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Abstract

The alternating direction method of multipliers (ADMM) is a benchmark for solving two-block separable convex program-
ming. However, as other first-order iteration methods, the ADMM also suffers from low convergence. In this paper, to accelerate
the convergence of the ADMM, the restriction region of the Fortin and Glowinski’s constant v in the ADMM is relaxed from

(0, #) to (0,400), thus we get a proximal ADMM with larger step size. By proving some properties of the method, we

show its global convergence under mild conditions. Finally, some numerical experiments on the correlation matrices calibrating
problems are given to demonstrate the efficiency and the performance of the new method. (©2017 All rights reserved.
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1. Introduction
In this paper, we are concerned with the following two-block separable convex programming
min{0; (x1) + 02(x2)|A1x1 + Axxz = b, x1 € Xy, %2 € Ao}, (1.1)

where 0; : R™ — R (i =1, 2) are closed proper convex functions (not necessarily smooth), A; € R (] =
1,2), b € R}, and X; € R™(i = 1,2) are nonempty closed, convex sets. Due to the mathematical
generality of 0i(xi) (i = 1,2), the two-block separable convex programming is very inclusive and plays
very important roles in statistical learning [3], image/signal processing [1, 17, 22], traffic equilibrium [24],
and so on. For example, it includes the following ¢; — {» basis pursuit (BP) model of compressive sensing
(CS) as a special case:

min, 0(x) = x|l + 2k [yl

st. Ax=b,x—y =0,
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where p > 0,A € R™*™(m <« n) is the sensing matrix, b € R™ is the observed signal, and the {;-norm
and {,-norm of the vector x are defined by |x|1 = > I*; Ixi| and ||x|[2 = (X 11 x?)!/2, respectively. Hence,
in the literature, this problem has been widely studied during the last several decades [13, 17, 18, 21, 24—
29, 31, 34]. There has been growing interest in searching for methods to solve (1.1), and various iteration
methods have been employed, such as the alternating direction method of multiplier [14], the augmented
Lagrangian method [13], the customized proximal point algorithm [19], the customized Douglas-Rachford
splitting algorithms [11, 12], the first-order primal-dual proximal method [30] and some other splitting
algorithms [10, 15], etc.. We refer the reader to [5] about the relationship among those iteration methods.
In this paper, we are going to further study the alternating direction method of multiplier due to its nice
features, such as the neat and simple iterative scheme and good numerical performance.

Let B € (0,400) be a given parameter. The augmented Lagrangian function of the convex program-
ming (1.1) can be written as

Lp(x1,%2,A) == 01(x1) + 02(x2) — (A, A1xq +A2X2—b>+ = | A1 + Axxa —

where A € R! is the Lagrangian multiplier for the linear constraints of (1.1). The classical alternating di-
rection method of multipliers (ADMM) was proposed by Glowinski and Marrocco in 1975 [9]; its iterative
scheme for solving the convex programming (1.1) consists of the following recursions: for k = 0,1,...,
compute
X1 € argmin Lp(x1,x5,A5),
x5+l e argmin, . Lp (X k1 %0, AK), (1.2)
N+ Ak — B (A XL+ Ak —b)

X1 exl

Obviously, the ADMM alternately minimizes the augmented Lagrangian function £g(x1,%2,A) with re-
spect to x1, then x; and then updating the Lagrangian multiplier A, and at each iteration, the two subprob-
lems of (1.2) are the most computationally expensive task in the ADMM, which turns out to be numerically
expensive and are often difficult to deal with even if the sets X1 # R™ and X, # R™? are very simple and
the resolvent operators of 01(x;) and 02(xz)’s subdifferentials have closed-form representations [11, 12].
Then, various inexact, relaxed and accelerated variants of the ADMM and the Douglas-Rachford splitting
algorithms [10-12, 14, 15, 31] are well-studied in recent years. Among them, the proximal ADMM, which
goes back to at least [14], is almost the most influential. Then, based on the proximal ADMM and the
variant ADMM in [6], Xu et al. [31] presented the iterative scheme of a proximal ADMM with larger step
size for (1.1) as follows

