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Abstract

In this paper, we study the dynamical behavior of a virus model into which cell-mediated and humoral immune responses
are incorporated. The global stability of an infection-free equilibrium and four infected equilibria is established via a Lyapunov
functional approach. The present construction methods are applicable to a wide range of incidence rates that are monotone
increasing with respect to concentration of uninfected cells and concave with respect to the concentration of free virus particles.
In addition, when the incidence rate is monotone increasing with respect to concentration of free virus particles, the functional
approach plays an important role in determining the global stability of each of the four infected equilibria. This implies that the
dynamical behavior of virus prevalence would be determined by basic reproduction numbers when the “saturation effect” for
free virus particles appears. We point out that the incidence rate includes not only separable incidence rate but also non-separable
incidence rate such as standard incidence and Beddington-DeAngelis functional response. (©2017 All rights reserved.
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1. Introduction

Modeling the dynamics of virus infection has been extensively developed in order to investigate short-
or long-term progression of viral production. The pioneering work is done by Nowak and Bangham [16],
in which the relation between antiviral immune responses, virus load, and virus diversity are theoreti-
cally understood by formulating systems with ordinary differential equations describing the population
dynamics of immune responses to virus load. Motivated by their work, many studies have subsequently
focused on the global stability of equilibria in models for viral dynamics which play a crucial role in clar-
ifying and evaluating treatment strategies for infections and establishing thresholds for treatment rates
[11, 12, 14, 15, 20, 24, 29]. In this paper, we focus our attention on the global stability of steady states
for these models, because this should enhance our understanding of virus dynamics, which gives us a
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detailed information and various insights on whether a disease will die out or not, and the mechanisms
of specific immune responses. A typical recent model of viral dynamics containing humoral immune
responses is given by Wang et al. [22] as follows:

(1) = A —dx(t) — f(x(t),v(t))v(t),
e

TMTLE(x(t— 1), v(t — 1) )v(t — 1) — Sy(t), (1.1)

The variables x, y and v denote the concentrations of uninfected cells, infected cells and free virus parti-
cles, respectively. The variable a denotes the concentration of B cells, whose principal function is to make
antibodies against soluble antigens. The nonnegative constant 11, referred to as an intracellular delay,
denotes the time taken for the production of new virus particles after a virus has entered a cell. The
nonnegative constant T, denotes the time taken for the maturation of newly produced viruses (see Ouifki
et al. [17]). All other parameters are positive constants. The model (1.1) with f(x,v) = kx (i.e., a bilinear
incidence f(x, v)v = kxv) is equivalent to that presented by Wang et al. [27, Section 3].

For the non-separable function f € Cl(IR%r,lR), denoting the average number of infected cells, let us
set up the hypotheses in Wang et al. [22, H1-H4]:

(A1) f(x,v) > 0and f(x,v) =0 if and only if x = 0.

(Ap) 6fgi;v) >0forallx >0andv > 0.
(Az) af(gzv) <Oforallx >0andv > 0.
(Ay) W>Oforallx>0andv>0.

The hypothesis (A1) biologically indicates that the per-capita number of newly virus-infected cells is
always nonnegative. The hypothesis (A;) indicates that the more the amount of uninfected cells is, then
the more the per-capita number of newly virus-infected cells will be, for a fixed number of free virus
particles. The hypothesis (A3) indicates that the more the amount of virus is, then the less the per-capita
number of newly virus-infected cells will be for a fixed number of uninfected cells. The hypothesis (A4)
indicates that the more the amount of virus is, then the more the number of cells that are newly infected
will be. All of the above hypotheses include the following incidence rates.

(i)  Bilinear incidence rate ([16, 19]) f(x,v)v =xv,
Separable B o XV
(ii) Saturated incidence rate ([18]) f(x,v)v = , >0,
1+ v
(iii) Standard incidence rate ([10])
f(x,v)v = had ,
X+v

Non-separable
(iv) Beddington-DeAngelis functional response ([2, 5])

XV
1+ oyx + v’

f(x,v)v = o1, o > 0.

In addition to the effect of humoral immune responses, some authors investigated the effect of cell-
mediated cytotoxic T lymphocytes (CTLs) immune response on the dynamics of cell infection (see, e.g., [1,
3, 6, 7] and the references therein). In contrast to the models with humoral immune response, it is asserted
that these models including CTL response displays rich dynamics when the delays are incorporated; the
global stability of the equilibria is completely determined by threshold parameters [11, 15, 24, 29], whereas
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periodic solutions arise through the Hopf bifurcations [4, 25, 26, 30]. The issues investigated in these
models were related to understanding whether the viruses can be cleared, whether life long immunity
can be achieved in the host, and whether sustained oscillatory viral loads can be observed. Later, Yan
and Wang [28] formulated the following model incorporating both cell-mediated and antibody responses
with delays:

x' (1) = A —dx(t) — kx(t)v(t),

y'(t) = kx(t — t)v(t —T)e T — dy(t) — py(t)z(t),

v/(t) = 8Ny(t) —cv(t) — qa(t)v(t), (1.2)
z'(t) = By(t)z(t) —yz(t),

a’(t) = ga(t)v(t) —ba(t).

Here the variables x, y, v, z and a denote the concentrations of uninfected cells, infected cells, free virus
particles, CTL responses and antibody responses, respectively. On the other hand, in the literature of
epidemiology, it has increasingly been asserted that the incidence rate, characterizing the rate of newly
infected cells, should be written by not bilinear but general nonlinear functions (see, e.g., [8, 9, 26]).

