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Abstract

In this paper, we discuss the stability problem of the impulsive differential systems with state-dependent impulses. By
using the linear decomposition methods, some sufficient conditions ensuring stability of the impulsive differential systems with
state-dependent impulses are obtained and the estimate of the solution of such nonlinear systems is also acquired. Our results
improve and generalize some of the known results given in earlier references. An example is given to demonstrate our results.
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1. Introduction

Impulsive differential systems provide basic mathematical models to describe the phenomenon of
abrupt changes at certain instants in their states, and the corresponding theory of impulsive differential
systems has been rapidly developed in the past decades, see [1, 4, 14, 15, 21]. In general, we can see
an impulsive system as a hybrid one which is composed of discrete dynamics, continuous dynamics,
criteria for deciding when the states of the system are to be reset. Therefore, an impulsive system has
continuous and discrete dynamic behaviors. The complicated dynamic behaviors can be caused because of
the interaction of continuous-time dynamics and discrete-time dynamics. Hence, the impulsive system is
more efficient than a continuous system or discrete systems in some cases [21]. For example, the savings
rates of central bank can not be changed everyday. A deep-space spacecraft can not keep its engine
running continuously if it has only a limited supply of fuel. In recent years, the theory of impulsive
differential systems has been applied to many aspects including of stability analysis, control design and
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synchronization, etc. A large amount of results on impulsive systems have appeared in the literature, see
[2,5, 8,18, 22].

As we all know, many results for stability of impulsive differential systems with fixed moments of
impulse effect have been derived and numerical interesting conclusions have been obtained, see [3, 9-
11, 13, 17, 19] and references therein. By the method of Lyapunov functionals, the authors in [6, 17] con-
sidered the exponential stability of impulsive systems with time delays and an impulsive delay inequality,
respectively. Reference [7] discussed further the global stability of periodic solution problem for a class of
impulsive neural networks with time delays by using contraction mapping theorem. Some necessary and
sufficient conditions were given in [3] for stability of linear impulsive systems with periodic impulses by
using continuous-time time-varying discontinuous Lyapunov functions. Based on impulsive control the-
ory and Lyapunov functional techniques, the authors in [9-11] studied the stability properties of nonlinear
differential systems with state-dependent delayed impulses, nonlinear systems with delayed impulses and
impulsive stochastic functional differential equations, respectively. Furthermore, the problem of stability
for impulsive differential systems with state-dependent impulses has gained much research attention.
For example, the stability of delay differential equations with state-dependent impulses was studied in
[16]. However, there are very few published literatures in related to the stability of impulsive differential
systems with state-dependent impulses. Therefore, it requires further studies.

The purpose of this paper is to improve the results in [16, 20] and establish some sufficient conditions
guaranteeing the stability of impulsive differential systems with state-dependent impulses. Based on the
linear decomposition methods, the stability problem of nonlinear systems with state-dependent impulses
is converted to that of the linear systems with fixed impulses. The remainder of the paper is organized as
follows. In Section 2, we present some basic notations and definitions. In Section 3, we provide the main
results. An example is given in Section 4 to demonstrate the feasibility and advantage of the obtained
results. In Section 5, conclusions are eventually given.

2. Preliminaries

Notations. Let R be the set of real numbers, R, the set of nonnegative real numbers, R™ the n-
dimensional real space equipped with the-Euclidean norm |- |, R™*™ the n x m-dimensional matrix,
Z. the set of positive integer numbers, I the n-dimensional identity matrix, Amax(A) the maximum eigen-
value of symmetric matrix A. For any sets A,B C R¥(1<k<n), CIA,Bl={: A — Bis continuous}.
N(tp, t) denotes the number of impulse times in the semi-open interval [to, t).

