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Abstract

In this article, height functions on different bounded sets of the nonlinear term and their integrations are considered to
obtain the existence of positive solutions for a class of semipositone higher-order fractional differential equations with nonlocal
conjugate type integral conditions. The singularities of the nonlinearity are related to both the time and the space variables.
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1. Introduction

The purpose of this article is to consider the existence of positive solutions for the following fractional
differential equation

Dα0+u(t) + f(t,u(t)) = 0, 0 < t < 1, (1.1)

with nonlocal conjugate type integral conditions

u(0) = u ′(0) = · · · = u(n−2)(0) = 0, Dβ0+u(1) = λ
∫η

0
h(t)Dβ0+u(t)dt, (1.2)

where Dα0+ is the standard Riemann-Liouville derivative, h ∈ L1[0, 1] is nonnegative and may be singular
at t = 0 and t = 1, n− 1 < α 6 n,n > 3,β > 1,α−β− 1 > 0, 0 < η 6 1, 0 6 λ

∫η
0 h(t)t

α−β−1dt < 1.
The concept of fractional derivative has a long history over 300 years. At the early stage of its emer-

gence, it was considered only by very few mathematicians in pure mathematical field for the lack of
practical applications. In the last decades, more and more researchers have realized that fractional calcu-
lus is one of the best tools to describe long-memory process. At the same time, scholars have recognized
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that it can be applied to almost every field of science, engineering and mechanics among which fractional
calculus has made a profound impact including viscoelasticity and rheology, electrochemistry, biophysics
and bioengineering, signal and image processing, control theory, mechanics, mechatronics, economics
and so on (see [30]). It is also helpful to see the books and monographs [6, 25, 29, 31, 45] for further un-
derstanding how the fractional calculus works in the field of engineering, science, economics and finance,
pure and applied mathematics communities.

The investigation on (p,n− p) conjugate boundary value problems
(−1)(n−k)u(n)(t) = φ(t)f(t,u(t)), 0 < t < 1,
u(i)(0) = 0, 0 6 i 6 p− 1,
u(j)(1) = 0, p 6 j 6 n− 1,

can be back to some well-known existing papers [1–3, 9–13, 24, 27, 32] published a couple of decades
ago. When n = 2, conjugate boundary value problems can be widely applied to describe important
phenomena which arise in boundary layer theory, reaction-diffusion theory and in non-Newtonian fluid
theory. When n = 4, it can describe the deflection of an elastic beam rigidly fixed at both ends, or one
end is simply supported whereas the other end is clamped by sliding clamps. For singular boundary
value problems, researchers paid more attention on the existence of positive solutions. By means of
classic Agarwal-O’Regan method, existence of single, twin, and multiple results are obtained in [1–3].
The characteristic of Agarwal-O’Regan method lies in two aspects. One is that φ(t) may be singular at
t = 0, 1 and f(t,u) may be singular at u = 0, respectively. The other is there is no requirements on the
existence of lower and upper solutions. For instance, under the following assumptions which can be
looked as classic and traditional conditions of Agarwal-O’Regan method, [3] gave the existence of two
solutions for (p,n− p) conjugate boundary value problems.

(p1) φ ∈ C(0, 1) with φ > 0 on (0, 1);
(p2) f : [0, 1]× (0,∞)→ (0,∞) is continuous;
(p3) f(t,u) 6 g(u) + h(u) on [0, 1]× (0,∞) with g > 0 continuous and nonincreasing on (0,∞), h > 0

continuous on [0,∞) and h
g nondecreasing on (0,∞);

(p4) there exists K0 with g(ab) 6 K0g(a)g(b) for all a > 0,b > 0;
(p5)

∫1
0 φ(s)g(s

p)ds <∞;
(p6) for each constant H > 0 there exists ψH continuous on [0, 1] and positive on (0, 1) such that f(t,u) >

ψH(t) on [0, 1]× (0,H] and
∃ r > 0 with

r

g(r) + h(r)
> c0K0,

here c0 = supt∈[0,1]

∫1
0(−1)n−pG(t, s)φ(s)g(sp)ds;

(p7) there exists a ∈ (0, 1
2) (choose and fix it) and τ ∈ C[a, 1 − a] with τ > 0 on [a, 1 − a] and with

φ(t)f(t,u) > τ(t)[g(u) + h(u)] on [a, 1 − a]× (0,∞) and there exists R > r with

Rg(apR)

g(R)g(apR) + g(R)h(apR)
6
∫ 1−a

a

(−1)n−pG(σ, s)τ(s)ds,

here 0 6 σ 6 1 is such that∫ 1−a

a

(−1)n−pG(σ, s)τ(s)ds = sup
t∈[0,1]

∫ 1−a

a

(−1)n−pG(t, s)τ(s)ds.