We point out that since both the model (1.1) does not consider cell-mediated cytotoxic T lymphocytes
(CTLs) immune response and model (1.2) does not incorporate non-separable incidence rate, in this paper,
we combine these two considerations to formulate our model. We aim to establish global stability results
and identify sufficient conditions under which oscillations are impossible for a viral model with humoral
immune responses, CTL immune response, and a non-separable incidence rate. For complete character-
ization of the global dynamics, we define some basic reproduction numbers which serve as threshold
parameters that predict whether an infection will go to extinction or persist. The global stability scenario
of infection equilibrium is achieved by LaSalle invariant principle and the Lyapunov functional approach.

This paper is organized as follows. In Section 2, we introduce our model by incorporating a class of
non-separable incidence rates. The model is governed by a system of delay differential equations. We
also specify the basic reproduction numbers of the model and focus on the existence of four infection
equilibria. In Section 3, we establish the global attractivity and (uniform) stability of each of the four
equilibria by constructing Lyapunov functionals based on LaSalle invariance principle. In Section 4, we
offer some concluding remarks on our stability results.

2. The model and preliminaries

Let us consider the following model:
x'(t) = A —dx(t) — f(x(t), v(t))v(t),

y'(t) = J G1(Df(x(t— 1), v(t —1))v(t —1t)dT —dy(t) — py(t)z(t),

Vi) =8N | Galt)y(t —t)dt — ev(t) — qa(t)v(t), (2.1)
0

z'(t) = By(t)z(t) —vz(t),

a’(t) = ga(t)v(t) — ba(t).

The uninfected cells are produced at a constant rate A and die at a per capita rate d. The infected cells are
assumed to die at a rate d due to the action of virus, each releasing N new virus particles as they are lysed.
Virus particles are cleared from the system at a rate c. The infected cells are also killed via mass action
kinetics by CTLs, which is described by pyz. Virus particles are also neutralized via mass action kinetics
by antibodies, which is described by qav. CTLs are produced at a rate proportional to the abundances
of CTLs and infected cells, Byz, and die at a per capita rate y. The antibody responses are activated at a
rate proportional to the abundances of antibodies and free viruses, gav, and die at a per capita rate b. To
account for the time lag between viral entry into a target cell and the production of new virus particles,
two distributed intracellular delays are introduced with kernel functions given by Gi(t) = fi(t)e™™F,
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i =1,2. Gy(1) is the probability that target cells contacted by the virus particles at time t — 1 survived
T time units and become infected at time t and Gx(7) is the probability that a cell infected at time t — T
starts to yield new infectious virus at time t. All the parameters are positive constants. The function f
is assumed to satisfy the hypotheses (A1)-(A4). We also note that the model is equivalent to the model
studied by Wang et al. [24] if the incidence rate f(x, v)v is of the separable form xF(v).

The following assumption:

(A5) Gi(T) >0, fort>0,and 0 < aj ;= J Gl(f,)dg, <1,i1=1,2

0

is also used widely in the literatures when describing delay kernels. For convenience, we rewrite (2.1) as
xX'(t) = A — dx(t) = f(x(t), v(t))v(t),

YD) = Jgo g1 (E)F(x(t — £),v(t — E)Jv(t — £)dE — Sy(t) — py(t)z(L),

V() = o L g2(E)y(t — £)dE — cv(t) — qat)v(t), (22)
z/(t) = By(t)z(t) —yz(t),
a’(t) = ga(t)v(t) —ba(t),

where o1 = ai, ap = Nbdap and gi(&) = %f“) for i = 1,2. We recall that a; = fgo Gi(&)dé, thus
I3 gu(&)de=1.
We consider a suitable phase and a feasible region. Nonnegative initial functions are given as follows:
(x(8),4(8),v(6),2(8), a(8)) = ($1(8), d2(8), d3(6), b4(6), d5(8)) = b(6) € UCy((—00,0, RY),  (2.3)
where IREr ={(x1,%2,%3,%x4,%5) € R®:%x; >0, 1=1,2,3,4,5} and

UC((—o00,0, RS, ) i= {¢ € Cllooo,0LR) ¢ bl = sup P oo

s<0 ( )
¢(s)
P(s)

Here we assume that 1 : (—oo,0] — [1, c0) satisfies the following properties:

is uniformly continuous on (—oo, 0] }

(1) ¥ is continuous and nonincreasing on (—oo, 0] with {(0) = 1;
(2) d’fbs(t;t) — 1 uniformly on (—oo, 0] as u — —0;

(3) P(s) =+ coas s — —oo.

We note that UC,, is a Banach space with norm || - ||,. Moreover, if the function 1 satisfies assumptions
(1)-(3), then UC,, is an admissible Banach space. Thus, for system (2.2), existence results of the Peano
type hold (see, for details, Kuang [13, Corollary 5.2]).

It follows from the fundamental theory for integral-differential equations that there exists a Ty, > 0
such that system (2.2) with (2.3) has a unique solution on the interval [0, Ty). The following theorem
shows that for positive initial values, the solution remains positive and is bounded, implying T4, = oo,
that is, the solution exists globally in time. The proof is omitted because it is quite similar to that in Wang
et al. [24, Theorem 2.1].

Theorem 2.1. Let (x(t),y(t),v(t),z(t), a(t))" be the unique solution to system (2.2) with (2.3). Then x(t), y(t),
v(t), z(t) and a(t) are nonnegative for all t > 0. Moreover, all solutions (x(t),y(t),v(t),z(t), a(t))" of system
(2.2) with x(t) > 0, y(t) > 0, v(t) > 0, z(t) > 0 and a(t) > 0 are ultimately bounded.

