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Abstract
This paper considers a stochastic Susceptible-Infected-Susceptible (SIS) epidemic model with nonlinear saturated incidence.

The threshold conditions for disease extinction and stochastic permanence are obtained by using nonlinear stochastic analysis
for Feller’s test and the canonical probability method. Consequently, this improves and extends some previous results obtained
by using Lyapunov method. A series of numerical simulations are carried out to illustrate our theoretical findings. c©2017 All
rights reserved.
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1. Introduction

Mathematical models for the dynamics of infectious diseases have a realistic significance in the field
of epidemiology, and some novel results are obtained [1–3, 5, 7, 13, 17, 20–22, 29–31]. Recently, nonlinear
analysis has been widely applied in mathematical modelling in biology [2, 3, 5, 13, 21, 22, 31]. Inspired
by previous work for stochastic dynamics in [9, 10, 12, 14, 16, 19, 23, 24, 26–28, 32], this paper discusses a
nonlinear SIS epidemic model with stochastic perturbation, which is described by the following stochastic
system 

dS(t) =
(
Λ− µS(t) −

βS(t)I(t)

1 +αI(t)
+ λI(t)

)
dt−

σS(t)I(t)

1 +αI(t)
dB(t),

dI(t) =
[
βS(t)I(t)

1 +αI(t)
− (µ+ λ)I(t)

]
dt+

σS(t)I(t)

1 +αI(t)
dB(t),

(1.1)

where S(t) and I(t), respectively, represent the number of susceptible and infectious individuals at time
t, B(t)(B(0) = 0) is the standard Wiener process with intensity σ2 > 0, Λ stands for the birth rate of
susceptible individuals, µ denotes the natural mortality, λ is the recovery rate of disease. The function
βS(t)I(t)
1+αI(t) stands for the saturated incidence rate, here β represents the transmission rate of disease and α
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is the half-saturation constant. The parameters β, α, λ are all nonnegative constants and Λ, µ are positive
constants. Recently, authors of [4, 6, 21] have done much research and have obtained plenty of significant
conclusions for system (1.1). They set up the threshold condition R∗, which determines disease extinction
or permanence under stochastic perturbation, where

R∗ = R−
σ2Λ2

2µ2(µ+ λ)
,

and R = βΛ
µ(µ+λ) stands for the basic reproduction of its deterministic system. Meanwhile, they provided

the results as follows:

(A1) For any given initial value (S(0), I(0)) ∈ R2
+, the system (1.1) has a unique positive solution

(S(t), I(t)) ∈ R2
+ on t > 0 a.s.

(A2) When R∗ < 1 and σ2 6 βµ
Λ , it shows that the disease dies out with probability one.

(A3) When R∗ > 1, it shows that the disease is permanent in mean with probability one.

From system (1.1), we have

d (S(t) + I(t))

dt
= Λ− µ (S(t) + I(t)) .

This implies that

lim
t→+∞ (S(t) + I(t)) =

Λ

µ
.

Thus the one-dimensional limiting system of system (1.1) is given by

dI(t) =
[
β(Λ− µI(t))I(t)

µ(1 +αI(t))
− (µ+ λ)I(t)

]
dt+

σ(Λ− µI(t))I(t)

µ(1 +αI(t))
dB(t), (1.2)

with initial value I(0) ∈
(

0, Λµ
)

and then we concentrate on exploring the dynamics of system (1.2).
For another, a large number of literatures have used the Lyapunov functions to study the dynamics

of infectious diseases and have given many good results [4, 6, 11, 21]. However, this paper applies the
Feller’s test and canonical probability methods to study the dynamics of system (1.2) and gives some new
results. In this paper, we are mainly concerned with the following three questions:

(Q1) Removing the condition of σ2 6 βµ
Λ , if R∗ < 1 holds, will still the disease go extinct?

(Q2) If R∗ = 1 holds, will the disease die out or persist?

(Q3) If R∗ > 1 holds, is system (1.2) stochastic permanence in addition to permanence in mean?

The remainder of this paper is organized as follows. In Section 2, we obtain the conditions of disease
extinction by Feller’s test: R∗ < 1 or R∗ = 1 is the sufficient condition of disease extinction with probability
one. In Section 3, we study the stochastic permanence of the disease via Chebyshev inequality which is
different from the previous results about permanence in mean. Finally, we show the main results and
then present some numerical simulations to illustrate the main results.