Consider the following nonlinear impulsive differential system

x(t) =P(t)x+h(t,x), t#Tk(x), t=>to,

Ax = Qex+ux(x),  t=1k(x), (2.1)

x(to) = xo, to >0,
where x(t) € R™ is the state variable, and x(t) is right continuous, i.e., x(t") = x(t). P(t) € R™*" is
bounded and continuous with t > tp. Qx € R™*™ is a constant matrix. h(t,x) : Ry x R™ — R™, is
continuous in x, which satisfies [x| < 1, 1 > 0, and h(t,x) is continuous or piecewise continuous for
t > to. uk(x) : R™ = R™ k € Z, is continuous with x| < 1. t¢(x) € C[R™, Ry ), T (x) < Tk41(x) for any
k € Z, and limy_,o Tk (X) = oo is uniform in x. Sy : t = T (x) denotes the impulsive surface for every
keZ,.

The corresponding linear system is given as follows

X(t) = P(t)X, t 7& ti, t = to,
X(tO) = X0, tO = 0/

where ty are some constants satisfying [t — T (0)] < € for [x| < n, where ¢ = ¢(1) > 0 is a given constant
satisfying limy, 0 ¢(n) = 0.
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Some definitions and lemma used in this paper are given in the following.

Definition 2.1 ([12]). Let x(t) = x(t, to, xo) be any solution of (2.1). Then the zero solution of system (2.1)
is said to be

(S1) stable, if for any € > 0 and tp > 0, there exists a constant = 5(to, €) > 0, such that |xo| < o implies
x(t) < e, t > to;

(S2) attractive, if for any € > 0 and ty > 0, there exist constants & = 8(tg) > 0 and T(e, to,xo) > 0 such
that [xo| < & implies [x(t)| <€, t >t + T,

(S3) asymptotically stable, if it is stable and attractive;

(54) exponentially stable, if for any € > 0 and tg > 0, there exist constants 6(e) > 0 and A > 0, such that
xol < 8(e) implies [x(t)] < ee Attt > .

Lemma 2.2 ([20]). For t > tq let u(t) be a nonnegative piecewise continuous function satisfying

u(t) <c+ Jt v(s)u(s)ds + Z biu(ti),

to to<Ti<t
where ¢ > 0, by > 0, v(s) > 0, u(t) has discontinuous points of the first kind at ti. Then we have

u(t) <c H (1+bi)exp (Jt v(s)ds).

to<Ti<t to

3. Main results

In this section, we shall establish some sufficient conditions ensuring the stability properties of system
(2.1).

Theorem 3.1. Suppose that
(i) forany x| <m,and k € Z,
i (1 Qux + 1w ) < Tel) < iy (T4 Qx +wi(0);

(ii) forany t > to, [x| <1, and k € Z,, we have
h(t,x)] < a(t)x], [uk(x)] < b(t)lxl,
where a(t) € (R4, R4), b(t) € (R, Ry);

(iii) the state transition matrix $(t,s) of the linear system (2.2) satisfies

[b(t,s)] <

—, K>0, t=>s2>tg
T+t—s =o =10

(iv) there exists a constant M > 1 such that
t
T <1+Kb(tk)> exp J Ka(s)ds | < M < o0, ti = Ti(x(tx)).
to<tp<t to

Then the zero solution of system (2.1) is asymptotically stable and each solution satisfies

Kixol 1 <1 +Kb(tk)> exp (Jt Ka(s)ds)

to<tk<t to

Ix(t)| < , 2>t

1+t—tg
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Proof. Let x(t) = x(t,to,x0) be any solution of system (2.1) starting at (top,xp), where x¢ is in a small
neighborhood of x = 0. There exist constants 7 < 11 and T < oo such that [xg| < 1 implies |x(t)| < n for
t € (to, to + T]. Based on the condition (i), x(t) meets each surface t = Ty (x) only once for t € (to, to + T],
then the equation t = T (x(t)) has a unique solution denoted by t. Then x(t), t € (to, to + T] is also a
solution of the system as follows

Ax = Qux+w(x),  t=t, (3.1)

{ X(t) = P(t)X+h(t, X)/ t 7& tk/ t 2 tO/
x(to) = xo, to = 0.

