete, then $\left\{y_{n} / 2\right\}$ ρ-converges to some y. We claim that $2 y \in C$. Indeed, for any $m \geqslant 1$, the sequence $\left\{\left(y_{n}+y_{m}\right) / 2\right\}$ ρ-converges to $y+y_{m} / 2$. Since C is ρ-closed and convex, we get $y+y_{m} / 2 \in C$. Finally the sequence $\left\{y+y_{m} / 2\right\} \rho$-converges to $2 y$, which implies $2 y \in C$. Set $c=2 y$. Since ρ satisfies the Fatou property, we have

$$
\begin{aligned}
d_{\rho}(x, C) & \leqslant \rho(x-c) \\
& \leqslant \liminf _{m \rightarrow \infty} \rho\left(x-\left(y+y_{m} / 2\right)\right) \\
& \leqslant \liminf _{m \rightarrow \infty} \liminf _{n \rightarrow \infty} \rho\left(x-\left(y_{n}+y_{m} / 2\right)\right) \\
& \leqslant \liminf _{m \rightarrow \infty} \liminf _{n \rightarrow \infty}\left(\rho\left(x-y_{n}\right)+\rho\left(x-y_{m}\right)\right) / 2 \\
& =d_{\rho}(x, C) .
\end{aligned}
$$

Hence $\rho(x-c)=d_{\rho}(x, C)$. The uniqueness of the point c follows from the fact that ρ is (SC) since it is (UUC2).

For the proof of (ii), we assume that $x \notin C_{n_{0}}$ for some $n_{0} \geqslant 1$. In fact, the sequence $\left\{d_{\rho}\left(x, C_{n}\right)\right\}$ is increasing and bounded. Set $\lim _{n \rightarrow \infty} d_{\rho}\left(x, C_{n}\right)=R$. We may assume $R>0$. Otherwise $x \in C_{n}$, for any $n \geqslant 1$. From (i), there exists a unique $y_{n} \in C_{n}$ such that $d_{\rho}\left(x, C_{n}\right)=\rho\left(x-y_{n}\right)$, for any $n \geqslant 1$. A similar proof will show that $\left\{y_{n} / 2\right\} \rho$-converges to some $y \in \ell_{p(\cdot)}$. Since $\left\{C_{n}\right\}$ are decreasing, convex and ρ-closed, we conclude that $2 y \in \bigcap_{n \geqslant 1} C_{n}$.

Remark 3.6. It is natural to wonder whether the property (R) extends to any family of decreasing subsets. Indeed, assume $\inf _{n \in \mathbb{N}} p(n)>1$. Let C be a ρ-closed nonempty convex subset of $\ell_{p(\cdot)}$ which is ρ bounded. Let $\left\{C_{i}\right\}_{i \in I}$ be a family of ρ-closed nonempty convex subsets of C such that $\bigcap_{i \in F} C_{i} \neq \emptyset$, for any finite subset F of I. Then $\bigcap_{i \in I} C_{i} \neq \emptyset$. In order to see this, let $x \in C$. Then sup $\operatorname{ping}_{i \in I} d_{\rho}\left(x, C_{i}\right) \leqslant \delta_{\rho}(C)<\infty$ holds. For any subset $F \subset I$, set $d_{F}=d_{\rho}\left(x, \bigcap_{i \in F} C_{i}\right)$. Note that if $F_{1} \subset F_{2} \subset I$ are finite subsets, then $\mathrm{d}_{\mathrm{F}_{1}} \leqslant \mathrm{~d}_{\mathrm{F}_{2}}$. Set

$$
d_{I}=\sup \left\{d_{\rho}\left(x, \bigcap_{i \in J} C_{i}\right), J \subset I \text { such that } \bigcap_{i \in J} C_{i} \neq \emptyset\right\} .
$$

