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Abstract
In this paper, firstly we introduce not only partially degenerate Hermite-Genocchi polynomials, but also a new generaliza-

tion of degenerate Hermite-Genocchi polynomials. Secondly, we investigate some behaviors of these polynomials. Furthermore,
we establish some implicit summation formulae and symmetry identities by making use of the generating function of partially
degenerate Hermite-Genocchi polynomials. Finally, some results obtained here extend well-known summations and identities
which we stated in the paper. c©2017 All rights reserved.
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1. Introduction

Throughout the paper, we make use of the following notations:

N := {1, 2, 3, · · · } and N0 = N∪ {0} .

Let Hn(x,y) be denoted by the 2-variable Kampé de Fériet generalization of the Hermite polynomials
[2, 3] defined as

Hn(x,y) = n!
[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
.

These polynomials are usually defined by the following generating function

ext+yt
2
=

∞∑
n=0

Hn(x,y)
tn

n!

and reduce to the ordinary Hermite polynomials Hn(x) (see [1]) when y = −1 and x is replaced by 2x.
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The classical Bernoulli polynomials Bn(x), the classical Euler polynomials En(x), and the classical
Genocchi polynomials Gn(x) each of degree n are defined respectively by the following generating func-
tions (see [3–16]):

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, (|t| < 2π)

2
et + 1

ext =

∞∑
n=0

En(x)
tn

n!
(|t| < π) ,

and
2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
(|t| < π) .

Note that
Bn(0) = Bn, En(0) = En, and Gn(0) = Gn (n ∈N).

The Daehee polynomials are defined by Kim and Kim [5], as follows

log(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
. (1.1)

In the case when x = 0 in (1.1), Dn(0) := Dn are called the Daehee numbers.
Jang et al. [4] considered the partially degenerate Genocchi polynomials which are given by means of

the generating function
2 log(1 + λt)

1
λ

et + 1
ext =

∞∑
n=0

Gn,λ(x)
tn

n!
. (1.2)

In the case when x = 0, Gn,λ(0) := Gn,λ are called the partially degenerate Genocchi numbers.
Pathan and Khan [13] introduced the generalized Hermite-Bernoulli polynomials for two variables

HB
(α)
n (x,y) given by (

t

et − 1

)α
ext+yt

2
=

∞∑
n=0

HB
(α)
n (x,y)

tn

n!
. (1.3)

Taking α = 1 in (1.3), it reduces to known result of Dattoli et al. [3, p. 386 (1.6)], as follows(
t

et − 1

)
ext+yt

2
=

∞∑
n=0

HBn(x,y)
tn

n!
, (1.4)

where, for the case x = y = 0 in (1.4), we have Bn = HBn(0, 0) are called the Bernoulli numbers.
For each k ∈N0, Tk(n) [10] defined by

Tk(n) =

n∑
j=0

(−1)jjk

is called the alternating sum. The exponential generating function for Tk(n) is
∞∑
k=0

Tk(n)
tk

k!
=

1 − (−et)
(n+1)

et + 1
. (1.5)

Recently the special polynomials and degenerate-type special numbers and polynomials have been in-
troduced and studied with applications extensively by many authors (see [1–16] for a systematic work).
Inspired and motivated by their works, in this paper, we introduce not only partially degenerate Hermite-
Genocchi polynomials but also a new generalization of partially degenerate Hermite-Genocchi polyno-
mials and then give some of their applications. We also derive some implicit summation formula and
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general symmetry identities. For obtaining implicit summation formula and general symmetry identities,
we use the proof techniques of Dattoli et al. [3], and Pathan and Khan [13].

2. Partially degenerate Hermite-Genocchi polynomials

In this section, we assume that λ, t ∈ C with |λt| 6 1 and λt 6= −1. Then we consider partially
degenerate Hermite-Genocchi polynomials as follows.

2 log(1 + λt)
1
λ

et + 1
ext+yt

2
=

∞∑
n=0

HGn,λ(x,y)
tn

n!
(2.1)

so that

HGn,λ(x,y) =
n∑
m=0

(
n

m

)
Gm,λHn−m(x,y).

In the case x = y = 0 in (2.1), we have HGn,λ(0, 0) := Gn,λ are called the partially degenerate Genocchi
numbers introduced by Jang et al. [4].

Theorem 2.1. For n ∈N0, we have

HGn,λ(x,y) =
n∑
m=0

(n)mm!(−λ)mHGn−m(x,y).

