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Abstract

We extend the results concerning the fractional derivatives of a function at its extreme points to fractional derivatives of
arbitrary order. We also give an estimate of the error and present two examples to illustrate the validity of the results. The
presented results are valid for both Caputo and Riemann-Liouville fractional derivatives. (©2017 All rights reserved.
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1. Introduction

Fractional calculus is developing fast in both theoretical and applied aspects [2, 8, 9, 12, 14, 15, 19—
21]. The powerful aspects of this type of calculus can be seen when we apply it to extract some hidden
aspects of the dynamics of complex systems. Generalizing some fundamental concepts from classical
calculus to the fractional counterpart is not an easy task, but once it was done the researchers got some
original results. We mention that recently, Al-Refai [4] has derived new estimates concerning the fractional
derivative of a function at its extreme points. The estimates were derived for the Caputo and Riemann-
Liouville fractional derivatives with fractional derivatives 0 < 6; < 1 and 1 < §, < 2. These results
were used to develop new maximum principles and establish existence and uniqueness results for several
types of fractional equations [1, 3, 5-7, 11, 17], and to develop numerical schemes for certain fractional
differential equations [16, 18, 22]. Also, the results concerning the Riemann-Liouville fractional derivative,
were used and generalized for weaker conditions on [6, 18]. In this paper, we extend these results to
fractional derivatives of arbitrary order.

1.1. Preliminaries

We recall the definitions and main results concerning the Caputo and Riemann-Liouville fractional
derivatives, see [10, 13].
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Definition 1.1. Let f(t) € C[0,T], 8 > 0, and I" denotes the Euler gamma function. The left Riemann-
Liouville fractional integral is defined by

1t )51
(1§, F)(t) :{ fr((f)) Jo(t—=s)°7f(s)ds, 2i8,

Definition 1.2. Let f(t) € C™[0, T], the left Caputo fractional derivative is defined by

qn f st (5)ds, n—1<d<neZt
DEF)(t) = (I ——f)(t) = 0 ' ,

Definition 1.3. For f(t) € C™[0, T], the left Riemann-Liouville fractional derivative is defined by

(0DRF)(t) =

(iln 5)(1) = ﬁf—; f(t)(t—s)“*5*1f(s)ds, n-1l<dé<neZ”t,
dtn 0+ M), §=nezt.

Caputo and Riemann-Liouville fractional derivatives are related by

(0D (1) = OD%(f— > s Nm) (1),

k!
k=0
where Mkt 1)
5.k _ + k-5
DRt = F 5 1)
We recall that when f(0) = /(0) = --- = f(™~1(0) = 0, we have (oDéf)(t) = (OD%f)(t). The rest of the

paper is organized as follows. In Section 2 we present the main results concerning the fractional derivative
of arbitrary order of a function at its extreme points. In Section 3 we present some examples to illustrate
the validity of the new results. We close up with some concluding remarks in Section 4.

2. The main results

We generalize the main results obtained in [4] to the fractional derivatives of arbitrary order. We have
the following theorem.

Theorem 2.1. Let f(t) € C™[0, T] attain its global minimum at to € (0, T], then

n—1
1 k—6n1. (K)
n — ¢t "h
(0D ) (t0) = Zrk+1—6 Tt n1(0)
+1Jto(t —s) M (s)ds, m—1<8n<n
r(—én) 0 0 n—1 7 mn 7
where
n—
t t
hno1(t Z: 0)*
k=0

Proof. We apply the induction arguments to prove the result. The proof has been obtained in [4], for
0 < &1 < 1. Assume that the result holds true for n —1 < 8, < n, in the following we prove that it also
holds true forn < 86,11 <n+1.Let0 < « < 1besuch thatd,,,1 = a+n,then n—1< 6, =n—14+a<n,
and using the induction hypothesis, we have

n—1 o

1 k+1-n—o, (k) 1 J' e
1 o to— hn_ .
g%”k+2—n—af° P O F =y |, (o) n-1(s)ds

(oD ) (tg) = —
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Applying the above equation for f'(t) yields

[ay

n—

_ 1 e (K)
D™ I+ocer — tk+1 n—a( 0
(DE ) () O prrpre L AR (O
k=0 (2.1)
+1Jt0(t —s) " %s_1(s)ds
where
. N £ (o) (1 — o)
n— 1
= k!
Thus, we can show that
1. h/ (t) =sn_1(t), and
2. hn(to) = R (to) = hY(to) = -~ = hif*) (o) = 0.

Hence, h (t) = (tg —t)™ " un(t) for some pn(t) € C[0,T] and hy (k+1) (0) = sfik_)l(O). Integrating by parts
(2.1) it yields,

LO(to L)%y (s)ds = (to — )™ Fhn ()] — (n + o JOO(to Ty (s)ds.