From Theorem 2.1, we can easily verify that w-limit sets of system (2.2) are contained in the following
bounded feasible region:

?\al

Aay darN T d 547 }

A
I'= R> : x| < =, yllzl € ————, |, ]al <
{(x,y,v,z,a)e b < G bl € ot ool < — e

We can easily verify that the region I is positively invariant with respect to system (2.2).
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2.1. Reproduction numbers and existence of positive equilibria
The equilibria of system (2.2) satisfy the following equalities:

A—dx—f(x,v)Jv=0,
x1f(x,v)Jv—586y —pyz =0,

xy —cv—qav =0, (2.4)
Byz—vyz=0,
gav—ba =0.

System (2.4) always has an infection-free equilibrium Eg = (A/d,0,0,0,0) if v=0,y=0,z=0and a =0.
By simple calculation, we see that an immune-free equilibrium E; = (x1,y1,v1,0,0) exists if and only if a
positive root of the equation F;(x) =0 on (0,A/d), where

0o 0o dc
d¢c X

Fi(x) = f(x,

The basic reproduction number is one of the most important concepts in viral infection models which
serves as a threshold parameter that predicts whether the infection will go to extinction or persist. We
define the basic reproduction number for viral infection as

X102

fﬁo = o f(Xo,O). (25)

From assumptions (A;) and (A;), the function F;(x) is strictly monotonically increasing with respect to x.
It follows that

o¢
X102

A 5
<0, and F1<d) — f(xp,0) — —5 = XX g0 9.

F1(0) = —
1(0) X1 X2 d¢c

There exists a unique x; € (0,A/d) such that F;(x;) = 0 if and only if 3y > 1. By the relation

o (A —dx) and vi — o106 (A — dx)
yl - 6 1— 6C Vi
we get an immune-free equilibrium E; = (x1,y1,v1,0,0).
Next we consider E; = (x2,Y2,V2,22,0). For z # 0 and a = 0, from the fourth equation of (2.4), we can
getys = % < y1, which is equivalent to

R = Py > 1. (2.6)
Y
Then the first equation of (2.4) becomes
XY \ XY
— 2.7
f(x, BC> Be A+dx =0, (2.7)

and we have

Since z; > 0 we have x, < x*, where
. A oy

d dBog

It follows that the existence of equilibrium requires x* > 0 and (2.7) has a unique positive root x = x; €

(0,x*). We denote
oY\ Ky
F = — | — — A+ dx.
2(x) f(x, Bc) Be X
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We know F»(x) is strictly monotonically increasing with respect to x from hypothesis (A;). It is clear that
F>(0) = —A < 0 holds and

Fo(x™) =f <x*, 062Y> Y Ay axt

Bc ) Pc
:f<x* oczv> oy Sy
"Bc ) Bc P

_ Y (o e Y\
Boy " Bc ) b¢ '
Therefore, there exists a unique real value x; € (0,x*) such that Fy(xy) = 0 if and only if %ﬁ;‘l > 1 and
f(x*, Yy %1% ~ 1,

/7 Bc oc
Let us remark that the assumptions (A;) and (Az) imply

. Y Ay A
flx*, =L ) <=, =25 f(=,0]),
(" BC> (d l30><<d)

so that, we get the unique equilibrium E; = (x2,y2,v2,22,0) if and only if SR; > 1. Here, $3; denotes the
average number of the CTL immune cells activated by infected cells when virus infection is successful
and humoral immune responses have not been established. Note that y; is the number of infected cells at
E; and 1/ is the average life-span of CTL cells.

Next, we consider Ez = (x3,Y3,V3,0,a3). For a # 0 and z = 0, from the fifth equation of (2.4), we can
get vz = g < v1, which is equivalent to

Ry = % > 1. 2.8)
Then the first equation of (2.4) becomes
b
kxf<g> —A+dx =0, (2.9)

and we have
(11(7\—(17(3) Na1azg(7\—d><3) Cc
Yy3=—— and az = ——.
d qb q
It follows that the equation (2.9) has a unique positive root x = x3 € (0,A/d). Therefore we get the unique
equilibrium Ez = (x3,y3, V3,0, az) if and only if R, > 1. Here, JR; denotes the average number of humoral
immune cells activated by virus when virus infection is successful and CTL responses have not been
established. Note that v; is the number of free viruses at E; and 1/b is the average life-span of antibody
cells.
Finally we consider E4 = (x4, Y4, V4,24, a4). For a # 0 and z # 0, from the fourth and fifth equations of

(2.4), we can get

b
y4:X and \)4:5.

p

From the second equation of (2.4), we can get

5 (Bkale(;’) _1>.

z=—
p Yo

kajxf(2 _
Note that &5(@ =y3 = M is the number of infected cells at E5. We define the CTL immune

competitive reproductive number 93 for system (2.2) as

%y e Y3 (2.10)
Y
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where 1/ is the average life-span of CTL cells. Here, :3 denotes the average number of the CTL im-
mune cells activated by infected cells under the condition that humoral immune responses have been
established.

From the third equation of (2.4), we can get

a= ¢ (géNazy —1>.
q Bbc
Note that % is the number of the viruses at E,. Here the humoral immune competitive reproductive
number Ry for system (2.2) is denoted as follows.

— 2
=5
Note that 1/b is the average life-span of antibody cells and thus, 9R4 denotes the average number of the
humoral immune cells activated by viruses under the condition that CTL immune responses have been
established.

When Rz > 1 and Ry > 1, CTL and humoral immune responses can be established simultaneously,
and there exists an interior equilibrium B4 = (x4, Ya, V4, 24, a4).

Now we are in a position to state the following theorem on the existence of equilibria under the basic
reproduction numbers.