For any $n \geqslant 1$, there exists a subset $F_{n} \subset I$ such that $d_{I}-1 / n<d_{F_{n}} \leqslant d_{I}$. Set $F_{n}^{*}=F_{1} \cup \cdots \cup F_{n}$, for $n \geqslant 1$. Then $\left\{\bigcap_{i \in F_{n}^{*}} C_{i}\right\}$ is a decreasing sequence of nonempty ρ-closed convex subsets of $\ell_{p(\cdot) \text {. }}$. The property (R) implies $\bigcap_{i \in J} C_{i} \neq \emptyset$, where $J=\bigcup_{n \geqslant 1} F_{n}^{*}=\bigcup_{n \geqslant 1} F_{n}$. Set $K=\bigcap_{i \in J} C_{i}$. Note that $d_{\rho}(x, K)=d_{I}$ because
$d_{I}-1 / n<d_{F_{n}} \leqslant d_{\rho}(x, K) \leqslant d_{I}$, for any $n \geqslant 1$. Proposition 3.5 implies the existence of a unique $y \in K$ such that $\rho(x-y)=d_{\rho}(x, K)=d_{I}$. Let $i_{0} \in I$, then

$$
K \cap C_{i_{0}}=\bigcap_{i \in J \cup\left\{i_{0}\right\}} C_{i} \neq \emptyset,
$$

because of the same argument using the property (R). Hence $d_{\rho}(x, K) \leqslant d_{\rho}\left(x, K \cap C_{i_{0}}\right) \leqslant d_{I}$. Hence $d_{\rho}\left(x, K \cap C_{i_{0}}\right)=d_{\rho}(x, K)=d_{I}$ which implies $y \in K \cap C_{i_{0}}$. Therefore, we have $y \in \bigcap_{i \in I} C_{i}$ which proves our claim.

If the property (R) is satisfied by the family of convex and closed (for the Luxemburg norm) subsets, we will deduce that $\ell_{p(\cdot)}$ is reflexive. The work of Sundaresan [18] will imply in this case that $1<$ $\inf _{\mathfrak{n} \in \mathbb{N}} \mathfrak{p}(\mathfrak{n}) \leqslant \sup _{\mathfrak{n} \in \mathbb{N}} \mathfrak{p}(\mathfrak{n})<\infty$.

4. Application

In this section, we will show that under the assumption $\inf _{n \in \mathbb{N}} \mathfrak{p}(n)>1$, the space $\ell_{p(\cdot)}$ enjoys a nice modular geometric property which will allow us to prove the analogue to Kirk's fixed point theorem [7].

Definition 4.1. $\ell_{p(\cdot)}$ is said to have the ρ-normal structure property if for any nonempty ρ-closed convex ρ-bounded subset C of $\ell_{p(\cdot)}$ not reduced to one point, there exists $x \in C$ such that

$$
\sup _{y \in C} \rho(x-y)<\delta_{\rho}(C) .
$$

Theorem 4.2. Assume $\inf _{\mathfrak{n} \in \mathbb{N}} \mathfrak{p}(\mathfrak{n})>1$. Then $\ell_{\mathfrak{p}(.)}$ has the ρ-normal structure property.
Proof. Since $\inf _{\mathfrak{n} \in \mathbb{N}} \mathfrak{p}(\mathfrak{n})>1$, Theorem 3.3 implies that ρ is (UUC2). Let C be a ρ-closed convex ρ bounded subset of $\ell_{p(\cdot)}$ not reduced to one point. Hence $\delta_{\rho}(C)>0$. Set $R=\delta_{\rho}(C)$. Let $x, y \in C$ such that $x \neq y$. Hence $\rho((x-y) / 2)=\varepsilon>0$. For any $c \in C$, we have $\rho(x-c) \leqslant R$ and $\rho(y-c) \leqslant R$. Hence

$$
\rho\left(\frac{x+y}{2}-c\right)=\rho\left(\frac{(x-c)+(y-c)}{2}\right) \leqslant R\left(1-\delta_{2}\left(R, \frac{\varepsilon}{R}\right)\right)
$$

for any $c \in C$. Hence

$$
\sup _{c \in C} \rho\left(\frac{x+y}{2}-c\right) \leqslant R\left(1-\delta_{2}\left(R, \frac{\varepsilon}{R}\right)\right)<R=\delta_{\rho}(C) .
$$

This completes the proof of Theorem 4.2 since C is convex.
Before we state the modular analogue to Kirk's fixed point theorem in $\ell_{p(\cdot)}$, we will need the following definition.