Hence, one can represent x(t) as

X(t)=d>(t,to)><o+J bt s)n(s,x(s))ds+ D bt tiulx(ti)), te (to,to+T.

to to<tr<t

We can derive that

t

|X(t)|<|¢(t,to)||xo|+J It s)lh(s,x(s))lds+ > Id(t, tic) [ (x(ti)l-

to

to<tr<t
It then follows from assumptions (ii) and (iii) that
K t K K
< ———— —_— d —Db(t t)l,
R e I E e O IO LI W i CALE)
to<ti<t
ie.,
K1+t —1p) K(1+t—1p)
1+t—t 1) <K _— d b(t ),
(1+t—to)lx(t)] |xO+LO s alsIkGs)l S+t0§k<t T, Ptk

which leads to

(14t = t)e(t)] < Kixol + | Kals)(1+s —to)e(s)lds + 3 Kb(tu)(1+ te —toix(ti)L.

o to<ti<t

Based on Lemma 2.2, one can get

t
(1+t—to)lx(t)] < Klxgl H (1 —|—Kb(tk)> exp <J Ka(s)ds),

to<tp<t to

ie.,

Kixol [T (1+Kb(tk)>exp<r Ka(s)ds)

to<tk<t to

x(t)| <
x(®) 1+t—tg
If xo satisfies [xo| < @37 and assumption (iv) holds, one can prove that the zero solution of system (2.1) is
asymptotically stable and each solution satisfies

Kixol T1 (1—|—Kb(tk)) exp (Jt Ka(s)ds)

to<ti<t to
x(t)] <

>t 0
T+t—to =0
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Theorem 3.2. Suppose that

(i) forany x| <n,and k € Z
i (1 Qux + 1)) < Tel) < iy (T4 Qx +wi0);

(ii) forany t > to, [x| <nand k € Z., we have
Ih(t,x)] < a(t)x],  fur(x)] < b(H)Ix],
where a(t) € (R, R, ), b(t) € (Ry,R,);
(iii) for any t > tg and n € Z, there exist constants y and v such that

Amax(5(P(8) + PT(£)) = An(t) < ,

and
Amax (I+ QM) (I+Qn)) = @3 <5

(iv) for any |x| < n the following limit

i NEET)
T—oo T L

exists and is uniform for t > to;

(v) there exist constants M > 1 and & > 0 such that

1 (1 +Kb(tk)) exp (Jt Ka(s)ds) < Mexp (6(t—to)>, K>1, t=t(x(t));

to<tp<t t

(vi) p+plnv < 0.

Then the zero solution of system (2.1) is exponentially stable and each solution satisfies

Ix(t)| < Klxo H (1 +Kb(tk)> exp (Lt Ka(s)ds) exp (— cx(t—to)), x>0, t=>t.

o<tk <t

Proof. Let x(t) = x(t,to,x0) be any solution of system (2.1) starting at (tp,xo), where x¢ is in a small
neighborhood of x = 0. There exist constants 7 < 1 and T < oo such that [xo| < 1 implies [x(t)| < 1 for
t € (to, to + T]. Based on the condition (i), x(t) meets each surface t = Ty (x) only once for t € (to, to + T],
then the equation t = Ty (x(t)) has a unique solution denoted by ti. Thus, x(t) is also a solution of the
system (3.1). Then x(t) can be represented as

X(t)—tb(t,to)XoJrJ bt s)h(s,x(s))ds+ D bt tiulx(ti)), te (to,to+T],

to to<tp<t

where ¢(t, s) is the state transition matrix of linear system (2.2). Let x(t) be an arbitrary solution of system
(2.2) starting at (to, xo). Setting V(t) = X>(t) = X" (t)X(t), t € [tx, txs1), k € Z, it follows that