Ry : (2.11)

Theorem 2.2. Let Ry, Ry, Ry, Rz and Ry be defined by (2.5), (2.6), (2.8), (2.10) and (2.11), respectively.
(i) System (2.2) always has an infection-free equilibrium E.
(ii) System (2.2) has an immune-free infection equilibrium Eq when Ry > 1.

)

)
(iiif) System (2.2) has an infection equilibrium By with only CTL immune responses when Ry > 1.
(iv) System (2.2) has an infection equilibrium E3 with only humoral immune responses when Ry > 1.
)

(v) System (2.2) has an infection equilibrium E4 with both CTL responses and humoral immune responses when
Rz > 1and Ry > 1.

3. Global dynamics

We define -
Hi(t) := J gi(&)dg, i=1,2

t
From the definition of the function g; with the assumption (As), we note that H;(0) =1, Hi(oco) = 0 and
dH, (t)

it = —9g1(t) holds.

The following theorem indicates that the viruses are eventually cleared.

Theorem 3.1. When Rg < 1, the infection-free equilibrium &y is globally asymptotically stable.

Proof. Define the following Lyapunov functional:

)
v(t) + Lz(’c) + q a
0 0 o1 B 1029

Vi () =Usg (1) + —y(t) +
X1

+J°° Hy (£)F(x(t — &), v(t — £))v(t — £)dE + ofl J T Ha(Qy(t— £)de,

0 0

where

x(t)
Uy, (1) :x(t)—xo—J U0 0) 4o

X0 f(sl 0)
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We calculate the time derivative of V; as follows.

Vi) = (1 - M) (A — dx(t) — F(x(t), v(t) v(1))
. (al L g1 (E)Fx(t— &), v(t — £))v(t — £)dE — sy (t) — py (t)z(t))
6 o0
2 (oa] " aleny(t - £1ae - v~ qatimto))
+ L2 (By(D2(t) — v2(t) + — - (galt)v(t) — ba(t))
1B 029
+f(x(t),v(t))v(t)—j gl(a)f(x(t—a),v(t—a))v(t—a)da+y(t)—jlj g2(E)y(t — £)dE
B _ f(x0,0) B f(xo,0) P _be _dq
= a1 1 ) txa w100 + o A0, e)v(e) = oyt - 2Svt) - 2l
+ Pzt — Pzt + 29 apv) — 29% gt
x1 o B X1X2 X129
B _ f(x0,0) B _pY ~ 8qb dc f(x(t),v(t))
‘d<1 f(x(t),0)>("° M) = o™ ™ e P T e (”" fx(0),0) 1)”“)'

From the assumption (Ay), since f(x,v) is strictly monotonically increasing with respect to x, we have

f(XOI 0)
d<1 — f(X(t),O)) (xo—x(t)) <O.

It follows from (Aj3) that f(x,v) is monotonically decreasing with respect to v, which implies in addition

to Rg < 1 that
f(x(t),v(t))
Ro——————1<0.
*f(x(1),0)
Consequently, one can see that V/(t) < 0, and V/(t) = 0 if x(t) = x¢, z(t) = 0 and a(t) = 0 for Ry < 1.
Hence, every solution of (2.2) tends to Mg, where My is the largest invariant subset of

{(x,y,v,z,a) €T :V] =0}

It can be easily verified that My is singleton {Eq} because every element of My satisfies y(t) =0, v(t) =0
for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]), Eq is globally
attractive. In addition, since V; is estimated by a positive definite function from below

o P 5q

1
Vit) > UXO (t) + —y(t) + v(t) + —=z(t) +
o1 o1 0 13 x1029

a(t),

Ep is uniformly stable. This implies that Eg is globally asymptotically stable. O

The following theorem indicates that the infection becomes chronic but with no persistent CTL im-
mune response and antibody immune response.

Theorem 3.2. When Ry > 1, Ry < 1and Ry < 1, the immune-free infection equilibrium €y is globally asymptot-
ically stable.

Proof. We will make use of the equations for the elements of E; in order to simplify the expressions:

o f(x1,v1)vi = dyy,

{ A= dX1 + f(Xl,\)l)\)l,
X2Yy1 = CV1.
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Let us define g(p) = p—1—1Inp. One can see that the function g is positive definite: g(p) > 0 for
pu > 0 and g(p) = 0 if and only if p = 1. The function g is called the Volterra-type function which here
plays a crucial role in constructing suitable Lyapunov functionals below. Define the following Lyapunov
functional:

vz(t>=uxl(t)+;ylg(”(”>+ ° vlg(”m>+ P i)+ 29 a(t) + WiL) + Walt),

Y1 01 02 Vi o3 01029
where
x(t) f(Xl,Vl)
R I
Wi (t) = flx1,vi)w J Hi(&)g (f(X(t — ) vlt —E)Jv(t — &) > dé,
0 f(x1,v1)w1
_ 5 [T ylt—¢)
wait) = Sy [ rate)g (U e
We then obtain
0 dg(f(X(t—é),:(tv—i))V(t—i))
Wi (t) = f(x1,v1)w Jo Hy (&) f(dlt' 1)v1 dé&
00 dg(f(X(t*ri)r)\:(’iji))V(t*E))
= —f(x1,viln Jo Hi (&) f(dlé v dég
= f(x(t), v(t))v(t) — Jo g1(E)f(x(t— &), v(t—&))v(t—&)dE
*© f(x(t—&),v(t—&)Iv(t—&)
+fx1,vi)w1 Jo g1(&) In RO,V dé,
Wit = Dyl - [ alee-der S | el ln”(;(tf)da.