Throughout this paper, unless otherwise specified, let (Ω, F , {F }t>0, P) be a complete probability
space with a filtration {Ft}t>0 satisfying the usual conditions (i.e., it is increasing and right continuous
while F0 contains all P-null sets). Further suppose B(t) is defined on the complete probability space Ω.

2. Extinction

In this section, we mainly investigate the dynamics of system (1.2) for R∗ < 1 and R∗ = 1, respectively,
and give some new results. Now let us state an assumption and some lemmas of a result on the Feller’s
test [8, 25] which will be useful in proving the main results.
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Assumption 2.1. Assume that the following one-dimensional time-homogeneous stochastic differential
equation (SDE) [18]:

dX(t) = f(X(t))dt+ g(X(t))dB(t), X(0) ∈ R+, (2.1)

satisfying the following properties:

(i) ∀X ∈ Y, g2(X) > 0;

(ii) ∀X ∈ Y, ∃ε > 0,
∫X+ε
X−ε

1+|f(r)|
g2(r)

dr < +∞,

here Y = (ξ,γ) and −∞ 6 ξ < γ 6 +∞.

Lemma 2.2. If Assumption 2.1 holds, then let X(t) be a non-explosive solution of the above SDE (2.1) in Y = (ξ,γ).
For any fixed constant c ∈ Y, the scale function is described by

ζ(x) =

∫x
c

exp
{
−2
∫u
c

f(r)

g2(r)
dr
}

du.

When ζ(ξ+) > −∞, ζ(γ−) = +∞, then

P

{
lim
t→+∞X(t) = ξ

}
= P

{
sup
t>0

X(t) < γ

}
= 1.

Lemma 2.3. Assume that the one-dimensional SDE(dX(t) = f(X(t))dt + dB(t), X(0) ∈ R+) exists a non-
explosive solution in finite time which is unique in the sense of probability law.
Define

α(x) =

∫x
0

exp
{

2
∫u

0
f(r)dr

}
du, β(x) =

∫x
0

exp
{
−2
∫u

0
f(r)dr

}
du.

When α(+∞) < +∞, α(−∞) = −∞, β(+∞) = +∞, β(−∞) = −∞, then

∀Γ ∈ R, P

{
lim
t→+∞X(t) < Γ

}
= 1,

that is to say, X(t)→ −∞ in probability meaning.

Proof. The proof of Lemma 2.2 and Lemma 2.3 are similar to [8, 25], hence we omit it here.

Theorem 2.4. Let I(t) be the solution of system (1.2) with initial value I(0) ∈
(

0, Λµ
)

. If R∗ < 1 holds, then

P

{
lim
t→+∞I(t) = 0

}
= 1.

Proof. By virtue of Lemma 2.2 and system (1.2), let

f(I) =
β(Λ− µI)I

µ(1 +αI)
− (µ+ λ)I, g(I) =

σ(Λ− µI)I

µ(1 +αI)
.

It is easy to get that

2
∫u
c

f(r)

g2(r)
dr =

2
σ2

∫u
c

[
Λµβ+Λ2βα− µ2(µ+ λ) +Λ2(µ+ λ)α2

Λ2
(
Λ
µ − r

) +
Λµβ− µ2(µ+ λ)

Λ2r

−
µ2(µ+ λ) + 2µΛ(µ+ λ)α+Λ2(µ+ λ)α2

µΛ
(
Λ
µ − r

)2

]
dr

= −
2
σ2

[
Λµβ+Λ2βα− µ2(µ+ λ) +Λ2(µ+ λ)α2

Λ2 ln
(
Λ

µ
− u

)
− lnu

× Λµβ− µ2(µ+ λ)

Λ2 +
µ2(µ+ λ) + 2µΛ(µ+ λ)α+Λ2(µ+ λ)α2

Λ(Λ− µu)

]
+Mc,
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here Mc is a constant. Then by calculation, one can obtain

ζ(I) = exp{−Mc}

∫I
c

exp
{

2
σ2

[
Λµβ+Λ2βα− µ2(µ+ λ) +Λ2(µ+ λ)α2

Λ2 ln
(
Λ

µ
− u

)
−
Λµβ− µ2(µ+ λ)

Λ2 lnu+
µ2(µ+ λ) + 2µΛ(µ+ λ)α+Λ2(µ+ λ)α2

Λ(Λ− µu)

]}
du

= exp{−Mc}

∫I
c

u
− 2
σ2

[
Λµβ−µ2(µ+λ)

Λ2

](
Λ

µ
− u

) 2
σ2

[
Λµβ+Λ2βα−µ2(µ+λ)+Λ2(µ+λ)α2

Λ2

]

× exp

{
2
[
µ2(µ+ λ) + 2µΛ(µ+ λ)α+Λ2(µ+ λ)α2

]
σ2Λ(Λ− µu)

}
du.