V(t) = 2XT (1) P(H)X(t) = X" (t)(P(t) + PT(1))X(t) < 2An (1) (XT (1)X(t)) = 2An (D) V(1), t € [ty tir1), k € Z.
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Then we have

V(t) < V(to) exp (2 J; An(s)ds> < V(to) exp (Zp(t—to)>, t € [to, 1),
ie.,

K] < Ixolexp (n(t—to)), te lto, ).
Note that

V() = X" (t)X(t1) = X" (t)(T+ Q1) T (I+ Qu)X(t) < V2V(t; ) < v?V(to) exp <2P~(t1 - to)),
we can deduce that
V(1) < V(t) exp <2u(t - tl))

< VAV (to) exp (2ults — to) ) exp (2u(t — 1))

= v?V(to) exp <2u(t—t0)), t € [ty, t2),
ie.,

(6] < Vixolexp (m(t—t0)), te [y, ta).

Proceeding as before, we obtain

R < xov™ 0 exp (k(t—t0)), ¢ € Itnagy tuieg 1):
In view of assumption (iv), for any € > 0 we have
(p—e)(t—to) < Nfto, t) < (p+e)(t—to).

Thus, we can get

R(t)] < vPE gl exp (W(t—to) ) = [xol exp <<u+ (p+e)inv) (’E’Eo)>-

Considering assumption (vi), we can obtain that there exist K > 1 and o« > 0 with 0 < o < [u+p Inv| such
that forany tg <s <t <t+T,

(t,5)Z] < Kexp (—alt—s))iz], 12 <.

Hence, we have

N1 < Bl o)l + | Io(ts)ls x(sDids+ 3 Lt tlu(x(uo)
to to<tix<t
t

< Kexp (— oc(t—to))|xo| +J

to

Kexp (= alt—s))a(s)x(s)ds

+ Z Kexp(—oc(t—tk))b(tk)|x(tk)|,
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ie.,

t

exp (oc(t — to)) Ix(t)] < Klxg —i—J

to

+ Y Kbt exp (alt—to) ) x(te)l

to<ti<t

Based on Lemma 2.2, it is easy to derive that

Ix(t)] < Klxo H (1 + Kb(tk)> exp (Jt Ka(s)ds) exp (— oc(t—to)).

to<tp<t t

Ka(s)exp (oc(s — to)) Ix(s)|ds

If |xo| < ﬁ, d < « and assumption (v) hold, we can derive that the zero solution of system (2.1) is

exponentially stable and each solution satisfies

t
[x(t)] < Klxol H (1 —i—Kb(tk)) exp <J Ka(s)ds) exp (— cx(t—to)>, t > 1.

to<tr<t t

Theorem 3.3. Suppose that
(i) forany x| <m,and k € Z

i (1 Qux + 1w ) < Tel) < iy (T4 QIx +wi(0));

(ii) forany t > to, [x| <1, and k € Z., we have
Ih(t,x)| < a(t)x], fwc(x)] < Db(t)lx],
where a(t) € (Ry,Ry), b(t) € (R, Ry);
(iii) for any t > to and n € Z., there exist constants y and v such that

1

Anmx(E(Pcw—%PT(ﬂ))=:Anfw <u,

and
Amax((1+QR)(I+Qn)) = @5 < V5
(iv) for any k € Z, there exist constants &; and & such that

0 < & < min Ti41(x) — max i (x) < &,
[x|<n Ix|<n

or else

0 < & < min 1q(x) —tg < &

[x]<n

(v) p+%lnv<0,where¢i:£1 ifvz1lorelseE =8 if0<v <]

(vi) there exist constants M. > 1 and & > 0 such that

to<tp<t t

t
H (1 —i—Kb(tk)) exp (J Ka(s)ds) < Mexp <6(t—t0)>, K>1, tx =1r(x(tk)).
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Then the zero solution of system (2.1) is exponentially stable and each solution satisfies