Proof. It follows from (2.1) that

∞∑
n=0

HGn,λ(x,y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
ext+yt

2

=

( ∞∑
m=0

(−1)m

m+ 1
(λt)m

)( ∞∑
n=0

HGn(x,y)
tn

n!

)

=

∞∑
n=0

(
n∑
m=0

(
n

m

)
(−λ)m

m+ 1
m!HGn−m(x,y)

)
tn

n!
.

Matching the coefficients t
n

n! gives the desired result.

Remark 2.2. In the case when y = 0 in Theorem 2.1, our result reduces to the result of Jang et al. [4, p.4
(13)].

Theorem 2.3. For n ∈N0, we have

HGn+1,λ(x,y) =
n+1∑
m=0

(
n+ 1
m

)
λmHGn−m+1(x,y)Dm.

Proof. We first consider

I1 =
1
t

2 log(1 + λt)
1
λ

et + 1
ext+yt

2
=

( ∞∑
m=0

Dm
(λt)m

m!

)( ∞∑
n=0

HGn(x,y)
tn

n!

)

=

∞∑
n=1

(
n∑
m=0

(
n

m

)
λmDmHGn−m(x,y)

)
tn

n!

= t

∞∑
n=0

(
n+1∑
m=0

(
n+ 1
m

)
λmDm

HGn−m+1(x,y)
n+ 1

)
tn

n!
.
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Secondly

I2 =
1
t

2 log(1 + λt)
1
λ

et + 1
ext+yt

2
=

1
t

∞∑
n=0

HGn,λ(x,y)
tn

n!
=

∞∑
n=0

HGn+1,λ(x,y)
n+ 1

tn

n!
.

Since I1 = I2, we thus conclude the proof.

Remark 2.4. Taking y = 0 in Theorem 2.3 gives the result of Jang et al. [4, p.5 (19)].

Theorem 2.5. For n ∈N0, we have

HGn,λ(x,y) = n
n−1∑
m=0

(
n− 1
m

)
λmHEn−m−1(x,y)Dm.

Proof. From (2.1), we can write
∞∑
n=0

HGn,λ(x,y)
tn

n!
= t

log(1 + λt)

λt

2
et + 1

ext+yt
2

= t

( ∞∑
m=0

Dm
(λt)m

m!

)( ∞∑
n=0

HEn(x,y)
tn

n!

)

=

∞∑
n=0

(
n∑
m=0

(
n

m

)
λmDmHEn−m(x,y)

)
tn+1

n!
.

Thus, comparing the coefficients tn in the both sides on the above, we end the proof.

Remark 2.6. Putting y = 0 in Theorem 2.5 yields to known result of Jang et al. [4, p.5 (21)].

Theorem 2.7. For n ∈N0, we obtain

HGn,λ(x+ 1,y) =
n∑
m=0

(
n

m

)
(HGn−m,λ(x,y)) . (2.2)

Proof. By making use of Eq. (2.1), we see that
∞∑
n=0

(HGn,λ(x+ 1,y) −H Gn,λ(x,y))
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
e(x+1)t+yt2

−
2 log(1 + λt)

1
λ

et + 1
ext+yt

2

=

∞∑
n=0

HGn,λ(x,y)
tn

n!

∞∑
m=0

tm

m!
−

∞∑
n=0

HGn,λ(x,y)
tn

n!

=

∞∑
n=0

(
n∑
m=0

(
n

m

)
HGn−m,λ(x,y) −HGn,λ(x,y)

)
tn

n!
.

Comparing the coefficients t
n

n! in both sides of the above equation, we get the result (2.2).

Corollary 2.8. In the case when y = 0 in Theorem 2.7, one can see

Gn,λ(x+ 1) =
n∑
m=0

(
n

m

)
Gn−m,λ(x).

Theorem 2.9. For n ∈N0, we have

HGn,λ(x,y) =

n∑
m=0

m∑
k=0

(
n

m

)(
m

k

)
Gn−mDm−kλ

m−kHk(x,y).
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Proof. Since

∞∑
n=0

HGn,λ(x,y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
ext+yt

2

=

(
2t

et + 1

)(
log(1 + λt)

λt

)
ext+yt

2

=

( ∞∑
n=0

Gn
tn

n!

)( ∞∑
m=0

Dm
(λt)m

m!

)( ∞∑
k=0

Hk(x,y)
tk

k!

)
,

we have

=

∞∑
n=0

(
n∑
m=0

m∑
k=0

(
n

m

)(
m

k

)
Gn−mDm−kλ

m−kHk(x,y)

)
tn

n!
.