£+1 € argmin, o, LB(X};XE,}\]‘):_ %H;q —x'inRl,z
tle argmmxzexzﬁkﬁ (1 + Xi’ 7\1 )+ 32 — x5 IR,/ (1.3)
)\kH VB (AxfH 4+ AgxS T —b),

where y € (0, %) is named as the Fortin and Glowinski’s constant [8] in the literature and it is also

the step size for the update of A; Ry and R, are two positive semi-definite matrices with compatible
dimensionality. In fact, Ri = Tiln, — BA{ A; with Ty > B||A{ Ai]|(i = 1,2) in [31]. The iterative scheme
(1.3) withy =1,R; =0 and R, = O reduces to the iterative scheme (1.2). Attaching the parameters v, Ry
and R; can confer some advantages for the proximal ADMM. For example, by taking some special cases
of Ry and Ry, the two subproblems of (1.3) are often simple enough to admit closed form solutions or can
be solved effectively to high precision [25, 26, 29, 32]. Furthermore, v > 1 is usually beneficial to induce
fast convergence of the ADMM empirically, which has been verified by the numerical results in [8, 18].
Therefore, a question can be raised: can the restriction region of y be relaxed? In this paper, we
answer this question positively. In fact, we propose a proximal ADMM with larger step size, in which the
constant y can take any values of the interval (0,+00), and the expense is that the output of (1.3) must
be corrected by the convex combination w**! = (1 — p)wk + pWwk, where wk = (x1 ,x2 ,AK) is the current
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iterate and W* = (xF,%5,A¥) is the output of (1.3); p > 0 is a constant. In this sense, our new method

can be categorized to the prediction-correction ADMMs [13, 27, 33, 34]. However, our new method is
much simpler than the iteration methods in [33, 34], because the later need to compute some dynamically
updating step size at each iteration, and need much computational effort. Though the correction steps
of the iteration methods in [13, 27] are also some convex combination forms, the feasible regions of p in
[13, 27] is much smaller than that of our new method; see Remark 3.4 of Section 3. The correction step
inevitably increases the computational complexity of the ADMM. However, this strategy also has many
superiorities. For example: (1) it can accelerate the convergence of the ADMM [20, 33]; (2) it can make
some divergent ADMMs become convergent [13]; (3) it can enlarge the feasible region of the constant y
as we shall show in this paper.

After we accomplished the first version of this paper, we have noticed a quite recent work [16], which
presented a proximal ADMM with Ry = 0,R; = TBAZT Ay. They proved that the proximal ADMM with
larger step size is global convergent when D5 is positive definite. Specifically, the two parameters (T, 7y)
in [16] are restricted into the domain

1—7+ \/TZ+6T+5}

@:{(T,y)h>o&0<y< .

which is obviously larger than (0, %) The limit of the upper bound of vy is a monotone increasing
function of T, and
lim LT VT2 +6T+5

T—+00 2

2,

which indicates that the feasible region of y in [16] is still smaller than (0, +oc0), the feasible region of y
in our new method. Furthermore, to get larger step size, the constant T must be set as a very large value,
which makes the proximal terms play a too heavy weight in the objective of the second subproblem, and
this eventually leads to slow convergence.

The remainder of this paper is organized as follows. In Section 2, we briefly review some basic
concepts and list some necessary assumptions. In Section 3, we propose a new proximal ADMM with
larger step size for solving the convex programming (1.1), and prove its global convergence in detail.
In Section 4, some numerical experiments on the correlation matrices calibrating problems are given
to demonstrate the advantage of the new method. Before starting the next section, we first give some
notations used in this paper. The notation R™*™ stands for the set of all m x n real matrices. For any two
vectors x,y € R™, (x,y) = x 'y denotes their inner product; if G € R™*™ is a symmetric positive definite
matrix, we denote by ||x||c = VxT Gx the G-norm of the vector x. The effective domain of a function
f: X — (—o0,+00] is defined as dom(f) := {x € X[f(x) < +o0}. The set of all relative interior points of a
given nonempty convex set C is denoted by ri(C).