Ix(t)] < Klxgl H (1 +Kb(tk)) exp (Jt Ka(s)ds) exp (— oc(t—to)>, a>0, t=t.

o<t <t t

Proof. Let x(t) = x(t,to,x0) be any solution of system (2.1) starting at (top,xp), where x¢ is in a small
neighborhood of x = 0. There exist constants 1 < 11 and T < oo such that [xo| < 1 implies [x(t)| < 1 for
t € (to, to + T]. Based on the condition (i), x(t) meets each surface t = Ty (x) only once for t € (to, to + T],
then the equation t = Ty (x(t)) has a unique solution denoted by ti. Thus, x(t) is also a solution of the
system (3.1). Then x(t) can be represented as

t
X0 = 0t toxo+ | L snlsxioNds+ Y it tun(tl), te (toto+ T,

to to<tp<t

where ¢(t, s) is the state transition matrix of linear system (2.2). Let X(t) be an arbitrary solution of system
(2.2) starting at (to, xo). Arguing as Theorem 3.2, we obtain

X(t)] < xolv™N (oY) exp (H(t—to)>, t € [tn(tgt), EN(tot)+1)-

In view of assumption (iv), there exists a constant m € Z_ such that
EIN(to,t) < t—to < &2 [N(to, 1) +m].

Hence, we have

K01 < holexp (1t - Inv)it—10)), v 1.
1
Or else,
R()] < —Ixolexp ((u+ ilnv)(t—to)), 0<v<l.
vm &

Considering assumption (v), we obtain that there exist K > 1 and o« > 0 with 0 < & < |u+ %ln v| such
that forany tg <s <t <t+T,

|p(t,s)Z] < Kexp (— ot — S))IZI, 1Z| <.

Then arguing as Theorem 3.2, we have

Xl < Kixol ] (1 +Kb(tk)> exp (Jt Ka(s)ds> exp (— oc(t—to)).

to<tp<t t

If [xo| < a7, 8 < « and assumption (vi) hold, one can derive that the zero solution of system (2.1) is
exponentially stable and each solution satisfies

t
Ix(t)] < K|x| H (1 —i—Kb(tk)) exp <J Ka(s)ds) exp (— oc(t—to)), t > tp. O

to<trp<t t
Next result is concerned with stability of the following system
X(t) =Px+h(t,x), t#k(x), t= 1
Ax = QX +uk(X), t= Tk(X), (32)
X(tO) = Xo, to 2 0/

where P, Q € R™*™ are constant matrices.
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Theorem 3.4. Suppose that

(i) forany x| <m,and k € Z,
T (L Q) < Telx) < T (14 Qx +wk());

(ii) forany t > to, [x| < and k € Z., we have
Ih(t, )| < a(t)x],  [w(x)] < b(t)lx],
where a(t) € (Ry,Ry), b(t) € (R, Ry);
(iii) for any |x| < n the following limit

p N E+T)
T—o T L

exists and is uniform for t > to;
(iv) p= mT51x ReA(P), v2 = m%f( ReA [(I+QN)(I+Q)];
1= 1=

(v) there exist constants M. > 1 and & > 0 such that

t
H (1 +Kb(tk)) exp (J Ka(s)ds) < Mexp (6(t—t0)>, K>1, tx =t(x(tk));

to<tp<t t

(vi) p+plnv <0.