On the other hand, due to the deep background in various fields of applied mathematics and physics
such as heat conduction, chemical engineering, underground water flow, thermo-elasticity, and plasma
physics, there has been a great increase in investigating differential equations under nonlocal conditions,
(see [4, 7, 8, 14, 15, 17–23, 26, 28, 33–35, 38–44] to name a few). Recently, Webb [35] and Hao et al. [20]
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considered a kind of nth-order differential equations subject to the following conjugate type boundary
value conditions

u(0) = u ′(0) = · · · = u(n−2)(0) = 0, u(1) =
∫ 1

0
u(s)dA(s), (A)

which covers multi-point boundary conditions and integral conditions in a unified framework. They ob-
tained the existence of positive solutions for the BVPs under some conditions concerning to the principal
eigenvalue of the corresponding linear operator when the nonlinearity f either satisfies Carathéodory
conditions or permits singularity with respect to both the time and the space variables. By means of the
fixed point theory, Wang et al. [33] investigated the existence and multiplicity of positive solution for
fractional differential equations BVP (1.1) and (A). Very recently, when f is continuous, Cabada et al.
[8] considered the existence of positive solutions for the following fractional differential equations with a
parameter λ in integral boundary value conditions

u(0) = u ′′(0) = 0, u(1) = λ
∫ 1

0
u(s)ds, (B)

where 0 < λ < 2,CDα is the Caputo fractional derivative. Motivated by [8], the authors [34, 39, 44] investi-
gated higher order fractional differential equation (1.1) under more general integral boundary conditions

u(0) = u ′(0) = u ′′(0) = 0,u(1) = λ
∫η

0
u(s)ds, (C)

u(0) = u ′(0) = · · · = u(n−2)(0) = 0, u(i)(1) = λ
∫η

0
u(t)dt, (D)

u(0) = u ′(0) = · · · = u(n−2)(0) = 0, u(i)(1) = λ
∫η

0
h(t)u(t)dt, (E)

where i is a nonnegative integer, η ∈ (0, 1], and λ is a positive parameter.
The purpose of this paper is to investigate the existence of positive solutions for fractional differential

equations BVP (1.1)-(1.2) under two cases, that is to say, when f(t,u) is singular with respect to time
variable and singular with respect to both the time and the space variables. It should be pointed out
that the nonlinearity may change sign which makes the problem considered in this article be so-called
semipositone problems. Compared to the literature, this paper has several new features. Firstly, the
nonlinearity f may be unbounded below. Especially, it is worth mentioning that the nonlinearity permits
singularities with both the time and the space variables. Secondly, compared to [8, 34, 39, 44], an arbitrary
order derivative, a Lebesgue integrable function h and two parameters λ and η are involved in the integral
boundary conditions which makes the BVP (1.1)-(1.2) has a more general form. Thirdly, and it is most
important that the conditions imposed on the nonlinearity and the method of the proof are different from
the existing results [1–3, 27]. More precisely, height functions of the nonlinear term on different bounded
sets for each case are introduced and the integrations of these height functions are considered to guarantee
the existence of positive solutions. Conditions used in this paper are easy to be checked and they can
also be easily employed to obtain the multiplicity results of positive solutions for other boundary value
problems.

The idea of this paper may trace to Yao [36, 37] and our work [38]. As far as we know, there are
few papers to consider fractional semipositone integral BVPs, especially for BVPs with singularities on
space variable. Our proof is based on a special cone constructed according to the properties of the
corresponding Green’s function. To gain this goal, we carried out a detailed discussion on the properties
of Green’s function.

2. Preliminaries and several lemmas

Let E = C[0, 1], ‖u‖ = max06t61 |u(t)|, then (E, ‖ · ‖) is a Banach space. In this article, we still need
another Banach space L1(0, 1) endowed with the norm ‖u‖1 =

∫1
0 |u(t)|dt.
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Definition 2.1 ([25]). The Riemann-Liouville fractional integral of order α > 0 of a function y : (0,∞)→ R

is given by

Iα0+y(t) =
1
Γ(α)

∫t
0
(t− s)α−1y(s)ds

provided the right-hand side is pointwise defined on (0,∞).

Definition 2.2 ([25]). The Riemann-Liouville fractional derivative of order α > 0 of a continuous function
y : (0,∞)→ R is given by

Dα0+y(t) =
1

Γ(n−α)

( d
dt

)n ∫t
0

y(s)

(t− s)α−n+1 ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-hand side is
pointwise defined on (0,∞).

Lemma 2.3 ([5]). Let α > 0. If we assume u ∈ C(0, 1)∩ L(0, 1), then the fractional differential equation

Dα0+u(t) = 0,

has u(t) = C1t
α−1 + C2t

α−2 + · · · + CNtα−N,Ci ∈ R, i = 1, 2, . . . ,N, as unique solutions, where N is the
smallest integer greater than or equal to α.

Lemma 2.4 ([5]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0 that belongs to
C(0, 1)∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) +C1t

α−1 +C2t
α−2 + · · ·+CNtα−N

for some Ci ∈ R, i = 1, 2, . . . ,N, where N is the smallest integer greater than or equal to α.