2. Preliminaries

In this section, we briefly review some basic concepts and list some necessary assumptions for further
analysis.

Definition 2.1 ([23]). A function f: R™ — R is convex if and only if
floax + (1 — a)y) < af(x) + (1 — )f(y), Vx,y € R™, x € [0,1].
For a convex function f : R™ — R, we have the following basic inequality
f(x) > fly) + (& x—y), ¥y eR™Ecofly),

where 0f(y) ={& € R™ : f(§) > f(y) + (§,§ —y) for all § € R™} denotes the subdifferential of f(-) at the
point y.
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Definition 2.2 ([2]). Let Q C R™ be a nonempty set. The sequence {t*} C R™ is said to be Fejér monotone
with respect to Q if
[t —t) < It*—t], Vte Q, k> 1.

We make the following standard assumptions about (1.1) in this paper.
Assumption 2.3. The functions 0;(-) (i =1,2) are convex.
Assumption 2.4. The matrices A; (i = 1,2) are full-column rank.

Assumption 2.5. The generalized Slater’s condition holds, i.e., there is a point (%;,%2) € ri(dom6; x
dom®6,) N P, where
P:={x = (x1,%2) € X1 x Xa|A1x1 + Axx, = b}.

Under Assumption 2.5, it follows from Theorem 3.22 and Theorem 3.23 of [7] that the vector x* =
(x],x3) € R™M*T™ js an optimal solution to the convex programming (1.1) if and only if there exists a
vector A* € R! such that

(x],%3) € X1 x Xy,
0:(xi) —0:(x7) + (xi —x}) T(=AJA*) >0, Vx; € Xy,i=1,2, 2.1)

Arx; + Agxs = b.

Moreover, any A\* € R! satisfying (2.1) is an optimal solution to the dual of the convex programming (1.1).
Obviously, the system (2.1) is equivalent to the following mixed variational inequality problem, denoted
by VI(W, F,0): find a vector w* € W such that

B(x) —0(x*) + (Ww—w)TFW*) >0, YweW,

where 0(x) = 01(x1) + 02(x2), W = X1 x X x R, and

—AA 0 0 -Al X1 0
F(w) := —Aj A = 0 0 -—-A) x2 | =1 0
A1x1 4+ Axxo —b AT Ay 0 A b

The set of the solutions of VI(W, F, 0), denoted by W¥, is nonempty by Assumption 2.5. It is easy to verify
that the mapping F(-) is not only monotone but also satisfies the following nice property

(w' —w) T (Fw') —F(w)) =0, ¥Yw’,we W.

3. Proximal ADMM with larger step size and its global convergence

In this section, we pay attention to present a proximal ADMM with larger step size to solve (1.1).
Then we give an analysis of the convergence of the constructed method under Assumptions 2.3-2.5. At
each iteration, the new method is composed of two steps: the prediction step and the correction step.
More specifically, it first generates a trial iterate via the iterative scheme (1.3) in the prediction step, and
then yields the new iterate via the convex combination of the current iterate with the trial iterate in the
contraction step.

First, let us define an important constant 1, which is used in our new method.

1 3.1)

(v ifo<y<y,
Obviously, the constant n € (0, 1].
The iterative scheme of the new proximal ADMM with larger step size for solving the model (1.1) is
given as follows.
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Algorithm 3.1 (Proximal ADMM with larger step size).

Step 0. (Initialization) Select 3 > 0,y € (0,+00),¢ > 0 and two positive semi-definite matrices R; €
RMiX1i({ = 1,2). Choose an arbitrarily initial point w’ = (x(l),xg, A0) € Rrtnatl Get k = 0.

Step 1. (Prediction step) Compute the new iterate Wk = (>"<’f, i‘;, AK) via
%K € argmin L (x1, x5, M%) + 3 —x¥ 1%,

7}‘; € argmin,_ o Lp (X5, %2, A%) + 3 [x2 — x5 [}, (3.2)
A=Ak —yB (AR + Axkk —b),

x1E€Xq

Step 2. (Stopping conditions) If |[w* —W¥|| < ¢, then stop; otherwise, go to Step 3.