(2.2)

Now from (2.2), let I→
(
Λ
µ

)−
, ρ = µ

Λ−µu , we have

ζ

((
Λ

µ

)−
)

> exp{−Mc}c
2µ2(µ+λ)
σ2Λ2

(
Λ

µ

)− 2µβ
σ2Λ
∫+∞

µ
Λ−µc

ρ
− 2
σ2

[
Λµβ+Λ2βα−µ2(µ+λ)+Λ2(µ+λ)α2

Λ2

]
−2

× exp

{
2
[
µ2(µ+ λ) + 2µΛ(µ+ λ)α+Λ2(µ+ λ)α2

]
ρ

σ2Λµ

}
dρ

= +∞.

Notice that R∗ < 1 such that 2
σ2

[
Λµβ−µ2(µ+λ)

Λ2

]
< 1, then from (2.2) and let I→ 0+, one sees that

−ζ
(
0+
)
6 exp{−Mc}

(
Λ

µ

) 2[Λµβ+Λ2βα+Λ2(µ+λ)α2]
σ2Λ2

(
Λ

µ
− c

)−
2µ2(µ+λ)
σ2Λ2

× exp

{
2
[
µ2(µ+ λ) + 2µΛ(µ+ λ)α+Λ2(µ+ λ)α2

]
σ2Λ(Λ− µc)

}∫c
0
u
− 2
σ2

[
Λµβ−µ2(µ+λ)

Λ2

]
du

= exp{−Mc}

(
Λ

µ

) 2[Λµβ+Λ2βα+Λ2(µ+λ)α2]
σ2Λ2

(
Λ

µ
− c

)−
2µ2(µ+λ)
σ2Λ2

× exp

{
2
[
µ2(µ+ λ) + 2µΛ(µ+ λ)α+Λ2(µ+ λ)α2

]
σ2Λ(Λ− µc)

}

× 1

1 − 2
σ2

[
Λµβ−µ2(µ+λ)

Λ2

]c1− 2
σ2

[
Λµβ−µ2(µ+λ)

Λ2

]

< +∞,

which implies that ζ (0+) > −∞. The proof of Theorem 2.4 is complete.

Theorem 2.5. Let I(t) be the solution of system (1.2) with initial value I(0) ∈
(

0, Λµ
)

. If R∗ = 1 holds, then
t→ +∞, I(t)→ 0 in probability meaning.

Proof. Define

V = η(I) =
µ

Λσ

[
ln I−

µ+Λα

µ
ln
(
Λ

µ
− I

)]
.

From Itô’s formula and system (1.2), we have

dV = f(V)dt+ dB(t),
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where

f(V) =
1
σ

β−
µ
(
1 +αη−1(V)

)
(µ+ λ)

Λ− µη−1(V)
−

σ2
(
µ
(
Λ
µ − η−1(V)

)2
− (µ+Λα)

(
η−1(V)

)2
)

2 (1 +αη−1(V))
2
Λ

 ,

with I = η−1(V) since R∗ = 1.
Now let r = η(χ), it is easy to get that

2
∫u

0
f(r)dr =

2
σ2

∫η−1(u)

η−1(0)

β−
µ(1 +αχ)(µ+ λ)

Λ− µχ
−

σ2
(
µ
(
Λ
µ − χ

)2
− (µ+Λα)χ2

)
2(1 +αχ)2Λ

 µ(1 +αχ)

(Λ− µχ)χ
dχ

= −
2
σ2

[(
(µ+ λ)

µ2

Λ2 +
σ

2
−
βµ

Λ

)
lnη−1(u) +

(
β(µ+Λα)

Λ
− (µ+ λ)

(
µ2

Λ2 −α2
)
+
σ

2

)
× ln

(
Λ

µ
− η−1(u)

)
+

(µ+ λ)
(
µ2 +Λ2α2 + 2µΛα

)
Λ (Λ− µη−1(u))

−
σ ln

(
1 +αη−1(u)

)
2

]
+M0,

here M0 is a constant. Then letting u = η(ψ), we have

α(I) =
exp{M0}

σ

∫η−1(I)

η−1(0)

(1 +αψ)
σ+1
σ

ψ
2
σ2

(
(µ+λ) µ

2

Λ2 +
σ
2 −

βµ
Λ

)
+1

exp
{
− 2
σ2

(µ+λ)(µ2+Λ2α2+2µΛα)
Λ(Λ−µψ)

}
(
Λ
µ −ψ

) 2
σ2

(
β(µ+Λα)

Λ −(µ+λ)
(
µ2

Λ2 −α
2
)
+σ

2

)
+1

dψ.