Definition 4.3. Let $\mathrm{C} \subset \ell_{p(\cdot)}$ be nonempty. A mapping $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ is called ρ-Lipschitzian if there exists a constant $K \geqslant 0$ such that

$$
\rho(T(x)-T(y)) \leqslant K \rho(x-y), \quad \text { for any } x, y \in C .
$$

If $K=1, T$ is called ρ-nonexpansive. A point $x \in C$ is called a fixed point of T if $T(x)=x$.
Theorem 4.4. Assume $\inf _{\mathfrak{n} \in \mathbb{N}} \mathfrak{p}(n)>1$. Let C be a nonempty ρ-closed convex ρ-bounded subset of $\ell_{\mathfrak{p}(\cdot)}$. Let $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ be a ρ-nonexpansive mapping. Then T has a fixed point.
Proof. Let C be a nonempty ρ-closed convex ρ-bounded subset of $\ell_{p(\cdot)}$. Let T:C $\rightarrow \mathrm{C}$ be a ρ-nonexpansive mapping. Without loss of generality, we assume that C is not reduced to one point. Consider the family

$$
\mathcal{F}=\{K \subset C ; K \text { is nonempty } \rho \text {-closed convex and } T(K) \subset K\} .
$$

The family \mathcal{F} is not empty since $C \in \mathcal{F}$. Since $\inf _{n \in \mathbb{N}} p(n)>1, \rho$ is (UUC2). Using Remark 3.6 combined with Zorn's lemma, we conclude that \mathcal{F} has a minimal element K_{0}. We claim that K_{0} is reduced to one point. Assume not, i.e., K_{0} has more than one point. Set $\operatorname{co}\left(\mathrm{T}\left(\mathrm{K}_{0}\right)\right)$ to be the intersection of all ρ-closed convex subset of C containing $T\left(K_{0}\right)$. Hence $\operatorname{co}\left(T\left(K_{0}\right)\right) \subset K_{0}$ since $T\left(K_{0}\right) \subset K_{0}$. So we have $\mathrm{T}\left(\operatorname{co}\left(\mathrm{T}\left(\mathrm{K}_{0}\right)\right)\right) \subset \mathrm{T}\left(\mathrm{K}_{0}\right) \subset \operatorname{co}\left(\mathrm{T}\left(\mathrm{K}_{0}\right)\right)$. The minimality of K_{0} implies $\mathrm{K}_{0}=\operatorname{co}\left(\mathrm{T}\left(\mathrm{K}_{0}\right)\right)$. Next, we use Theorem 4.2 to secure the existence of $x_{0} \in K_{0}$ such that

$$
r_{0}=\sup _{y \in K_{0}} \rho\left(x_{0}-y\right)<\delta_{\rho}\left(K_{0}\right)
$$