Step 3. (Correction step) Set w1 = wk + p(W* —wk), where p € (0,1), and 1 is a constant defined by
(3.1). Go to Step 1.

Remark 3.2. To accelerate Algorithm 3.1, the Fortin and Glowinski’s constant v is attached to the updating
formula for A in the prediction step, and its feasible region is (0,+oc0), which is relaxed remarkably

compared with y € (O, ”2—‘/5> in the methods of [18, 31].

Remark 3.3. Fromn € (0,1] and p € (0,1), it is obvious that the new iterate w**! is a convex combination

of wk with w¥. As we have analyzed in Section 1, y > 1 is usually beneficial to induce fast convergence of
the ADMM, and the following numerical results indicate that y € (1,2) can accelerate the convergence of
Algorithm 3.1. But the parameter 1 becomes small when the parameter vy becomes big, which determines
the weight of the new information W* in the updating formula for w, and 1 — 0" when vy — +o0,
therefore we cannot choose large v, though it can still ensure the convergence of Algorithm 3.1. The choice
of the optimal y is problem-dependent and maybe generally difficult to obtain in theory or practice.

Remark 3.4. In [13], He et al. proposed a fully Jacobian decomposition of the augmented Lagrangian
method for multi-block separable convex programming. Subsequently, Wang et al. [27] developed a
proximal partially parallel splitting method for the same problem. Both methods can also use the convex
combination Wkl = wk 4+ p(Wk —wk) to generate the new iterate. However, the constant p in [13]
is restricted into the domain (0,2(1 — v/6/3)) and the constant p in [27] is restricted into the domain
(0,2(1 —+/2/2)). Obviously, the feasible set of p in Algorithm 3.1 is larger than these in [13, 27] when
2—-V2<y<1/(2—V2).

If Algorithm 3.1 stops at Step 2, then the current iterate w* is a proximal solution of VI(W, F, 0). Thus,
it is assumed, without loss of generality, that Algorithm 3.1 generates two infinite sequences {w*} and
W},

Before proving the global convergence of Algorithm 3.1, we define two matrices to simplify our nota-
tion in the later analysis.

Rl 0 0 Rl 0 0
M= | 0 BAJA+R, 1o , Q=] 0 BAJA+R, Z%YlAZT
0 0 Byl 0 A2 vl

The following lemma gives some interesting properties of the two matrices M, Q just defined. These
properties are crucial in the convergence analysis of Algorithm 3.1.

Lemma 3.5. When Ry and Ry are two positive semi-definite matrices, we have
(). Both matrices M and Q are positive semi-definite;

(ii). the matrix Hy = 2Q —yM is positive semi-definite if 0 < y < 1, and the matrix Hy = 2yQ — M is positive
semi-definite if y > 1.
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Proof.

(i). For any w = (x1,x2,A), we have
1
wIMw =[xl + BllA2x2|* + Ix2ll%, + HW\HZ > 0.
Therefore, the matrix M is positive semi-definite. The matrix Q can be partitioned into
Ri 0 0 0 0 0
Q= 0 R 0 |+]| 0 BAJAY £A]
0 0 0 0 A2

Obviously, the first part is positive semi-definite, and we only need to prove the second part is also
positive semi-definite. In fact, it can be written as
I )

0 0 0 0 0 0 0 0
0 VvBAS 0 0 I %IL 0 VBA
0 0 ﬁh 0 %11 %IL 0 0

&
= o O

The middle matrix in the above expression can be further written as

0 0 O
0 1 % ® Il/
0o L L

2y 2

where ® denotes the matrix Kronecker product. The matrix Kronecker product has a nice property: for
any two matrices X and Y, the eigenvalue of X ® Y equals the product of A(X)A(Y), where A(X) and A(Y)
are the eigenvalue of X and Y, respectively. Therefore, we only need to show the 2-by-2 matrix

(4 7)

1 1 1 3

_— - — X — = ——
Y 2y 2y 42
Therefore, the matrix Q is positive semi-definite.