Then the zero solution of system (3.2) is exponentially stable and each solution satisfies

t
[x(t)] < Klxgl H (1 +Kb(tk)> exp (J Ka(s)ds) exp (— (x(t—to)), a>0, t>t

to<tp<t t

Proof. Let x(t) = x(t,to,%0) be any solution of system (2.1) starting at (to,xo), where x¢ is in a small
neighborhood of x = 0. There exist constants 7 < 11 and T < oo such that [xg| < 1 implies [x(t)| < 1 for
t € (to, to + T]. Based on the condition (i), x(t) meets each surface t = Ty (x) only once for t € (to, to + TJ,
then the equation t = Ty (x(t)) has a unique solution denoted by ty. Then x(t) is also a solution of system
as follows

Ax = Qx +ui(x), t=t,

{ X(t) =Px+ h(tl X)/ t ?é te, t = to,
X(tO) = X0, to = 0.
Thus, x(t) can be represented as

t
x(t) = b, to)xo + J Ot s)h(s,x(s)ds+ Y @t tidur(x(ti)), te (toto+T],

to to<tp<t

where ¢(t, s) is the state transition matrix of the following linear system

Ax =Qx, t=ty, (3.3)

{ X(t) =Px, t 3& te, t = to,
X(tO) =xo, to= 0.
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Let X(t) be an arbitrary solution of system (3.3) starting at (to, ). Setting V(t) = X*(t) = X' (t)x(t),
t € [ty, tks1), k € Z, it follows that

V(1) = 2%T (HPX(t) =X (1)(P+PX(t) < 2u(XT (DX(1)) =2uV(t), t€ [t tinr), K€ Zy.
Then arguing as Theorem 3.2, we have
RO < xolvN 0 exp ((t—t0)), € lbnagy o)1)
Proceeding as Theorem 3.2, the proof is complete. O

4. Example

Example 4.1. Consider the following impulsive system

_— . >
X(t) 1+1t + 1 +t2x, t 7& TI(X)/ t = to,
1.1 1 - (4.1)
Ax=—3x+(5-5p % t=Til),
x(to) = xo, to >0,

where Ti(x) = |x| +1,1 € Z,. Note that x(tj) = x(ti) = (I+ Qi)x(ty) +ui(x(t;)), one can choose
Qi = _%/ ui(X) = b(t)xl b(t) = % - 3+1t2 and n= 2.
It then follows that

and

1. 1 1 .
=10 = 5 + (5 = 5@ X+ i1
5 1 _ .
=1 = 3@ I +i+1
2%|x(t1)|+i+1
> x(ty )l +1
=Ti(x(t;))

Choose h(t,x) = a(t)x, a(t) = #, then it is easy to get that

Ih(t,x)| < [xI.

1+ 12
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Note that u;(x) = (% — ﬁ)x, then one can derive that
) € (5~ 5
The corresponding linear system of (4.1) is given as follows
x(t) = —Lx, t£1ty, t > to,
1+t
Ax = —%x, t=1ty, (42)
x(to) = xo, to > 0.

Let x(t) be the solution of linear system (4.2) satisfying

~ 1 N(to/t) X0
X(t) = <> (1+t0)?/ t € [tn(tgt), N (tot)+1)-

We have

where 0 < %(1 +to)[xo] = K < o0.
Furthermore, notice that

[T (1+xo)= I1 (1+K(;—3+1t2)),

to<ti<t to<ti<t

t t 1
K = K——
exp <LO a(s)ds) exp (LO e ds> ,

and

are convergent, which implies

H (1 —i—Kb(ti)) exp (Jt Ka(s)ds) <M< oo, ty=mT1i(x(ti)).

to<ti<t to

Then it is not difficult to check that conditions (i)—(iv) are satisfied. Thus, we can get from Theorem 3.1
that the zero solution of system (4.1) is asymptotically stable and each solution satisfies

Kixol TI (1+Kb(ti))exp<r Ka(s)ds>

to<ti<t to
Ix(t)] <

L t> 1.
T+t—to =0

5. Conclusion

We have studied the stability properties of impulsive differential systems with state-dependent im-
pulses. Based on the linear decomposition methods, some sufficient conditions guaranteeing asymptotical
and exponential stabilities of the impulsive differential systems with state-dependent impulses have been
presented. Our results are more general than those mentioned in the literature. An example was given to
show the effectiveness of the obtained results. It would be interesting to further extend the approach in
this paper to address some nonlinear systems.
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