Notice that η−1(0) ∈
(

0, Λµ
)

, lim
I→+∞η−1(I) =

Λ

µ
, lim
I→−∞η−1(I) = 0+. By Lemma 2.3, one sees that

α(+∞) 6
exp{M0}

σ

(
1 +

αΛ

µ

)σ+1
σ
∫ Λ
µ

η−1(0)

1

ψ
2
σ2

(
(µ+λ) µ

2

Λ2 +
σ
2 −

βµ
Λ

)
+1

×
exp
{
− 2
σ2

(µ+λ)(µ2+Λ2α2+2µΛα)
Λ(Λ−µψ)

}
(
Λ
µ −ψ

) 2
σ2

(
β(µ+Λα)

Λ −(µ+λ)
(
µ2

Λ2 −α
2
)
+σ

2

)
+1

dψ

< +∞,

and

α(−∞) 6 −
exp{M0}

σ

1

η−1(0)
2
σ2

(
(µ+λ) µ

2

Λ2 +
σ
2 −

βµ
Λ

) exp
{
− 2
σ2

(µ+λ)(µ2+Λ2α2+2µΛα)
Λ(Λ−µη−1(0))

}
(
Λ
µ

) 2
σ2

(
β(µ+Λα)

Λ −(µ+λ)
(
µ2

Λ2 −α
2
)
+σ

2

)
+1

∫η−1(0)

0+

1
ψ

dψ

= −∞.

Similarly, we also obtain β(+∞) = +∞, β(−∞) = −∞. The proof of Theorem 2.5 is complete.

3. Stochastic permanence

Many results for permanence in mean has been obtained, however, we further investigate stochastic
permanence in this section. Before analyzing the main results, we first give a useful definition as follows.
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Definition 3.1 ([15]). System (1.2) is said to be stochastically permanent, if for any ε ∈ (0, 1), there exist
positive constants δ1 = δ1(ε) and δ2 = δ2(ε) such that

lim inf
t→+∞ P{I(t) 6 δ1} > 1 − ε, lim inf

t→+∞ P{I(t) > δ2} > 1 − ε,

where I(t) is an arbitrary solution of system (1.2) for any initial value I(0) ∈ R+.

Theorem 3.2. Let I(t) be the solution of system (1.2) with initial value I(0) ∈
(

0, Λµ
)

. If R∗ > 1 holds, then
system (1.2) is stochastically permanent.

Proof. According to the Itô’s formula and system (1.2), we get

d(I−κ) =− κI−κ

β
(
Λ
µ − I

)
1 +αI

− (µ+ λ) −
σ2(κ+ 1)

(
Λ
µ − I

)2

2(1 +αI)2

dt−
σκI−κ

(
Λ
µ − I

)
(1 +αI)

dB(t)

=− κI−κ
(
βΛ

µ
− µ− λ−

σ2(κ+ 1)Λ2

2µ2

)
dt+U(t)dt−

σκI−κ(Λ− µI)

µ(1 +αI)
dB(t),

(3.1)

here κ(0 < κ < 1) is a constant and

U(t) = κI−κ
(
βΛ

µ
−
β(Λ− µI)

µ(1 +αI)
−
σ2(κ+ 1)Λ2

2µ2 +
σ2(κ+ 1)(Λ− µI)2

2µ2(1 +αI)2

)
6
βκ(Λα+ µ)Λ1−κ

µ2−κ .

Set

φ = κ

(
βΛ

µ
− µ− λ−

σ2(κ+ 1)Λ2

2µ2

)
.

Take κ small enough such that φ > 0. Furthermore, multiplying by eφt on the both sides of (3.1) and
integrating from 0 to t lead to

I−κ(t) = e−φtI−κ(0) +
∫t

0
U(r)e−φ(t−r)dr−

∫t
0

σκI−κ(r)(Λ− µI(r))

µ(1 +αI(r))
dB(r),

then taking the expectation yields

E[I−κ(t)] = e−φtI−κ(0) + E

∫t
0
U(r)e−φ(t−r)dr

6 I−κ(0) +
βκ(Λα+ µ)Λ1−κ

φµ2−κ .