We thus complete the proof.

We now give a multiplication formula for partially degenerate Hermite-Genocchi polynomials.

Theorem 2.10. For n ∈N0, we have

HGn,λ(x,y) = dn−1
d−1∑
a=0

HGn, λd

(
a+ x

d
,y
)

.

Proof. From (2.1), we have

∞∑
n=0

HGn,λ(x,y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
ext+yt

2
=

2 log(1 + λt)
1
λ

edt + 1
eyt

2
d−1∑
a=0

e(a+x)t

=

∞∑
n=0

(
dn−1

d−1∑
a=0

HGn, λd

(
a+ x

d
,y
))

tn

n!
.

Equating the coefficients t
n

n! of the both sides of above equation, we arrive at the desired result.

Corollary 2.11. In the case y = 0, one can get

Gn,λ(x) = d
n−1

d−1∑
a=0

Gn, λd

(
x+ a

d

)
.

3. Generalized partially degenerate Hermite-Genocchi polynomials

Let d ∈ N with d ≡ 1(mod 2) and χ be a Dirichlet character with conductor d. We consider the
generalized partially degenerate Hermite-Genocchi polynomials attached to χ by means of the following
generating function:

∞∑
n=0

HGn,χ,λ(x,y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+yt
2
. (3.1)

When x = y = 0 in (3.1), we have Gn,χ,λ = HGn,χ,λ(0, 0) that stands for the generalized partially degener-
ate Genocchi numbers attached to χ. Also we observe that

lim
λ−→0
y=0

HGn,χ,λ(x,y) = Gn,χ(x)

is generalized Genocchi polynomial (see [15]).
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Theorem 3.1. For n ∈N0, we have

HGn,χ,λ(x,y) =
n∑
m=0

(
n

m

)
λmDmHGn−m,χ(x,y).

Proof. It follows from (3.1) that

∞∑
n=0

HGn,χ,λ(x,y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+yt
2

=

(
log(1 + λt)

λt

)(
2t

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+yt
2

)

=

( ∞∑
m=0

Dm
λmtm

m!

)( ∞∑
n=0

HGn,χ(x,y)
tn

n!

)
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we complete the proof.

Theorem 3.2. The following equality

HGn,χ,λ(x,y) = dn−1
d−1∑
a=0

(−1)aχ(a)HGn, λd

(
a+ x

d
,y
)

holds true.

Proof. We consider

∞∑
n=0

HGn,χ,λ(x,y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+yt
2

=
1
d

d−1∑
a=0

(−1)aχ(a)
2 log(1 + λt)

d
λ

edt + 1
e(
a+x
d )dt+yt2

=

∞∑
n=0

(
dn−1

d−1∑
a=0

(−1)aχ(a)HGn, λd

(
a+ x

d
,y
))

tn

n!
.

Equating the coefficients t
n

n! on both sides of the above equation yields the proof of this theorem.

By using Eq. (3.1), the proofs of the following theorems in this section can be shown easily. So we
omit the proofs.

Theorem 3.3. The following

HGn,χ,λ(x,y) =
[n2 ]∑
m=0

n!
(n− 2m)!m!

Gn−2m,χ,λ(x)y
m

holds true.

Theorem 3.4. The following

HGn,χ,λ(x,y)
n!

=

n∑
l=0

[n2 ]∑
m=0

(
n−2m
l

)
(n− 2m)!m!

Gl,χ,λx
n−2m−lym

holds true.
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4. Implicit formula involving partially degenerate Hermite-Genocchi polynomials

In this section we give implicit formula of partially degenerate Hermite-Genocchi polynomials by
making use of generating function technique.

Theorem 4.1. The following implicit summation formula for partially degenerate Hermite-Genocchi polynomials
HGn,λ(x,y) holds true:

HGk+l,λ(z,y) =

k,l∑
n,p=0

(
k

n

)(
l

p

)
(z− x)n+pHGk+l−p−n,λ(x,y). (4.1)

Proof. We first replace t by t + u and rewrite the generating function (2.1) as

2 log(1 + λ(t+ u))
1
λ

e(t+u) + 1
ey(t+u)

2
= e−x(t+u)

∞∑
k,l=0

HGk+l,λ(x,y)
tkul

k!l!
(see [13]).

Replacing x by z in the above equation and equating the resulting equation to the above equation, we
have

e(z−x)(t+u)
∞∑
k,l=0

HGk+l,λ(x,y)
tk

k!
ul

l!
=

∞∑
k,l=0

HGk+l,λ(z,y)
tk

k!
ul

l!

and also ∞∑
N=0

[(z− x)(t+ u)]N

N!