<=

is positive semi-definite. In fact,

1x

(ii). If 0 <y < 1, we have

Hy =2Q —yM = 0 (2=Y)(BA] A2 +Ry) A
2
0 LA 2{332 I
R 00 0 ; T 10T
=2-y)[ 0 R 0 |+ [0 2=YIBA A2 34,
1 2—y
0 0 0 0 yA2 Byz 1L

Obviously, the first part is positive semi-definite, and we only need to show the second part is also positive
semi-definite. In fact, it can be written as
I )

0 0 0 0 0 0 0 0
0 vBA] 0 0 2-v) L 0 VBA2
0 0 L1 0 %11 2;}211 0 0

&
= o O
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and similar to the proof of (i), we only need to show

—_ 2 _ A2
)><2 y 1. 1_(-v)B+y v)>0'

Y2 vy ¥?

Therefore, the matrix H; is positive semi-definite if 0 <y < 1.
Now, we show that the matrix H; is positive semi-definite if y > 1.

(2y —1)R; 0 0
Hy =2yQ — M = 0 2y —1(BA]A2+Ra) A
( 0 Az vl )
Ri 0 0 0 0 0
(2y1)( 0 R 0)+(0 2y —1)BAJ A2 A )
0 00 0 Ay vl

Similarly, we only need to show the second part is positive semi-definite. In fact, it can be written as

0 0 0 0 0 0 0 0 0
0 VBA, 0 0 2y-1DI; L 0 VBA, O ,
0 0 L1 0 I in 0 0 -+

VB VB

and

1 —1
2y—1)x——1x1=Y"2>0.
Y Y
Therefore, the matrix H; is positive semi-definite if y > 1. The proof is complete. O

Now, we shall show that it is reasonable to use |[w* —W¥|| < ¢ to terminate Algorithm 3.1, in which
¢ > 0 is a chosen fixed threshold specified by the user.

Lemma 3.6. IfAix]{ = Aii‘f (i=1,2),A\k = XX, then the vector (x]f, x]2<, AK) is a solution of VI(W, F, 0).
Proof. By the first-order optimality condition for x;-subproblem in (3.2), one has
01(x1) — 61(72‘1‘) + (x1 —i}‘)T { —Air?\k + [.))AIr (Ali‘f +A2X]2< —b) —I—Rl(filf —le)} >0, Vxq € Xy.
2
Substituting A* = Ak + v (Z ARE — b> into the above inequality, we have
i=1
010x1) = 01 (XF) + [ — %) T { —ATA® + B(1—v)A] (A1x] + As%f — D)
+BAT Aa(xy —X3) + Ri(Xf —x{)} >0, ¥x1 €2y,

ie.,

~ 1— -
81 (x1) — 03 (%) + (x1 — %) { SATRE 4 S AT (N R4 4 BAT Aalef —fc;‘)} -

> (x1 — %) TRi(xf —%f), Wxa € X1

Similarly, for the other variable x;, by the first-order optimality condition for x;-subproblem in (3.2),
one has

02(x2) — 02 (X5) + (xp —%5) T {—AZTA" +BA;] (AR + Ag%s —b) + Ry(%5 —x‘g)} >0, Vx2 € X,



H. Sun, M. Sun, Y. Wang, J. Nonlinear Sci. Appl., 10 (2017), 5038-5051 5045

2
and substituting A* = Ak + v (Z AfRE — b) into the above inequality gives us
i=1

02(x2) — B2 (%) + (xo — %K) T { CATAR 4 B(1—y)AT (ARE + AgxE — b) + Ry (%5 —x2)} 0, Vxs € X,

ie.,

ez(xz)—ez(i§)+(xz—7~<]z<)T{—AzTXkJF1 Y AT Ak Ak)} (x2 —%5) TRo (x5 —%5), Vxo € Xa. (3.4)

Furthermore, the updating formula for A in (3.2) can be written as the following variational inequality
problem

A=) T {(ZA ) Bly(?\k—kk)}20,v7\ele. (3.5)