Define the subset $K=\left\{x \in K_{0}\right.$; $\left.\sup _{y \in K_{0}} \rho(x-y) \leqslant r_{0}\right\}$. K is not empty since $x_{0} \in K$. Note that we have $K=\bigcap_{y \in K_{0}} B_{\rho}\left(y, r_{0}\right) \cap K_{0}$, where $B_{\rho}\left(y, r_{0}\right)=\left\{z \in \ell_{p(\cdot)} ; \rho(y-z) \leqslant r_{0}\right\}$. Since ρ satisfies the Fatou property and is convex, $B_{\rho}\left(y, r_{0}\right)$ is ρ-closed and convex. Hence K is ρ-closed and convex subset of K_{0}. let us show that $T(K) \subset K$. Let $x \in K$, then $T(x) \in \bigcap_{y \in K_{0}} B_{\rho}\left(T(y), r_{0}\right) \cap K_{0}$ since T is ρ-nonexpansive. Hence $T\left(K_{0}\right) \subset B_{\rho}\left(T(x), r_{0}\right)$ which implies $K_{0}=\operatorname{co}\left(T\left(K_{0}\right)\right) \subset B_{\rho}\left(T(x), r_{0}\right)$, i.e., $T(x) \in \bigcap_{y \in K_{0}} B_{\rho}\left(y, r_{0}\right) \cap$ K_{0}. Therefore, $T(K) \subset K$ holds. The minimality of K_{0} implies $K=K_{0}$, i.e., for any $x \in K_{0}$, we have $\sup _{y \in K_{0}} \rho(x-y) \leqslant r_{0}$. This clearly will imply $\rho(x-y) \leqslant r_{0}$, for any $x, y \in K_{0}$. Hence $\delta_{\rho}\left(K_{0}\right) \leqslant r_{0}$. This is our sought contradiction. Therefore, K_{0} is reduced to one point. Since $T\left(K_{0}\right) \subset K_{0}$, we conclude that T has a fixed point in C.

Acknowledgment

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research group No. (RG-1435-079).

References

[1] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, North-Holland, Amsterdam, (1985). 2
[2] J. A. Clarkson, Uniformly Convex Spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414. 3.2
[3] L. Diening, P. Harjulehto, P. Hästö, M. Ruẑiĉka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Berlin, (2011). 1, 3, 3.1
[4] M. A. Khamsi, W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, Wiley-Interscience, New York, (2001). 1
[5] M. A. Khamsi, W. M. Kozlowski, Fixed Point Theory in Modular Function Spaces, Birkhauser, New York, (2015). 1, 2, 3.1, 3
[6] M. A. Khamsi, W. K. Kozlowski, S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935-953. 2.3
[7] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006. 4
[8] V. Klee, Summability in $\ell\left(p_{11}, p_{21}, \cdots\right)$ Spaces, Studia Math., 25 (1965), 277-280. 1, 2.2
[9] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618. 1
[10] W. M. Kozlowski, Modular Function Spaces, Marcel Dekker, New York, (1988). 2
[11] J. Musielak, Orlicz spaces and modular spaces, Springer-Verlag, Berlin, (1983). 2, 3, 3.1
[12] H. Nakano, Modulared Semi-ordered Linear Spaces, Maruzen Co., Tokyo, (1950). 1, $2,2.2$
[13] H. Nakano, Modulared sequence spaces, Proc. Japan Acad., 27 (1951), 508-512. 1, 2
[14] H. Nakano, Topology of linear topological spaces, Maruzen Co. Ltd., Tokyo, 1951. 1, 2, 3, 3.1, 3
[15] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200-211. 1, 2.1
[16] K. Rajagopal, M. Ružička, On the modeling of electrorheological materials, Mech. Research Comm., 23 (1996), $401-407$. 1
[17] M. Ružička, Electrorheological fluids: modeling and mathematical theory, Springer-Verlag, Berlin, (2000). 1
[18] K. Sundaresan, Uniform convexity of Banach spaces $\ell\left(\left\{p_{i}\right\}\right)$, Studia Math., 39 (1971), 227-231. 1, 2.2, 2, 3, 3.2, 3
[19] D. Waterman, T. Ito, F. Barber, J. Ratti, Reflexivity and Summability: The Nakano l(p_{i}) spaces, Studia Math., 33 (1969), 141-146. 1

[^0]: *Corresponding author
 Email addresses: mbachar@ksu.edu.sa (Mostafa Bachar), bounkhel@ksu.edu.sa (Messaoud Bounkhel), mohamed@utep.edu (Mohamed A. Khamsi)