∞∑
k,l=0

HGk+l,λ(x,y)
tk

k!
ul

l!
=

∞∑
k,l=0

HGk+l,λ(z,y)
tk

k!
ul

l!
, (4.2)

where we have used the following formula taken in [16, p.52 (2)]

∞∑
N=0

f(N)
(x+ y)N

N!
=

∞∑
n,m=0

f(n+m)
xn

n!
ym

m!
.

In the left hand side of Eq. (4.2), it becomes

∞∑
n,p=0

(z− x)n+ptnup

n!p!

∞∑
k,l=0

HGk+l,λ(x,y)
tk

k!
ul

l!
=

∞∑
k,l=0

HGk+l,λ(z,y)
tk

k!
ul

l!
. (4.3)

Now replacing k by k−n, l by l− p, and using the lemma [16, p.100 (1)] in the left hand side of (4.3), we
get ∞∑

n,p=0

n,p∑
k,l=0

(z− x)n+p

n!p! HGk+l−n−p,λ(x,y)
tk

(k−n)!
ul

(l− p)!
=

∞∑
k,l=0

HGk+l,λ(z,y)
tk

k!
ul

l!
.

Thus, on equating the coefficients of the like powers of tk and ul in the above equation, we arrive at the
desired result.

Corollary 4.2. In the case l = 0 in Eq. (4.1), we have

HGk,λ(z,y) =

k∑
j=0

(
k

j

)
(z− x)jHGk−j,λ(x,y).

Note that for special values of the parameters y and z in Theorem 4.1, one can obtain some identities of
usual Genocchi polynomials. Now we also state some theorems including this section which can be easily
proved by making use of Eq. (2.1). So we give theorems without proof.
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Theorem 4.3. The following implicit summation formula for partially degenerate Hermite-Genocchi polynomials
HGn,λ(x,y) holds true:

HGn,λ(x+ z,y+ u) =

n∑
m=0

(
n

m

)
HGn−m,λ(z,u)Hm(x,y).

Theorem 4.4. The following implicit summation formula for partially degenerate Hermite-Genocchi polynomials
HGn,λ(x,y) holds true:

HGn,λ(y, x) = n!

n
2∑
k=0

Gn−2k,λ(y)
xk

(n− 2k)!k!
.

Theorem 4.5. The following implicit summation formula for partially degenerate Hermite-Genocchi polynomials
HGn,λ(x,y) holds true:

HGn,λ(x,y) =

n∑
m=0

(
n

m

)
Gn−m,λ(x− z)Hm(z,y).

Theorem 4.6. The following implicit summation formula for partially degenerate Hermite-Genocchi polynomials
HGn,λ(x,y) holds true:

HGn,λ(x+ 1,y) =

n∑
m=0

(
n

m

)
HGn−m,λ(x,y).

Theorem 4.7. The following implicit summation formula for partially degenerate Hermite-Genocchi polynomials
HGn,λ(x,y) holds true:

HGn,λ(x+ 1,y) +HGn,λ(x,y) = 2n
n−1∑
m=0

(
n− 1
m

)
(−λ)mm!
m+ 1

Hn−1−m(x,y).

5. Symmetry identities for partially degenerate Hermite-Genocchi polynomials

In this section, we give general symmetry identities for the partially degenerate Hermite-Genocchi poly-
nomials HGn,λ(x,y) by making use of the generating functions (1.2) and (2.1).

Theorem 5.1. For each pair of integers a and b with n > 0, the following symmetry identity holds true:

n∑
m=0

(
n

m

)
bman−mHGn−m,λ(bx,b2y)HGm,λ(ax,a2y)

=

n∑
m=0

(
n

m

)
ambn−mHGn−m,λ(ax,a2y)HGm,λ(bx,b2y).

Proof. We first consider

g(t) =
(2 log(1 + λt)

a
λ )(2 log(1 + λt)

b
λ )

(eat + 1)(ebt + 1)
eabxt+a

2b2yt2
,

where g(t) is symmetric in a and b, and can be expressed into series in two ways.
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On the one hand,

g(t) =

∞∑
n=0

HGn,λ(bx,b2y)
(at)n

n!

∞∑
m=0

HGm,λ(ax,a2y)
(bt)m

m!