Calculating the time derivative of V,(t) gives

f(x1,v1)

Vi(t) = (1 _ W) (h = dx(t) — F(x(8), (D) V(1))

+ L (1 - 131) (Cxl Joo gr(E)F(x(t— &), v(t— &))v(t — &)dE — dy(t) —Py(t)l(t)>

x1 y(t) 0
6 %1 oo

dq
+(X—B(By( )z(t) —yz(t)) + P
+ f(x(t), v(t))v(t) — L gr(E)F(x(t—&),v(t—&))v(t—&)d&

fx(t—&),v(t—&)v(t—§)
f(x(t), v(t))v(t

(ga(t)v(t) —ba(t))

dg

+f(xq1,vi)w Jo g1(&) In

i _i 00 _ i o0 U(t_‘i)
+oqy(t) o JO g (&)y(t E)diJroqylL 92(&) In y(t) d&

_ f(x1,v1) Fha, viv

_ d(l - W) 1 = x(0) 6, vivn = T, v) g (58S

F(x(t), v(t) () — = j " et — &), v{t — E)v(t— E)dE

f(x(t),v1) y(t) Jo
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dc dvy J"o dcvq 4 dqvy alt)

(Xl(XZV - (X]V(t) 92(5)y(t—£)d5+

+i + Pyiz(t) -
Y1 Oélyl 0 X102 X1K2

fx(t—&),v(t—E&)v(t—§&)
f(x(t), v(t))v(t)

13 o029

+5y1j0 62() 1n9(;(;)5’)dg

dqb
PYt q

a(t) +f(xq,vi)vr J:O g1(&)In dé

(x1 —x(t)) 4+ f(x1,v1)»1 UOOO g1(&) < —g (M)

_9<W> _9<ﬂx(t—a),v(t—.a))v(t—a)yl»da

f(x1, vi)v1y(t)

* _ [yt =€) Py (B, oqb (g
+J0 92(£)< RO >>d£} 1B<Yy1 1> ()+0¢1O€29<bv1 1>a(t)

f(x1,v1)

O 0 (TO, V(1) = T, v, v Je() = Fe(1) v ).

From (Ay), since f(x, V) is strictly monotonically increasing with respect to x, we have

f(Xl,Vl)

In addition, it follows from (A3) and (Ay4) that f(x,v) is monotonically decreasing and f(x, v)v is monoton-
ically increasing with respect to v. This yields

(F(x(t), v(t)) — F(x(t), vi)) (F(x(t), v(t))v(t) — F(x(t),v1)v1) <O.

Moreover, only if v(t) = vi, we have (f(x(t),v(t)) —f(x(t),v1))(f(x(t), v(t))v(t) — f(x(t),v1)v1) = 0. Fur-
thermore, we have %yl —1<0if R <1, and 3\)1 —1<0ifR, < 1.

Consequently, one can see that V;(t) < 0, and VJ(t) = 0 if x(t) = x; and y(t) = y;. Hence, every
solution of (2.2) tends to M;, where M, is the largest invariant subset of {(x,y,v,z,a) € T : V; = 0}
It can be easily verified that M; is singleton {E;} because every element of M; satisfies v(t) = v; and
z(t) = a(t) = 0 for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]),
E; is globally attractive. In addition, since V; is estimated by a positive definite function from below:

Lypa(M0) 5 S (1) 5
Va(0) > Uy 0+ g (A0 )+ 2ovng (M) 4 Pzt + 2y

E; is uniformly stable. This implies that E; is globally asymptotically stable. O

The following theorem indicates that the infection becomes chronic with persistent CTL immune
response, but the viral load cannot activate the antibody immune responses.

Theorem 3.3. When i1 > 1 and Ry < 1, the infection equilibrium By with only CTL immune response is globally
asymptotically stable.

Proof. We will make use of the equations for the elements of E; in order to simplify the expressions:

A =dxo +f(x2,v2)Vvy,

o f(x2, v2)va = dyn + pyazy,
XYz = CVy,

By2z2 = vz2.

Define the following Lyapunov functional:

1 t ) z v(t z(t o z
Vs(t) =Ux, () + —yag (y()) + ( + pz)\)zg (“) B 29( ( )) + (q 1 Az )a(t)
o Y2 X0y X100 V2 o1 B z g x10pg

+ Wi (t) + Wy(t),
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where

x(t)
Ua() =x() = [ 2

iy egg (ML)

f(x2,v2)vo

ds,

Wis(t) = f(xp, v2)v2 Jo

Wiy (t) = f(x2, v2)v2 J:o Ha(&)g <y(ty;£)> dé.

We then obtain

Wij(t) = f(x(t), v(t))v(t) — J:O g1(E)f(x(t—&),v(t—&))v(t—&)dE
it O TR

Wilt) =yt - o | " ealey(t - e+ 22yt
- LOO g2(E)y(t — E)E+ 2, va)va Eo a0y Y Elae

We calculate the time derivative of Vs(t
Vit = ( - Wz ) £, %(t)v(1))
o ( ) ( " )x(t— £l E)vlt— E)dE— Syl py (V=)
)

5 v o
<oc1062 oclo¢2> < - v(t)> (Oéz Jo 92(E)y(t — &)dE — cv(t) — qa(t)v(t))

+<1 - )>(By( 2 (t )—yz(t))—l—( %4 | P4z )(ga(t)v(t)—ba(t))

) o xX2g X029
+f(x(t), v(t))v(t) — JO g1(E)f(x(t—&),v(t—&)v(t—&)dE

*© f(x(t—&),v(t—&)v(t—§&)
+fx2,v2)v2 L g1(&) In FOx(0, v V(L)

d o [ P22
byl - o JO ey (t— E)de+ 22y (0

dg

yt—¢&)
y(t)