Then, adding (3.3), (3.4), and (3.5), we get

0(x) — 0(%*) + (W —WK) TF(WX) > (w—wk) TG(w*k —wk), Ywe W, (3.6)
where .
Ri —BAJ Ay —=YAS
G=| 0 Ro —PTVAZT
0 0 aylt

Therefore, substituting Aix}f = Ap”c‘f(i =1,2),A\k = A¥ into (3.5), we get
0(x) —O(%") + (W —W*) TF(W*) > 0, vwe W.
This together with Assumption 2.4 implies that
0(x) —0(x*) + (w—w*)TFW*) >0, vwe W,
which indicates that (x‘f,x‘z‘, AK) is a solution of VI(W, F,8). This completes the proof. O
(wk —w¥)

Now, we intend to prove that — is a descent direction of the merit function %Hw —w*|3, at

the point w = wk, where w* € W*.
Lemma 3.7. Let {w*} and {W*} be two sequences generated by Algorithm 3.1. Then, we have
(WE —w*) TM Wk —wk) > Hwk—VkazQ, Yw* e W*. (3.7)
Proof. Since w* € W* C W, it follows from (3.6) that
0(x*) —0(x*) + (Ww* — W ) TFW) > (w* —w ) T G(w* —wk).

Thus,
(WE —w*) TGW* —wk) > 0(%*F) — 0(x*) + (WX —w*) TF(W*) > 0, (3.8)

where the second inequality follows from w* € W*.
On the other hand, from the definitions of M and G, we have

0 —BAJ Ay —1YAS
(W —w) TGS —5) = (05 —w) TMOwS —w5) + (05 —w) T [ 0 —paTA, —LXAT | (wk—wH)
0 0 0

= (W —w") TMWE =) — B(A1%) + A%y — b) T Ag(xk —&¥)
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1_
_ TY(Am F AgRs — b) T (AK —AK)
e 1 - 1 )
— (WF —w )TM(wk—wk)—;(?\k—kk)TAz(Xlz‘—xlz‘) Byy Ak — A2,

where the second inequality follows from w* € W*, and the second equality comes from (3.2).
Then, substituting the above relationship into the left-hand side of (3.8), one has

1 < 1-— <
(W —w*) TMWE — k) — — (A =R T A (xk —=5) — LI —A¥|2 > 0,
Y By
ie.,
1 < <
(5 = ") MK =55 3 (oK =) T M ¥ = 95) 4 (8% = KT Aol = 55) + T A = R
— ok k2
= [[w* =wEq,
where the equality follows from definition (3.1). The lemma is proved. O

The 1nequa11ty (3.7) and Lemma 3.5 imply that — (wk —k) is a descent direction of the merit function
1w —w*|[3, at w = wk. Therefore, it is reasonable to get the new iterate by w**! = wk + p(wk —wk).
The following theorem shows that the sequence {w*} generated by Algorithm 3.1 is Fejér monotone with

respect to the solution set W* of VI(W, F, 6).
Theorem 3.8. For any w* = (x],x5,A*) € W*, there exists a positive scalar n such that the sequence {wk}
generated by Algorithm 3.1 satisfies

K+1 K _ k|2
W —w* Ry < W —w [} — pllw* =W, (3.9)

where the matrix H is defined by
H=(n—pM. (3.10)

Proof. 1f 0 <y < 1, it follows from the correction step of Algorithm 3.1 that

(e ) —wu

= Hwk —W*H%A +2p(Wk —w*)

—w* [} = W+ p(w* —w
TR —wk) + p? Wk — w3y
< W= w3 — 20 [WF —wH|g + P2 W — Wk},

= W =Wl = 20lW" =Wy e —wE R

K 2 Sk ok
< e —wRq = pllWE —w[IE,_

where the first inequality follows from (3.7), and the second inequality comes from Lemma 3.5.
If v > 1, we similarly have

W —wr|[fg < W =W [fa = 20005 =W Ry, 2R =W}y
2y T2y
k 2 ~ 2
< W —we Ry — WS —wE Py
where the second inequality also comes from Lemma 3.5. The assertion (3.9) is proved. O

Remark 3.9. By the definition of ) in (3.1), the matrix H in (3.10) is positive semi-definite.