Lemma 2.5. Assume that λ
∫η

0 h(t)t
α−β−1dt 6= 1. Then for any y ∈ L1(0, 1), the unique solution of the boundary

value problems  Dα0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u ′(0) = · · · = u(n−2)(0) = 0, Dβ0+(1) = λ
∫η

0
h(t)Dβ0+u(t)dt,

(2.1)

can be expressed in the form

u(t) =

∫ 1

0
G(t, s)y(s)ds, t ∈ [0, 1],

where

G(t, s) = G1(t, s) +G2(t, s), (2.2)

G1(t, s) =


tα−1(1 − s)α−β−1 − (t− s)α−1

Γ(α)
, 0 6 s 6 t 6 1,

tα−1(1 − s)α−β−1

Γ(α)
, 0 6 t 6 s 6 1,

(2.3)

G2(t, s) =
λtα−1

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt,

H(t, s) =


tα−β−1(1 − s)α−β−1 − (t− s)α−β−1

Γ(α)
, 0 6 s 6 t 6 1,

tα−β−1(1 − s)α−β−1

Γ(α)
, 0 6 t 6 s 6 1,

here, G(t, s) is called the Green function of BVP (2.1). Obviously, G(t, s) is continuous on [0, 1]× [0, 1].
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Proof. First, (2.1) can be transformed to an equivalent integral equation by Lemma 2.4,

u(t) = −Iα0+y(t) +C1t
α−1 +C2t

α−2 + · · ·+Cntα−n

= −
1
Γ(α)

∫t
0
(t− s)α−1y(s)ds+C1t

α−1 +C2t
α−2 + · · ·+Cntα−n

for some C1,C2, · · · ,Cn ∈ R. Combining with the boundary value conditions that u(0) = u ′(0) = · · · =
u(n−2)(0) = 0, one gets that C2 = C3 = · · · = Cn = 0. Then, we have

u(t) = −

∫t
0

(t− s)α−1

Γ(α)
y(s)ds+C1t

α−1.

By Definition 2.2, we get

D
β
0+u(t) = −

∫t
0

(t− s)α−β−1

Γ(α−β)
y(s)ds+C1

Γ(α)

Γ(α−β)
tα−β−1.

Thus, we have

D
β
0+u(1) = −

∫ 1

0

(1 − s)α−β−1

Γ(α−β)
y(s)ds+C1

Γ(α)

Γ(α−β)
, (2.4)

λ

∫η
0
h(t)Dβ0+u(t)dt = λ

[ ∫η
0
h(t)

(
−

1
Γ(α−β)

) ∫t
0
(t− s)α−β−1y(s)dsdt

+C1
Γ(α)

Γ(α−β)

∫η
0
h(t)tα−β−1dt

]
.

(2.5)

By (2.4) and (2.5), we get that

C1
Γ(α)

Γ(α−β)

(
1 − λ

∫η
0
h(t)tα−β−1dt

)
=

1
Γ(α−β)

( ∫ 1

0
(1 − s)α−β−1y(s)ds

− λ

∫η
0
h(t)

∫t
0
(t− s)α−β−1y(s)dsdt

)
.

As a result,

C1 =
1

Γ(α)
(

1 − λ
∫η

0 h(t)t
α−β−1dt

)( ∫ 1

0
(1 − s)α−β−1y(s)ds− λ

∫η
0
h(t)

∫t
0
(t− s)α−β−1y(s)dsdt

)
.

Thus,

u(t) = −
1
Γ(α)

∫t
0
(t− s)α−1y(s)ds+

tα−1

Γ(α)
(

1 − λ
∫η

0 h(t)t
α−β−1dt

)
·
( ∫ 1

0
(1 − s)α−β−1y(s)ds− λ

∫η
0
h(t)

∫t
0
(t− s)α−β−1y(s)dsdt

)
= −

1
Γ(α)

∫t
0
(t− s)α−1y(s)ds+

(
1 − λ

∫η
0 h(t)t

α−β−1dt+ λ
∫η

0 h(t)t
α−β−1dt

)
Γ(α)

(
1 − λ

∫η
0 h(t)t

α−β−1dt
) tα−1

·
∫ 1

0
(1 − s)α−β−1y(s)ds−

λtα−1

Γ(α)
(

1 − λ
∫η

0 h(t)t
α−β−1dt

)
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·
∫η

0
h(t)

∫t
0
(t− s)α−β−1y(s)dsdt

= −
1
Γ(α)

∫t
0
(t− s)α−1y(s)ds+

1
Γ(α)

∫ 1

0
tα−1(1 − s)α−β−1y(s)ds

+
λ

Γ(α)

∫1
0(1 − s)α−β−1y(s)ds

1 − λ
∫η

0 h(t)t
α−β−1dt

tα−1 ·
∫η

0
h(t)tα−β−1dt

−
λ

Γ(α)

tα−1

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)

∫t
0
(t− s)α−β−1y(s)dsdt

=

∫ 1

0
G1(t, s)y(s)ds+

λ

Γ(α)

tα−1

1 − λ
∫η

0 h(t)t
α−β−1dt

·
[ ∫η

0

( ∫ 1

0
(1 − s)α−β−1y(s)h(t)tα−β−1ds

)
dt−

∫η
0
h(t)