We have hls)
o miS) gl B
lim s = lim (o =) i (1) =0, 0< <,
and hence
1Jt0(t _ )fnfcx ( )d
r(l—n—o() 0 0—S Sh—1(s)ds
t, " %hn (0) n-+ o to o
r0(1 nioc) FMl—n—o Jo (to—s)™™ *“ Thu(s)ds (2.2)
a0 1 (o o
F(l—n—oc) I(—mn—o) JO (to =) hin(s)ds
Thus
n—1
1 Doyt “ha(0)
pn-lte - ot 1-n—a (k1) ) _ Lo
( F){ta) = T(k+2-n o) 0 hn " (0) Fp—
+ ! Jto(t —s) "% T (s)ds
MN—m—«o) Jo 0
n J— —_
_ 1 k—n—ay, (k) t0Tl “hn(0)
Z k+1l-n—o) P (0) rMli—m-—o)

3 1 (1) 1w
= kim0 (0)+J (to—s) % Tha(s)ds

= MN—m-—«) Jo
n
1 K—85114. (K) 1 Jto &1
= t TRy (0) + ———— | (tg—s) ot (s)ds.
kZOF(k—H—ZSnH) 0 n (0 I'(—dn+1) Jo (to=s) nls)

The last equation proves the result, since (¢(DE""%f")(tg) = (¢(DE"*f)(tg) = (OD?:““f)(to).
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Remark 2.2. The integral in (2.2) exists because
(to—s) """ Mhn(s) = (to—5) """ (to— )" pn(s) = (to — ) *n(s)

for some p,, € C[0, T]. Since 0 < « < 1, then (tg —s)~* is integrable on [0, ty] and the result is obtained as
L, is continuous.

Corollary 2.3. Let f(t) € C™[0, T] attain its global minimum at to € (0, T], andn—1 < 6, <n.
1. Iff(“)(t) > 0on [0, to], then

n—1
1

&n S k=81, (k)

(0D f)(to) > 1<Z_()r(k+l_6“) 6 " Pn 4 (0)
2. If f™)(t) < 0on [0,tol, then

n—1 1 )
D2 < — LN )
PN <= Y gyt O

Proof. By the Taylor series expansion

n—1 (k) _ (n) B N
1 (0) = f(1) = S (o) (t=to)® ) (En(1))(t — to)

k! n!
k=0
for some t < &, (t) < to, we have
1 to 1 to f(n) — )"
™ J (to =)~ Thp_1(s)ds = J (tg—s)~sn1 L oSN Z 0T 4
Can . (2.3)
= (=5 L (to — )™ O LW (g, (s))ds.
: n
Since n—1 < 6, <mn, and
M(—6,) = >0, when n is even,
n <0, when n is odd,
we have r((i 16):) > 0, and
S >0, when f(™(t) >0,
"7 €0, when f(“)(t) <0,
which proves the result. [

Corollary 2.4. Let f(t) € C™0, T] attain its global minimum at to € (0,T], and [f™)(t)] < M, t € [0, T], then

n—1
1 _ k)
Don _ k—dnp —1 2.4
(oD f)(to) ];]F(lu—l—én)to Ny (0) + 7, n—1<8n <, (24)
where 5
Mt~ o
Tl < 0 : 2.5
g | Y @5)
Proof. From (2.3) we have
(—nn [t n—6n—1¢(n)
T™h = ML (to—s) T (En(s))ds,
and thus s
M to M tg "
™| < ———— to—s)v Ol = 0 ,
Il < gy ) WIT(8n)] n—5n

which completes the proof. O
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Remark 2.5. Similar results corresponding to the fractional derivatives at global maximum points are
getting by utilizing the above mentioned results on —f(t).

Below we show the analogous results for the Riemann-Liouville fractional derivative.

Theorem 2.6. Let f(t) € C™(0, T] attain its global minimum at to € (0, T], then for n —1 < &, < n, we have

n—1 t
1 0
D2n S k=8n 1, () () _ £(K) J e
(oD% f)(to) ];r(kﬂ_én)to [hn 21 (0) = F0) + = | (to—8) " Thna(s)ds,
where .
ek — 1)k
(1) = 1) -y 0=
k!
k=0
Proof. We have
n—1 n—1 k—5&
t Fk+1) t<on
Don _ (Do (f— e _ (,D% _ (%)
WD) = (003 (7= X L7000 = @O0 - Y e 0
k=0 k=0
n—1 tk_én
= (oD ) (t) — (0).
WP = gy O
Applying the result in (2.4) yields
5 Yot w R T
Dyt 0
LDy ){to) = ];)FkJrl—é it (O)+];)F(k+1—6n)f (0)
1 o —5n—1
+F(—6)L (to—s) " "hn_1(s)ds
n
n— tk on (x) ) to
gl o Ol
k;) s MO 0+ 5 | =9 T (s)as,
which proves the result. O