=

∞∑
n=0

(
n∑
m=0

(
n

m

)
bman−mHGn−m,λ(bx,b2y)HGm,λ(ax,a2y)

)
tn

n!
,

(5.1)

and on the other hand,

g(t) =

∞∑
n=0

HGn,λ(ax,a2y)
(bt)n

n!

∞∑
m=0

HGm,λ(bx,b2y)
(at)m

m!

=

∞∑
n=0

(
n∑
m=0

(
n

m

)
ambn−mHGn−m,λ(ax,a2y)HGm,λ(bx,b2y)

)
tn

n!
.

(5.2)

By comparing the coefficients tn on the right hand sides of Eqs. (5.1) and (5.2), we get the proof of
theorem.

Theorem 5.2. For each pair of integers a and b with n > 1, the following symmetry identity holds true:

n∑
k=0

(
n

k

)
an−kbk

a−1∑
i=0

b−1∑
j=0

(−1)i+jHGn−k,λ

(
bx+

b

a
i+ j,b2z

)
Gk,λ(ay)

=

n∑
k=0

(
n

k

)
bn−kak

b−1∑
i=0

a−1∑
j=0

(−1)i+jHGn−k,λ

(
ax+

a

b
i+ j,a2z

)
Gk,λ(by).

Proof. Let

g(t) =
(2 log(1 + λt)

a
λ )(2 log(1 + λt)

b
λ )(eabt + 1)2

(eat + 1)2(ebt + 1)2 eab(x+y)t+a
2b2zt2

.

We consider g(t) with two ways. Firstly,

g(t) =
2 log(1 + λt)

a
λ

eat + 1
eabxt+a

2b2zt2
(
eabt + 1
ebt + 1

)
2 log(1 + λt)

b
λ

ebt + 1
eabyt

(
eabt + 1
eat + 1

)

=
2 log(1 + λt)

a
λ

eat + 1
eabxt+a

2b2zt2

(
a−1∑
i=0

(−1)iebti
)

2 log(1 + λt)
b
λ

ebt + 1
eabyt

b−1∑
j=0

(−1)jeatj


=

2 log(1 + λt)
a
λ

eat + 1
ea

2b2zt2

a−1∑
i=0

b−1∑
j=0

(−1)i+je(bx+
b
a i+j)at

( ∞∑
k=0

Gk,λ(ay)
(bt)k

k!

)

=

 ∞∑
n=0

a−1∑
i=0

b−1∑
j=0

(−1)i+jHGn,λ

(
bx+

b

a
i+ j,b2z

)
(at)n

n!

( ∞∑
k=0

Gk,λ(ay)
(bt)k

(k)!

)

×
∞∑
n=0

 n∑
k=0

(
n

k

)
an−kbk

a−1∑
i=0

b−1∑
j=0

(−1)i+jHGn−k,λ

(
bx+

b

a
i+ j,b2z

)
Gk,λ(ay)

 tn

n!
.

Secondly,

g(t) =

∞∑
n=0

 n∑
k=0

(
n

k

)
bn−kak

b−1∑
i=0

a−1∑
j=0

(−1)i+jHGn−k,λ

(
ax+

a

b
i+ j,a2z

)
Gk,λ(by)

 tn

n!
.

Since two ways are equal, we arrive at the desired result by comparing the coefficients t
n

n! .
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We now give the following two theorems without proofs because their proofs techniques are the same
with the above theorems of the final section of this paper.

Theorem 5.3. For each pair of integers a and b and all integers n > 0, the following symmetry identity holds true:

n∑
k=0

(
n

k

)
an−kbk

a−1∑
i=0

b−1∑
j=0

(−1)i+jHGn−k,λ

(
bx+

b

a
i,b2z

)
Gk,λ(ay+

a

b
j)

=

n∑
k=0

(
n

k

)
bn−kak

b−1∑
i=0

a−1∑
j=0

(−1)i+jHGn−k,λ

(
ax+

a

b
i,a2z

)
Gk,λ(by+

b

a
j).

Theorem 5.4. For each pair of integers a and b and all integers n > 0, the following symmetry identity holds true:

n∑
k=0

(
n

k

)
an−kbkHGn−k,λ

(
bx,b2z

) k∑
i=0

(
k

i

)
Ti(a− 1)Gk−i,λ(ay)

=

n∑
k=0

(
n

k

)
akbn−kHGn−k,λ

(
ax,a2z

) k∑
i=0

(
k

i

)
Ti(b− 1)Gk−i,λ(by),

where the sum of alternative integer powers Tk(n) is already given by Eq. (1.5).
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