P2 [ ga(enyle Ede + i vava [ ga(E)In

x1 Jo

d <1 — f{i?i,)j)\z)i)) (XZ - X(t)) + f(XZI VZ)VZ _ f(XZ/ V2) f(xz, \)2)\)2

f(x(t),v2)
f(XZIVZ) Y2 00
FOx(t), va] f(x(t),v(t))v(t) — ") L g1 (E)F(x(t— &), v(t — &))v(t — &)dE

o ) o o0
by 2| ey -t

a0 oo aqv(t)
Z5C Zovy [*° CZoV ZoV
_PEe, gy PV j ga(E)y(t— £)de 4+ PER2V2 | PAZV2
001 02 oav(t) Jo 001 02 001 02
pyz2  bdq alt) — bpqz; alt)
P ooeg o029

0 f(x(t—&),v(t—&)v(t—&)
+f(Xz,VZ)V2JO g1(&) In f(x(t), v(t))v(t)

dg

dcvy  dqwvy
Seva | 3qv
K12  X1Xp

a(t)

_l’_

dg
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+fx2,v2)v2 J:O g2(&) In y(;,c (I)a)

B f(x2,v2) © f(x2,v2)
- d(l — f(X(’E),V2)> (x2 —x(t)) + f(x2, v2)v2 Uo g1(&) ( -9 <W>

( f(x(t), v2) )_ <f(x(t—a),v(t—a))v(t—a)yz>) i
fx(0),v(t) ) ? f(x2,v2)voy (1)

* voy(t—§&) bq X209y
+L gz(i)(—g(v(t)yz))da} + ocla29(6+pzz)< Bbc —1>a(t)

f(Xz,Vz)
T S (), V) = Tl v2) (F (), () — T, v2)va),

dg

_l’_
.f
From (A;), since f(x, V) is strictly monotonically increasing with respect to x, we have

f(XZ/VZ)
d(l — 1C(X(t),v2)> (XZ —X(t)) < 0.

It follows from (A3) and (Ay4) that f(x, v) is monotonically decreasing and f(x, v)v is monotonically increas-
ing with respect to v, we obtain

(F(x(t), v(t)) — £(x(t), v2)) (F(x(t), v(t) Jv(t) — F(x(t), v2)v2) < 0.

Moreover, only if v(t) = vp, we have (f(x(t), v(t)) — f(x(t), v2))(f(x(t),v(t))v(t) — f(x(t),v2)v2) = 0. We

here note that 0[‘3232’ —1<0if R < 1.

Consequently, one can see that V3(t) < 0, and V5(t) = 0 if x(t) = x» and y(t) = yo. Hence, every
solution of (2.2) tends to My, where M, is the largest invariant subset of {(x,y,v,z,a) € I': V; = 0}. It can
be easily verified that M, is singleton {E;} because every element of M, satisfies v(t) = vy, z(t) = zp and
a(t) =0 for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]), E; is
globally attractive. In addition, since V3 is estimated by a positive definite function from below:

1 t ) t t )
Va(t) > Uy, (1) + yzg(y()) + ( + pzz)wg (v()) +-LP 29 <7‘()> + <q + pqu> a(t),
o1 Y2 X100 XX v 13 b4 X109 ®1009

E; is uniformly stable. This implies that E; is globally asymptotically stable. O

The following theorem indicates that the infection becomes chronic with persistent antibody immune
response, but the infected cells can not stimulate and activate CTL immune responses.

Theorem 3.4. When Ry > 1 and Rz < 1, the infection equilibrium E3z with only antibody immune response is
globally asymptotically stable.

Proof. We will make use of the equations for the elements of E3 in order to simplify the expressions:

A = dxz + f(x3,v3)v3,
o1 f(x3, v3)vz = dys3,
XYz = CV3 + qazvs,
gazvz = bas.

Define the following Lyapunov functional:

v4(t)=uX3(t)+1y39<y(”>+ ° v39<”(”>+ P )+ 24 aag(“(”>+w5(t)+w6(t),
o ys o 0 V3 o1 P X109 az

where

x(t)
U, (8) =x(t) — x5 _J f(x3’v3)ds,

X3 f(sl V3)
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(o.¢]

Ws(t) =f(x3,v3)v3 L

We(t) =f(x3,v3)v3 ro Hy(&)g (y(‘;;&)) dé&.

0

Hl(é)g<f(x(t—a),v(t—a))v(t—a))da’

f(x3,v3)vs

We then obtain

Ws(t) —f(X(t),V(t))V(t)—L 91(E)F(x(t—&),v(t—&)v(t —&)dE
fix(t—&),v(t—E)v(t—§)
)

s e n e
Wilt) = y(t) = | " ga(Ely(t - E)de+ flxa vava | e in ¥ Eae
We calculate the time derivative of V4(t):
Vit = (1= 222 ) - axtt) - fex(o), (L)
(12 2) (oo | saterrtnte— ), vie - vt - e)de syl - pylviz(o)
(15 (| ateryte— e - evit) — qatenin))
+ Deiy(z0 -yt + (1 - ﬁ}) (ga(t)v(t) - balt)

+ f(x(t), v(t))v(t) — J:O g(E)f(x(t— &), v(t —&)Jv(t — &)dE
fix(t—&),v(t—&E))v(t—§)

v |l n B
+ ofly (t)— oz J:o 92(&)yY(t — &)dE + f(x3,v3)vs J:O g2(&) In U(S(I)E’) dg
= d<1 - f&ﬁ)vii)) (x3 —x(t)) + f(x3,v3)v3 — f(m,w)%

o ele), (ev(e) — 2 | g € x(e— ), vl — vt — E)de
2 By i) - | (el Elde + 2 — 2Ea)
2 o [ rn el
+ f(x3,v3)v3 J:O g2(&) In y(lj(z)a)di