∫t
0
(t− s)α−β−1y(s)dsdt

]
=

∫ 1

0
G1(t, s)y(s)ds+

λ

Γ(α)

tα−1

1 − λ
∫η

0 h(t)t
α−β−1dt

·
[ ∫η

0
h(t)

∫t
0

(
(1 − s)α−β−1tα−β−1 − (t− s)α−β−1

)
y(s)dsdt

+

∫η
0
h(t)

∫ 1

t

(1 − s)α−β−1tα−β−1y(s)dsdt
]

=

∫ 1

0
G1(t, s)y(s)ds+

λtα−1

1 − λ
∫η

0 h(t)t
α−β−1dt

·
∫η

0
h(t)

∫ 1

0
H(t, s)y(s)dsdt

=

∫ 1

0
G1(t, s)y(s)ds+

∫ 1

0

λtα−1

1 − λ
∫η

0 h(t)t
α−β−1dt

·
∫η

0
h(t)H(t, s)dty(s)ds

=

∫ 1

0
(G1(t, s) +G2(t, s))y(s)ds.

Lemma 2.6. The functions G1(t, s) and G(t, s) given by (2.3) and (2.2), respectively, have the following properties:

(a1) G1(t, s) > 1
Γ(α)t

α−1s(1 − s)α−β−1,∀ t, s ∈ [0, 1];

(a2) G1(t, s) 6 1
Γ(α)(α− 1)s(1 − s)α−β−1, ∀ t, s ∈ [0, 1];

(a3) G(t, s) 6 J(s), J(s) = 1
Γ(α)(α− 1)s(1 − s)α−β−1 + λ

1−λ
∫η

0 h(t)t
α−β−1dt

∫η
0 h(t)H(t, s)dt, ∀ t, s ∈ [0, 1];

(a4)
1

(α−1)t
α−1J(s) 6 G(t, s) 6 1

Γ(α)t
α−1(1 − s)α−β−1[(α − 1) + λ

1−λ
∫η

0 h(t)t
α−β−1dt

∫η
0 h(t)t

α−β−1dt],
∀ t, s ∈ [0, 1].

Proof.

(a1). For s 6 t, notice that β > 1, we have (1 − s)β 6 (1 − s). Therefore,

G1(t, s) =
1
Γ(α)

(tα−1(1 − s)α−β−1 − (t− s)α−1)

=
1
Γ(α)

[
tα−1(1 − s)α−β−1 − tα−1

(
1 −

s

t

)α−1]
>

1
Γ(α)

tα−1
[
(1 − s)α−β−1 −

(
1 − s

)α−β−1+β]
>

1
Γ(α)

tα−1(1 − s)α−β−1[1 − (1 − s)β]
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>
1
Γ(α)

tα−1(1 − s)α−β−1[1 − (1 − s)] =
1
Γ(α)

tα−1s(1 − s)α−β−1.

For s > t, we have

G1(t, s) =
1
Γ(α)

tα−1(1 − s)α−β−1 >
1
Γ(α)

tα−1s(1 − s)α−β−1.

(a2). For s 6 t, notice that α−β− 1 > 0, we have

G1(t, s) =
1
Γ(α)

(tα−1(1 − s)α−β−1 − (t− s)α−1)

=
1
Γ(α)

(1 − s)−β
[
(t(1 − s))α−1 − (1 − s)β(t− s)α−1

]
6

1
Γ(α)

(1 − s)−β
[
(t(1 − s))α−1 − (1 − s)α−1(t− s)α−1

]
=

1
Γ(α)

(1 − s)−β(α− 1)
∫t(1−s)

(1−s)(t−s)
xα−2dx

6
1
Γ(α)

(1 − s)−β(α− 1)tα−2(1 − s)α−2[t(1 − s) − (1 − s)(t− s)]

=
1
Γ(α)

(α− 1)(1 − s)−βtα−2(1 − s)α−2s(1 − s)

6
1
Γ(α)

(α− 1)s(1 − s)α−β−1.

For s > t, noticing that α > 2, we have

G1(t, s) =
1
Γ(α)

tα−1(1 − s)α−β−1 6
1
Γ(α)

sα−1(1 − s)α−β−1 6
1
Γ(α)

(α− 1)s(1 − s)α−β−1.

(a3). By (a2) and (a1), we have

G(t, s) = G1(t, s) +G2(t, s) 6
1
Γ(α)

(α− 1)s(1 − s)α−β−1 +
λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt = J(s).

(a4). By (a1) and (a3), we have

G(t, s) = G1(t, s) +G2(t, s)

>
1
Γ(α)

tα−1s(1 − s)α−β−1 +
λtα−1

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt

>
1

(α− 1)
tα−1

( 1
Γ(α)

(α− 1)s(1 − s)α−β−1 +
λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt

)
=

1
(α− 1)

tα−1J(s).