By virtue of I(t) ∈
(

0, Λµ
]
, using the Chebyshev inequality, we can get

P

{
Λ

µ
> I(t) > δ2

}
= P{I(t) > δ2}

= 1 − P{δ−κ2 > I−κ(t)}

> 1 − δκ2 E[I−κ(t)]

> 1 − δκ2

[
I−κ(0) +

βκ(Λα+ µ)Λ1−κ

φµ2−κ

]
.

Take δ2 such that δκ2
[
I−κ(0) + βκ(Λα+µ)Λ1−κ

φµ2−κ

]
< ε, we have lim inf

t→+∞ P{I(t) > δ2} > 1 − ε. Similarly, we also
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have lim inf
t→+∞ P{I(t) 6 δ1} > 1 − ε. The proof of Theorem 3.2 is complete.

4. Conclusions and simulations

This paper applies Feller’s test and the canonical probability method which is different to Lya-
punov method to investigate long-time dynamics of the stochastic system. We establish the threshold
R∗ = βΛ

µ(µ+λ) −
σ2Λ2

2µ2(µ+λ)
which completely determines disease extinction and stochastic permanence un-

der stochastic perturbation. The main results are given as follows:

(I) When R∗ < 1 or R∗ = 1, the disease dies out with probability one.

(II) When R∗ > 1, the disease is stochastically permanent with probability one, which is different from
the persistence in mean. Compare with previous study results [4, 6, 21], the additional condition of
σ2 6 βµ

Λ is unnecessary. Therefore, we improve the main results of previous studies.
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Figure 1: The simulation of the paths S(t), I(t) for the SDE system (1.1), here (a) and (b) are time sequence diagrams, (c) stands
for the phase portrait of (a) and (b). The blue trajectory and red dots in (c) are the deterministic system and the stochastic system
of system (1.1), respectively. (a) σ = 0, (b) σ = 0.15.

Next, we present some numerical simulations to illustrate the theoretical results. Now we consider
the following discrimination equations of system (1.1):

Sk+1 =Sk +

(
Λ− µSk −

βSkIk
1 +αIk

+ λIk

)
∆t− σ

SkIk
1 +αIk

√
∆tρk −

σ2

2
SkIk

1 +αIk
(ρ2
k − 1)∆t,

Ik+1 =Ik +

[
βSkIk

1 +αIk
− (µ+ λ)Ik

]
∆t+ σ

SkIk
1 +αIk

√
∆tχk +

σ2

2
SkIk

1 +αIk
(χ2
k − 1)∆t,

where ρk, χk(k = 1, 2, · · · ,n) stand for the Gaussian random variables N(0, 1) and time increment ∆t > 0.
Take S(0) = 1.2, I(0) = 0.8, Λ = 1, β = 0.65, λ = 0.3, α = 0.6, µ = 0.5, ∆t = 0.001 and choose different
values of σ to explore the effect of the stochastic perturbation on dynamics for the SDE system (1.1).

In Figure 1 (a), take σ = 0, then R∗ = R = 1.625 > 1. As expected, Figure 1 (a) indicates the disease
persists in real life. In Figure 1 (b), take σ = 0.15, then R∗ = 1.5688 > 1, it satisfies the condition in
Theorem 3.2 and the previous work (A3), we can get that the disease will be stochastically permanent
and permanent in mean with probability one. As expected, Figure 1 (b) supports our results of the
Theorem 3.2 and the previous work (A3).

In Figure 2 (a), take σ = 0 and R∗ = R = 1.625 > 1, the result is similar to Figure 1 (a). In Figure 2 (b),
take σ = 0.7, then R∗ = 0.4 < 1 holds, but we can see that σ2 = 0.49 > βµ

Λ = 0.325, it does not meet the
conditions about the previous work (A2), so we can not make sure the disease will die out or persist by
(A2). Synchronously, from Theorem 2.4, R∗ = 0.4 < 1 shows the disease will die out with probability one.
As expected, Figure 2 (b) shows the disease dies out, which supports our results of Theorem 2.4.
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Figure 2: The simulation of the paths S(t), I(t) for the SDE system (1.1), here (a) and (b) are time sequence diagrams, (c) denotes
phase portrait of (a) and (b). The blue trajectory and red dots in (c) are the deterministic system and the stochastic system of
system (1.1), respectively. (a) σ = 0, (b) σ = 0.7.
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