B f(x3,v3) X3,V3)
‘d<1_f(x(t),v3))("3_ 1+ flxa, va "3U < ( (t),v3>>
- <f(X(t),V3) )_ ((( £),v(t—£)v(t—E)ys ))
NFxo,v) )~ ° f(x3,v3)vay ()
°° ~ (vay(t— L
o] e (o) )]+ ﬁ< 1)
(t),v

3,V3)
f(x(t),v(t))f(x(t),vg.)( (x(t),v(t)) — flx(t), v3)) (f(x(t), v(t))v(t) — f(x(t), v3)v3).
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From (A;), since f(x, V) is strictly monotonically increasing with respect to x, we have

f(X3,\)3)
d<1 — f(><(t)v3)> (x3 —x(t)) < 0.

It follows from (A3) and (Ay4) that f(x, v) is monotonically decreasing and f(x, v)v is monotonically increas-
ing with respect to v. This yields

(F(x(t), v(t)) = F(x(t), v3)) (F(x(t), v(t))v(t) — F(x(t), v3)v3) <O.

Moreover, only if v(t) = v3, we have (f(x(t),v(t)) — f(x(t),v3))(f(x(t),v(t))v(t) — f(x(t),v3)v3) = 0. Fur-
thermore, %yg, —1<0ifR3 < 1.

Consequently, one can see that V;(t) < 0, and V/(t) = 0 if x(t) = x3 and y(t) = y3. Hence, every
solution of (2.2) tends to M3, where M3 is the largest invariant subset of {(x,y,v,z,a) € I': V; = 0}. It can
be easily verified that M3 is singleton {E3} because every element of M3 satisfies v(t) = v3, z(t) = 0 and
a(t) = az for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]), E3 is
globally attractive. In addition, since Vj is estimated by a positive definite function from below:

Va0 20+ usg (U )+ ovag (M) 4 Doy 2 grg (),

Y3 o X2 V3 o 3 o029 az

E3 is uniformly stable. This implies that E3 is globally asymptotically stable. O

The following theorem indicates that susceptible cells, infected cells, free virus particles, CTLs and
antibodies eventually coexist in vivo.
Theorem 3.5. When Rz > 1 and Ry > 1, the infection equilibrium B4 with both CTL response and antibody
response is globally asymptotically stable.

Proof. We will make use of the equations for the elements of E4 in order to simplify the expressions:

A = dxyg + (x4, V4)Vs,

ot (X4, Va)vs = dYs +pYazs,
X2Y4 = CV4 + qaqVy,

Byazs =vz4,

gasvs = bay.

Define the following Lyapunov functional:

Vs(t) =Uy, (1) +1y4g<9(t)> +< 5, b >V4g<v(t)>
%1 Y4 o X100 vy
+ P Z49<Z(t)> + ( 6q + Pqzy >a4g<aéz)> +W7(t) +W8(t),

o 3 Z4 X 02g K o2g

where

x(t)
Ua(t) =xlt —x— [ g

X4 f(S, V4)

Wy (t) =F(xq, va)vy J:‘) Hy(E)g (f(x(t — &), v(t—E&)v(t— &) > a

f(xa,va)vs

Wi(t) —f(xa, va)vs J:o Ha(E)g (T)da.
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We then obtain
WA() = F(x(t), v(t)v(t) — J:O g1 (E)F(x(t — £),v(t — E)v(t — £)dE
flx(t— £),v(t— E)v(t — &)

+f(X4,V4)V4JO g1(&) In f(x(t), v(t))v(t) 4
W) = Lyl o | " ealelyte— e+ By
pza [ - ylt &)
‘chJo gz(a)y(t—a)d£+“"4fv4)"4L R Ty e

We calculate the time derivative of V5(t):

VZ(t) = (1 f("“’)v“)))m dx(t) — F(x(t), v(t)v(t))

F
oci ( ylt > (oq . g1(E)F(x(t—&),v(t—&))v(t— &)dE — dy(t) —py(t)z(t))
)

Pz4 V4 0
+ <cx10£2 + ocloc2> <1 — v(t)) <ocz Jo g2 (E)y(t— &)dE —cv(t) — qa(t)v(t))

P ()= .
+1B<1 245 (By(0(t) - yalv)

n < P9z ) <1 > ()v(t) — ba(t))
0610629 X129
) In

V(t—=E)v(t—E&)dE

Fx(t— &), v(t— £)v(t— &)
T 10, "4)"40 & (0, v(0)v(t)
o

o 5 _ Pz4
+ 2yt = o | " gaey(e— e+ Pty

X1

+f(x

dg

y(t—¢&)
y(t)
f(x4, V) vy
f(x(t),va)

f(x4,v4) oy [ - - B
), vg) VIV = s L 91 (E)F(x(t — £), v(t — &))v(t — £)dE
_i_%_ dc Vit — Ovy

Xy X162 av(t)
_pmc . pzava 7

wiog” Y o (t) L 9a(&)y(t—&)de+ ==

pYZ4 q6c14v t +bq6a4 Pgz4a4 (t)—i—M

o‘lf’ X132 X120 0 X o100 g

o0 fx(t— &), ( E)v(t—&)

+f(X4,V4)V4L g1(&)In Fix(0), V(D) Jv(t O
_ f(xq,Vv4) °° f(x4,v4) f(x(t),v4)
‘d<1 Flx(t), v ))“‘“ ”"””4[0 %1% ( 9<f(x(t),v4) _9<f(xt),v(t))>
[t — &), vt — E)( o0 vmt—a))) }
9< flxa, v4)v4y( >) , & ( N\ ows )%

f(X4, V4)
f(x(t), v(t))f(x(t), va)