On the other hand, by (a2), for s 6 t, we have

G1(t, s) =
1
Γ(α)

(tα−1(1 − s)α−β−1 − (t− s)α−1)

6
1
Γ(α)

(α− 1)(1 − s)−βtα−2(1 − s)α−2s(1 − s)

6
1
Γ(α)

(α− 1)(1 − s)−βtα−2(1 − s)α−2t(1 − s)
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=
1
Γ(α)

(α− 1)tα−1(1 − s)α−β−1.

For t 6 s, we have

G1(t, s) =
1
Γ(α)

tα−1(1 − s)α−β−1 6
1
Γ(α)

(α− 1)tα−1(1 − s)α−β−1.

Therefore,

G(t, s) = G1(t, s) +G2(t, s)

6
1
Γ(α)

(α− 1)tα−1(1 − s)α−β−1 +
λtα−1

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt

6
1
Γ(α)

(α− 1)tα−1(1 − s)α−β−1 +
λtα−1

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)

tα−β−1(1 − s)α−β−1

Γ(α)
dt

=
1
Γ(α)

tα−1(1 − s)α−β−1
[
(α− 1) +

λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)tα−β−1dt

]
.

Throughout this article, for notational convenience, denote e(t) = 1
(α−1)t

α−1.

Lemma 2.7. Let u ∈ C[0, 1] satisfy (2.1), where y ∈ L1(0, 1),y(t) > 0, 0 6 t 6 1. Then, u(t) > e(t)‖u‖, 0 6
t 6 1.

Proof. By Lemma 2.6, 1
(α−1)t

α−1J(s) 6 G(t, s) 6 J(s) for all t, s ∈ [0, 1]. Thus, for 0 6 t 6 1, we get that

u(t) =

∫ 1

0
G(t, s)y(s)ds 6

∫ 1

0
J(s)y(s)ds,

i.e., ‖u‖ 6
∫1

0 J(s)y(s)ds. For 0 6 t 6 1, we have

u(t) =

∫ 1

0
G(t, s)y(s)ds >

1
(α− 1)

tα−1
∫ 1

0
J(s)y(s)ds >

1
(α− 1)

tα−1‖u‖.

Lemma 2.8. Let w(t) ∈ C[0, 1] satisfy Dα0+w(t) + L(t) = 0, 0 < t < 1,

w(0) = w ′(0) = · · · = w(n−2)(0) = 0, Dβ0+w(1) = λ
∫η

0
h(t)Dβ0+w(t)dt,

where L ∈ L1(0, 1),L(t) > 0. Then, w(t) 6 C‖L‖1e(t), 0 6 t 6 1, here

C =
1
Γ(α)

[
(α− 1)2 +

λ(α− 1)
1 − λ

∫η
0 h(t)t

α−β−1dt
·
∫η

0
h(t)tα−β−1dt

]
.

Proof. For any 0 6 t 6 1, noticing that β > 1,α−β− 1 > 0, n− 1 < α 6 n,n > 3, by Lemma 2.6, one has

w(t) =

∫ 1

0
G(t, s)L(s)ds

6
1
Γ(α)

[
(α− 1) +

λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)tα−β−1dt

]
tα−1

∫ 1

0
(1 − s)α−β−1L(s)ds
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6
1
Γ(α)

[
(α− 1) +

λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)tα−β−1dt

]
tα−1

∫ 1

0
L(s)ds

=
1
Γ(α)

[
(α− 1)2 +

λ(α− 1)
1 − λ

∫η
0 h(t)t

α−β−1dt

∫η
0
h(t)tα−β−1dt

]
‖L‖1

1
α− 1

tα−1

= C‖L‖1e(t).

Hence, we have proved that w(t) 6 C‖L‖1e(t), 0 6 t 6 1.

Lemma 2.9 ([16]). Let Ω1 and Ω2 be two bounded open sets in Banach space E such that θ ∈ Ω1 and Ω1 ⊂
Ω2,A : P ∩ (Ω2\Ω1)→ P a completely continuous operator, where θ denotes the zero element of E and P a cone of
E. Suppose that one of the following conditions holds

(i) ‖Au‖ 6 ‖u‖,∀ u ∈ P ∩ ∂Ω1; ‖Au‖ > ‖u‖,∀ u ∈ P ∩ ∂Ω2;
(ii) ‖Au‖ > ‖u‖, ∀ u ∈ P ∩ ∂Ω1; ‖Au‖ 6 ‖u‖, ∀ u ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2\Ω1).

3. Main results

Let

P = {u ∈ E : u(t) > 0, t ∈ [0, 1]},
K = {u : u ∈ P,u(t) > e(t)‖u‖, t ∈ [0, 1]}.

Obviously, K is a subcone of P in Banach space E and (E,K) is an ordering Banach space.