Remark 2.7. The condition f(t) € C™[0,T] could be so restrictive for the Riemann-Liouville fractional
derivative. It is known that the fundamental solutions of certain homogenous fractional differential equa-
tions of Riemann-Liouville type, possesses a singularity at t = 0. However, this condition has been re-
placed by a weaker ones for 0 < §; < 1and 1 < &, < 2, see [6, 18]. The problem wether these weaker
conditions are applicable for higher order fractional derivatives is left for a future work.

Corollary 2.8. Let f(t) € C™[0, T] attain its global minimum at to € (0, T], andn—1 < 6, <n.

1. Iff(“)(t) > 0on [0, to], then
(0DR)(t0) > —

2. Iff(“)(t) < 0on [0, tgl, then

n— thon
(0DRf) (to) Z s M@= 0]
Proof. The proof of this theorem is similar to the one from Corollary 2.3. O

Remark 2.9. The estimate of the error term in equation (2.5) is valid for the Riemann-Liouville fractional
derivative.
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3. Illustrative examples

To illustrate the validity of our results, we present two examples for the Riemann-Liouville fractional
derivative.

Example 3.1. Consider f(t) = t3 + cosh(t —1), t € [0,1], and 2 < &3 < 3. Since f(t) is continuous on [0, 1]
and f(0.4) < f(0) < (1), then f attains a global minimum at ty € (0,1). Since

fB)(t) =6 —sinh(t—1) > 6—sinh(—1) >0, te[0,1],

then applying the result in Corollary 2.8, it yields

2 k— 63
8 _ £ (k) () _ (k)
(oD*f)(to) = kz_or(k Ty @0
where )
(k) — i)k
ha(t) = 1(0) — 3 TR ) p(ag) — 267 (t0) (1 - 1)

k=0

By performing direct calculations one can verify that

2 k—63

— toi (k) _ ¢(k) _&—53§2// .
g Fic =gz (0= 0] = sr—gate "5 6" () + (83 = 2)f(to)],
and hence 51 5
(DY) (to) > ﬁtg% [é’téf”(to) + (85 — 2)f(to)].

Since f(t) > 0, t € [0,1], f”(tp) > 0, and 2 < 83 < 3, the right hand side of the above inequality is
non-negative and thus
(0D¥f)(tg) =0, forall2 < 83 < 3.

Example 3.2. Consider f(t) = —cosh(t), t € [0,1], and 3 < 84 < 4. Since f*)(t) = —cosh(t) <0, t € [0,1],
then applying the result in Corollary 2.8 yields

3 k—384
84 B £ (k) 0y _ (k)
(oDgf)(to) < kZ_Or(k g @
where
> (k) o)k
ha(t) = £() — Y POy (1) — 267 (t0) (1 —t0)? — 2 (t0) 1t — )

By performing direct calculations one can verify that

5 64 —1 5, 04(84—2) 84(84 —3)
(ODR4f) (to) < 7},(4 — 54) 0 4[?&3#”(’[0) — #tgf“(to) — f(to)(54 —3)(54 — 2)]
Since f(t) = — cosh(t) attains a global minimum at ty = 1, the last inequality leads to
o —1 04(84—2) . (64 —3)(364 —4)
54 < Y4 ~ 04(04 4
(0DR)(1) < F4_ 64)[ ‘ sinh(1) + 5 cosh(1)], 3 < &4 <4.
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We remark here that, if 64 — 3, the last inequality leads to
(oDRf)(1) < —sinh(1) = f¥)(1),

while if 54 — 4, the inequality leads to
(oDRH)(1) < 0.

Also, the error term in (2.5) is

cosh(1)
411 (—084)(4 — 84)

Irnl < < cosh(1), 3< 84 < 4.

This error term increases with 8. It approaches zero as & approaches 3, and it approaches cosh(1) as &
approaches 4.

4. Concluding remarks

We have obtained estimates of fractional derivatives of a function at its extreme points. The results
were obtained for the fractional derivatives of Caputo and Riemann-Liouvile types. The results were
obtained in the functional space C™[0, T], and the problem wether these results are valid for a more wider
spaces is left for a future work. We have presented some examples to illustrate the applicability of the
new results which can also, be used to study higher order fractional differential equations.
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