—WL 0 (E)y(t — £)dE + Fxa, va)vs jo g(2) In dE

X1

o . f(X4,V4)
‘d<1 Fx(0), va)

) (X = x(£)) + F(x, va)vs — Flxa,va)

1) CVyq

J:O 62 (E)y(t — £)dE +

X102
PCZgVyg

dé

(F(x(t), v(t)

=
-+
—
=
=
<
iy
=
Nt
—
-+
—
x
~
f'*'
=
N
<
N
'—+-
=
=
<
N
-
=
-+
—
x
~
-
=
<
Ny
)
<
Ny
)

_l’_
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From (A;), since f(x, V) is strictly monotonically increasing with respect to x, we have

f(x4,v4)

It also follows from (A3) and (A4) that f(x,v) is monotonically decreasing and f(x,v)v is monotonically
increasing with respect to v. This yields

(F(x(t), v(t)) = F(x(t), va) ) (F(x(t), v(t) Jv(t) — F(x(t), va)vs) < 0.

Moreover, only if v(t) = v4, we have (f(x(t), v(t)) — f(x(t), va))(f(x(t), v(t))v(t) — f(x(t),v4)vs) = 0.

Consequently, one can see that VZ(t) < 0, and VZ(t) = 0 if x(t) = x4 and y(t) = ys. Hence, every
solution of (2.2) tends to My, where My is the largest invariant subset of {(x,y,v,z,a) € I': Vi = 0}. It can
be easily verified that My is singleton {E4} because every element of My satisfies v(t) = vy, z(t) = z4 and
a(t) = a4 for all t > 0. From the LaSalle invariance principle (see, e.g., Kuang [13, Corollary 5.2]), E4 is
globally attractive. In addition, since V5 is estimated by a positive definite function from below:

o () (25 ()

Y4 X102 X103 V4
t o t
13 z4 X1%29 X109 ay
E4 is uniformly stable. This implies that E4 is globally asymptotically stable. O

4. Concluding remarks

Throughout this paper, the asymptotic behavior of the solutions of a virus model incorporating the
effect of cell-mediated and humoral immune responses has been studied. By specifying the basic re-
production numbers of the model (2.2), we establish that an infection-free equilibrium Eq is globally
asymptotically stable if and only if ¢ < 1 and that there are sufficient conditions under which each of
four infection equilibria is globally asymptotically stable for 9}g > 1. Similar to the construction methods
of Lyapunov functionals presented in Section 3, stability results similar to those in Theorems 3.2-3.5 are
also established for the following model with “discrete” delays:

x/(t) = A —dx(t) — f(x(t), v(t))v(t),
y/(t) = oaf(x(t =), v(t—))v(t — ) — dy(t) — py(t)z(t),
V(1) = xy(t — T2) — cv(t) — qa(t)v(t), (4.1)
z'(t) = By(t)z(t) —yz(t),
a’(t) = ga(t)v(t) — ba(t).
From the relation 934 = %, we immediately derive the following corollary for system (4.1).

Corollary 4.1. The following statement holds true.
(i) When Ry < 1, the infection-free equilibrium Eg is globally asymptotically stable.
Under the condition Ry > 1, the following statements also hold true.
(ii) When Ry < 1and Ry < 1, the immune-free infection equilibrium €, is globally asymptotically stable.

(iii) When Ry > 1 and Ry < Ry, the infection equilibrium Ep with only CTL immune response is globally
asymptotically stable.

(iv) When Rz < 1 and Ry > 1, the infection equilibrium Ez with only humoral immune response is globally
asymptotically stable.
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(v) When Rz > 1 and Ry > Ry, the infection equilibrium E4 with both CTL response and humoral response is
globally asymptotically stable.

To prove the global stability of the four infection equilibria E; (i =1,---,4), we construct Lyapunov
functionals with the help of Volterra-type function g. Moreover, the functional methods in Wang et al. [24,
Section 3] are also extended to obtain the global dynamics when the incidence rate is non-separable with
respect to uninfected cells and free virus particles. The analytical approach is motivated by the construc-
tion methods in [9, 11, 15, 24, 29]. The hypotheses (A1)—(A4), including not only a bilinear incidence rate
f(x,v)v = kxv, separable incidence rate f(x,v)v = F(x)G(v) but also (non-separable) standard incidence
rate f(x,v)Jv = 225 and Beddington-DeAngelis functional response f(x,v)Jv = =%, play a crucial
role in determining the suitable Lyapunov functionals. Moreover, the hypothesis (A4), indicating that the
incidence rate f(x, v)v is monotonically increasing with respect to free virus particles, is not necessary for
the global stability of the infection-free equilibrium Eq. Finally, we note that the global stability for the
four infection equilibria E; (i =1, - - - ,4) is still completely determined. Biologically, the global stability of
infection equilibrium E,, E3, E4 indicates that lifelong immunity (CTL responses and antibody responses)
can be achieved in the host, and no sustained oscillatory viral loads will be observed. In contrast to
the bifurcation results in the literatures [4, 25, 26, 30], we may be able to rule out the possibility of Hopf
bifurcation from the endemic equilibrium as this equilibrium loses its stability. On the other hand, the dy-
namics of an extended model, containing a class of non-monotone incidence rates (e.g. f(x,v)v = 3 f&’vz)
incorporating inhibition effect of diseases, is still unclear. Contribution to such open problems includ-
ing cell-to-cell transmission, cell-mediated immune responses and multi-stage infected progression for

activated infected cells (cf. [21, 23]) would also be our future works.
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