3.1. Case one: f is singular with respect to the time variable
(H0) f ∈ C((0, 1)× [0,+∞), (−∞,+∞)), there exists a function L ∈ L1(0, 1),L(t) > 0, such that f(t,u) >

−L(t) for all t ∈ (0, 1),u > 0;
(A1) for any r > 0, there exists a nonnegative function γr ∈ C(0, 1) ∩ L1(0, 1) such that |f(t,u)| 6

γr(t), (t,u) ∈ (0, 1)× [0, r];
(A2) there exists an r1 > C‖L‖1 such that ∫ 1

0
J(s)ϕ(s, r1)ds < r1,

where ϕ(t, r1) = max{f(t,u) : 0 6 u 6 r1}+ L(t), 0 < t < 1;
(A3) there exist two positive numbers 0 < a < b 6 1 and r2 > r1 such that

1
α− 1

∫b
a

J(s)ψ(s, r2)ds > r2,

where ψ(t, r2) = min{f(t,u) : (r2 −C‖L‖1)σ 6 u 6 r2,σ = 1
α−1a

α−1}+ L(t), a 6 t 6 b.

Theorem 3.1. Suppose that conditions (H0), (A1), (A2), and (A3) hold. Then BVP (1.1)-(1.2) has at least one
positive solution.

Proof. We first consider the following modified boundary value problems (MBVP for short): Dα0+u(t) + F
∗(t,u(t) −w(t)) = 0, 0 < t < 1,

u(0) = u ′(0) = · · · = u(n−2)(0) = 0, Dβ0+(1) = λ
∫η

0
h(t)Dβ0+u(t)dt,

(3.1)
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here,

F∗(t,u) = H∗(t,u) + L(t), H∗(t,u) =
{
f(t,u), u > 0,
f(t, 0), u < 0, t ∈ (0, 1).

Define another operator T∗ as follows

(T∗u)(t) =

∫ 1

0
G(t, s)F∗(s,u(s) −w(s))ds, 0 6 t 6 1.

Then, u ∈ C[0, 1] is a solution of (3.1) if and only if u ∈ C[0, 1] is a fixed point of the operator T∗.
In the following, we divide the proof into three parts.

(I) We shall show that T∗ : K→ K is completely continuous.
For any u ∈ K, by (H0) and (A1), we can see that T∗u ∈ C[0, 1]. If un ∈ K and ‖un − u‖ → 0 as

n→∞ (n = 1, 2, · · · ), then for any t ∈ (0, 1), we have

lim
n→∞ F∗(t,un(t) −w(t)) = F∗(t,u(t) −w(t)).

Let r1 = sup
n

‖un‖+ ‖w‖+ 1. By (A1), there exists a nonnegative function γr1 ∈ L1(0, 1) such that

|F∗(t,un(t) −w(t)) − F∗(t,u(t) −w(t))| 6 2γr1(t), 0 < t < 1.

It follows from the Lebesgue’s dominated convergence theorem that

lim
n→∞ ‖T∗un − T∗u‖ 6 lim

n→∞ max
06t61

∫ 1

0
G(t, s)|F∗(s,un(s) −w(s)) − F∗(s,u(s) −w(s))|ds

6 max
06t61

G(t, s) lim
n→∞

∫ 1

0
|F∗(s,un(s) −w(s)) − F∗(s,u(s) −w(s))|ds

6 max
06t61

G(t, s)
∫ 1

0
lim
n→∞ |F∗(s,un(s) −w(s)) − F∗(s,u(s) −w(s))|ds = 0.

Hence, T∗ : K→ C[0, 1] is continuous.
Let D ⊂ K be any bounded set and r2 = sup{‖u‖ : u ∈ D}+ ‖w‖+ 1. For u ∈ D, by (A1), there exists a

nonnegative function γr2 ∈ L1(0, 1) such that

|H∗(t,u(t) −w(t))| 6 γr2(t), 0 < t < 1.

As a consequence,

‖T∗u‖ = max
06t61

∫ 1

0
G(t, s)F∗(s,u(s) −w(s))ds

6 max
06t,s61

G(t, s)
∫ 1

0
[H∗(s,u(s) −w(s)) + L(s)]ds

6 max
06t,s61

G(t, s)
∫ 1

0
[γr2(s) + L(s)]ds < +∞,

which means that T∗(D) ⊂ C[0, 1] is uniformly bounded.
Since G(t, s) is continuous on [0, 1]× [0, 1], it is also uniformly continuous on [0, 1]× [0, 1] as well. For

any fixed s ∈ [0, 1] and any ε > 0, there exists a constant δ > 0 such that for t1, t2 ∈ [0, 1] with |t1 − t2| < δ

|G(t1, s) −G(t2, s)| <
ε∫1

0[γr2(s) + L(s)]ds
.
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Thus, for any u ∈ D,

|T∗u(t1) − T
∗u(t2)| =

∫ 1

0
|G(t1, s) −G(t2, s)|F∗(s,u(s) −w(s))ds

6
ε∫1

0[γr2(s) + L(s)]ds
·
∫ 1

0
[γr2(s) + L(s)]ds = ε,

which shows that T∗(D) ⊂ C[0, 1] is equicontinuous. Thus, Arzelà-Ascoli theorem guarantees that T∗ :
K→ C[0, 1] is completely continuous.