Based on the Fejér monotonicity of the sequence {wk}, the global convergence of Algorithm 3.1 can
be proved as follows, which is standard, and we include it for completeness. For convenience, we set
v = (x2,A), and the low right sub-blocks of the matrices M, H are denoted by M, H, respectively. Obviously,
by Assumption 2.4, both matrices M and H are positive definite.
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Theorem 3.10. The sequence {W*} generated by Algorithm 3.1 converges to some w>® € W*.
Proof. Using (3.9) and noting p > 0, we have
V=V [y < I =W Ry < WS =R < < w0 =g

Then {v¥} is a bounded sequence by the positive definiteness of M. By (3.9) again, we have
(.¢] o0 [o¢] 1
M=p) DI =%, + D IV =95[F = 3wk =Wk} < EHWO —w i,
k=0 k=0 k=0

which together with the positive definiteness of H yields

lim [[xK —%K||g, = lim [[v¥ =35 =0. (3.11)
k—o00 k—o0
Thus {¥¥} is also a bounded sequence. From

- 1 5 - 1 5 -

ALK = [| =5 (A% =A%) — A% + bl < — (IA*[| + [IA¥]) + A2 [lI%5 | + [[b]l,
B B

and Assumption 2.4, we have that the sequence {72‘1‘} is bounded. Then the sequence {W*} is also bounded,

thus it has at least a cluster point, saying (x{°,x5°,A*°), and suppose the subsequence {(7”(}“,7212“, Ak}

converges to (x$°,x3°, A°). Taking limits on both sides of A;%F + Axkk —b = %(Ak — AK), we have

A1x{® +Axx° —b =0.
Furthermore, taking limits on both sides of (3.3) and (3.4), and using (3.11), we obtain
01(x1) — 01(x°) + (x1 —x°) T (—A[A®) > 0, Vx1 € Xy,
and
B2(x2) — 02(x3°) + (x2 —x5°) T(—AJ A®) 2 0, ¥xz € Xa.

Therefore, (x{°,x3°,A%®) € W*.
Then, from limy_,o, (V¥ —¥*) = 0 and {#%1} — v, for any given e > 0, there exists an integer 1, such
that c .
V1 =5l < 5, and [P =9l < 5.
Therefore, for any k > ky, it follows from the above two inequalities and (3.9) that

VS =Vl < V5 = vl < 05 =55 g + 95— v

Im <e

which indicates that the sequence {v¥} converges globally to the point v®°, and thus the sequence {¥*}
also converges globally to the point v*°. Then, from A% = % (A —AK) — A%k + b and Assumption 2.4
again, it can be inferred that the sequence {i]f} converges to x{°. Overall, the sequence Wk} generated by
Algorithm 3.1 converges to some w>® € W*. The proof is completed. O

4. Numerical results

In this section, we conduct some numerical experiments about the correlation matrices calibrating
problems to verify the efficiency of Algorithm 3.1, and compare the performance with some existing
iteration methods including the inexact alternating directions method (IADM) developed by He et al.
[14], the full Jacobian decomposition of the augmented Lagrangian method (JDALM) proposed by He et
al. [13], and the customized proximal point algorithm (CPPA) introduced by He et al. [19]. All codes were
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written by Matlab R2010a and performed on a ThinkPad computer equipped with Windows XP, 97MHz
and 2 GB of memory.
The least-squares problem is to find a matrix X € R™*™ such that

1 "
mm{§||x—c:||%|x esmsg}, (4.1)

where
8T ={Hec R ™H" =H,H >0},

and
8z ={He R"™"H' =H,H; <H < Hyk

(4.1) is quite similar to the problem of computing the nearest correlation matrix, which appears in then
financial mathematics where the correlations are between stocks. Introducing an auxiliary variable Y, (4.1)
can be written as
min { 1|X— CJ} + | — CI}}}
st. X—Y =0, (4.2)
Xe8t,YeSs.