On the other hand, for any u ∈ K with ‖u‖ = r, t ∈ [0, 1], by Lemma 2.6 and (A1), we have

(T∗u)(t) =

∫ 1

0
G(t, s)F∗(s,u(s) −w(s))ds 6

∫ 1

0
J(s)F∗(s,u(s) −w(s))ds

=

∫ 1

0
J(s)[H∗(s,u(s) −w(s)) + L(s)]ds <

∫ 1

0
J(s)[γr(s) + L(s)]ds < +∞.

Hence,

‖T∗u‖ 6
∫ 1

0
J(s)F(s,u(s) −w(s))ds.

For any u ∈ K, it follows from Lemma 2.6 that

(T∗u)(t) =

∫ 1

0
G(t, s)F(s,u(s) −w(s))ds

>
1

(α− 1)
tα−1

∫ 1

0
J(s)F(s,u(s) −w(s))ds >

1
(α− 1)

tα−1‖T∗u‖ = e(t)‖T∗u‖,

which means that T∗ : K→ K.

(II) We shall show the existence of positive solutions for MBVP (3.1).
If u ∈ Ω(r1), then we have

F∗(t,u(t) −w(t)) 6 ϕ(t, r1), 0 < t < 1.

Following Lemma 2.6 (a3), and (A2), we get that

‖T∗u‖ = max
06t61

∫ 1

0
G(t, s)F∗(s,u(s) −w(s))ds 6

∫ 1

0
J(s)ϕ(s, r1)ds < r1. (3.2)

If u ∈ ∂Ω(r2), then ‖u‖ = r2 and u(t) > r2e(t), 0 6 t 6 1. Thus, we get

r2 > u(t) −w(t) > (r2 −C‖L‖1)e(t) > 0, 0 6 t 6 1,

and
r2 > u(t) −w(t) > (r2 −C‖L‖1)e(t) > (r2 −C‖L‖1)σ, a 6 t 6 b.

By the definition of ψ(t, r2), one has

f(t,u(t) −w(t)) + L(t) > ψ(t, r2), a 6 t 6 b. (3.3)

By Lemma 2.6 (a4), (A3), and (3.3), we have

‖T∗u‖ = max
06t61

∫ 1

0
G(t, s)F(s,u(s) −w(s))ds
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>
1

α− 1
max

06t61

∫ 1

0
tα−1J(s)[f(s,u(s) −w(s)) + L(s)]ds >

1
α− 1

∫b
a

J(s)ψ(s, r2) > r2,

i.e.,
‖T∗u‖ > ‖u‖, ∀ u ∈ ∂Ω(r2). (3.4)

It follows from (3.2), (3.4), and Lemma 2.9 that T∗ has at least one fixed point û ∈ Ωr2\Ωr1 .

(III) We shall show that û(t) > w(t), t ∈ [0, 1]. For any t ∈ [0, 1], û(t) > ‖û‖e(t) > r1e(t) > C‖L‖1e(t) >
w(t). Let u(t) = û(t) −w(t), then u(t) is a positive solution for BVP (1.1)-(1.2).

3.2. Case two: f is singular with respect to both the time variable and the space variable
(H1) f ∈ C((0, 1)× (0,+∞), (−∞,+∞)), there exists a function L ∈ L1(0, 1),L(t) > 0, such that f(t,u) >

−L(t) for all t ∈ (0, 1),u > 0;
(B1) for any positive numbers r1 < r2, there exists a nonnegative continuous function γr1,r2 ∈ L1(0, 1)

such that
|f(t,u)| 6 γr1,r2(t), 0 < t < 1, r1e(t) 6 u 6 r2

with ∫ 1

0
s(1 − s)α−β−1γr1,r2(s)ds < +∞;

(B2) there exists an r̂1 > C‖L‖1 such that ∫ 1

0
J(s)ϕ(s, r̂1)ds < r̂1,

where ϕ(t, r̂1) = max{f(t,u) : (̂r1 −C‖L‖1)e(t) 6 u 6 r̂1}+ L(t);
(B3) there exists r̂2 > r̂1 such that ∫ 1

0

1
(α− 1)

J(s)ψ(s, r̂2)ds > r̂2,

where ψ(t, r̂2) = min{f(t,u) : (̂r2 −C‖L‖1)e(t) 6 u 6 r̂2}+ L(t).

Theorem 3.2. Suppose that conditions (H1), (B1), (B2), and (B3) hold. Then BVP (1.1)-(1.2) has at least one
positive solution.

Proof. We first consider the following modified approximating BVP (MABVP for short) Dα0+u(t) + F
∗
n(t,u(t) −w(t)) = 0, 0 < t < 1,

u(0) = u ′(0) = · · · = u(n−2)(0) = 0, Dβ0+(1) = λ
∫η

0
h(t)Dβ0+u(t)dt,

(3.5)

here,

F∗n(t,u) = H
∗
n(t,u) + L(t), H

∗
n(t,u) =

{
f(t,u), u > 1

n ,
f(t, 1

n), u < 1
n ,

t ∈ (0, 1).

Define an operator T∗n as follows

(T∗nu)(t) =

∫ 1

0
G(t, s)F∗n(s,u(s) −w(s))ds, 0 6 t 6 1.

In the following, we divide the proof into three parts.