Then, Algorithm 3.1 is applicable to (4.2). By some simple manipulations, we have
- 1
K _ pen k Ak
Xk — P5+{1+B(BY A +C)},

where Psn(A) = UAFUT, [U,A] = eig(A),AT = max{A,0}, and the computational load of the above
procedure is 10n3 flops. Y* is generated by

7k 1 vk 2k
= PSB{W(BX —A*+0)},
where Ps, (A) = min{max{Hy, A}, Hy} and its computational load is bounded above by 2n? flops. Obvi-
ously, the main computational cost in Algorithm 3.1 for (4.1) is the eigenvalue decomposition, which is
accomplished by the built-in function eig of the software Matlab. When n is large, the computation of
eig is quite time-consuming. Due to the limitations of the memory and speed in a regular computer, we
only solve some medium scale cases of (4.1).
We use the following Matlab scripts to generate the problem data

rand(’state’,0); C=rand(n,n); C=(C’+C)-ones(n,n)+eye(n);

HU=ones(n)*0.1; HL=-HU; for i=1:n HU(i,i)=1; HL(i,i)=1; end.

All the initial matrices are set as zero. The stopping criterion is

Err :max{ ,
Yol (Aol

First, by solving a small scale case of (4.1) with n = 100, we show that the relaxation parameter y > 1
maybe accelerate the convergence of Algorithm 3.1. We choose different values of vy in the interval [1, 2].
Specifically, we choose v € {1.0,1.1,...,2}. The numerical results are graphically shown in Figure 1.

The two subplots in Figure 1 indicate that both the number of iterations (Iter.) and the CPU time
(Time) decrease obviously as the relaxation parameter y increases. Specifically, the minimum of Iter. is
obtained at y = 1.8, and the minimum of Time is gotten at y = 1.8. Then, in the following, we set y = 1.8.

We now do some numerical comparisons to illustrate the advantage of Algorithm 3.1, and the numer-
ical results are listed in Table 1.
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Figure 1: Sensitivity test on the parameter y with n =100, 3 = 3.5.

Table 1: Numerical results for the problem (4.1).

n B Method Iter. Time Err
IADM 79  4.3992 9.1033e-007
100 35 JDALM 184 10.1089  9.8351e-007
~  CPPA 68  4.1184 8.7915e-007
Algorithm 3.1 66  3.6192 9.4386e-007
IADM 62  17.7061  8.3922e-007
200 6 JDALM 197 58.6876  9.5547e-007
CPPA 68 219805 8.0165e-007
Algorithm 3.1 53  16.4893  8.3736e-007
IADM 73  58.8904  8.6578e-007
300 6 JDALM 195 150.4318 9.9112e-007
CPPA 66  65.7388  9.5922e-007
Algorithm 3.1 53  41.4027  8.6329e-007
IADM 78  163.1146 9.1689e-007
400 6 JDALM 197 429.1744 9.9938e-007
CPPA 66  165.3299 8.0608e-007
Algorithm 3.1 53  106.2211 9.0843e-007
IADM 81  318.8036 9.2148e-007
500 6 JDALM 201 750.7704 9.4523e-007
CPPA 65 287.2914 9.4195e-007
Algorithm 3.1 53  204.2677 9.0167e-007

The numerical results in Table 1 indicate that the tested four iteration methods are applicable to solve
(4.1), and Algorithm 3.1 significantly decreases both the number of iterations and CPU time comparing
with the other three iteration methods. Figure 2 displays the evolution of Err with respect to the iteration
counter k, from which we can see that the IADM performs the best firstly. When k > 40, Algorithm 3.1
outperforms the IADM, and when k > 57, the CPPA also outperforms the IADM, but still performs a
little worse than Algorithm 3.1.
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Figure 2: The relative error with n =100, = 3.5.

5. Conclusions

In this paper, a proximal ADMM with larger step size for two-block separable convex programming
is proposed. Under mild conditions, we have established its global convergence. Some numerical results
are given, which illustrate that the new method performs better than some state-of-the-art solvers. In the
numerical experiments, we find that the proposed method is sensitive to the relaxation factor y under
certain conditions, thus the choice of this factor needs to be further studied.
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