(I) For any C‖L‖1 < r1 < r2, we prove that T∗n : K∩ (Ωr2\Ωr1)→ K,n > 1
r1

is completely continuous.
Notice that u(t) −w(t) > (r1 −C‖L‖1)e(t) > 0, 0 < t < 1;n > 1

r1
, we have

(r1 −C‖L‖1)e(t) 6 max
{
u(t) −w(t),

1
n

}
6 r2.
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Thus, it follows from (H1), (B1), and Lemma 2.4 (a3) and (a4) that

(T∗nu)(t) =

∫ 1

0
G(t, s)F∗n(s,u(s) −w(s))ds

6
∫ 1

0
J(s)[H∗n(s,u(s) −w(s)) + L(s)]ds

=

∫ 1

0

[ 1
Γ(α)

(α− 1)s(1 − s)α−β−1

+
λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt

]
[H∗n(s,u(s) −w(s)) + L(s)]ds

6
∫ 1

0

[ 1
Γ(α)

(α− 1)s(1 − s)α−β−1

+
λ

Γ(α)(1 − λ
∫η

0 h(t)t
α−β−1dt)

∫η
0
h(t)tα−β−1dt

]
[H∗n(s,u(s) −w(s)) + L(s)]ds

6
∫ 1

0

[ 1
Γ(α)

(α− 1)s(1 − s)α−β−1

+
λ

Γ(α)(1 − λ
∫η

0 h(t)t
α−β−1dt)

∫η
0
h(t)tα−β−1dt

] [
γr1−C‖L‖1,r2(s) + L(s)

]
ds < +∞.

(3.6)

So, T∗n : K∩ (Ωr2\Ωr1)→ E is well-defined.
On the other hand, for any u ∈ K∩ (Ωr2\Ωr1), t ∈ [0, 1], one gets from (3.6) and Lemma 2.6

(T∗nu)(t) =

∫ 1

0
G(t, s)F∗n(s,u(s) −w(s))ds 6

∫ 1

0
J(s)F∗n(s,u(s) −w(s))ds < +∞.

Hence,

‖T∗nu‖ 6
∫ 1

0
G(t, s)F∗n(s,u(s) −w(s))ds.

For any u ∈ K, it follows from Lemma 2.6 that

(T∗nu)(t) =

∫ 1

0
G(t, s)F∗n(s,u(s) −w(s))ds

>
1

(α− 1)
tα−1

∫ 1

0
J(s)F∗n(s,u(s) −w(s))ds >

1
(α− 1)

tα−1‖T∗nu‖ = e(t)‖T∗nu‖,

which means that T∗n : K∩ (Ωr2\Ωr1)→ K.
Let un,u ∈ K∩ (Ωr2\Ωr1), ‖un − ū‖ → 0 (n→∞), then lim

n→∞un(t) = ū(t), t ∈ (0, 1). Let

(T 1
nu)(t) = F

∗
n(t,u(t) −w(t)), 0 < t < 1, u ∈ K∩ (Ωr2\Ωr1),

(T 2
nu)(t) =

∫ 1

0
G(t, s)u(s)ds, 0 < t < 1, u ∈ L1(0, 1).

By (H1), we have
lim
n→∞ F∗n(t,un(t) −w(t)) = F∗n(t,u(t) −w(t)), 0 < t < 1. (3.7)

For un,u ∈ K∩ (Ωr2\Ωr1), by (H1) and (B1), we know that

F∗n(t,un(t) −w(t)) 6 γr1−C‖L‖1,r2(t) + L(t), 0 < t < 1,

F∗n(t,u(t) −w(t)) 6 γr1−C‖L‖1,r2(t) + L(t), 0 < t < 1.
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Thus, we have
|F∗n(t,un(t) −w(t)) − F

∗
n(t,u(t) −w(t))| 6 2γr1−C‖L‖1,r2(t). (3.8)

It is easy to see from (3.7), (3.8), and Lebesgue dominated convergence theorem that

lim
n→∞

∫ 1

0
|(T 1
n)un(t) − (T 1

n)ū(t)|dt = 0,

which means that T 1
n : K ∩ (Ωr2\Ωr1) → L1[0, 1] is continuous. We have from Arzelà-Ascoli theorem

that T 2
n : L1[0, 1] → C[0, 1] is completely continuous. As a result, T∗n = T 2

n ◦ T 1
n : K ∩ (Ωr2\Ωr1) → K is

completely continuous.

(II) We show the existence of positive solution of MABVP (3.5) for sufficiently large n.
If u ∈ K∩ ∂Ω(̂r1), then ‖u‖ = r̂1 and u(t) > r̂1e(t), 0 6 t 6 1. Thus, for n > 1

r̂1
, we get

(̂r1 −C‖L‖1)e(t) 6 max
{
u(t) −w(t),

1
n

}
6 r̂1.

By the definition of ϕ(t, r̂1), one has

H∗n(t,u(t) −w(t)) + L(t) 6 ϕ(t, r̂1).

By (B2) and Lemma 2.6, we have

‖T∗nu‖ = max
06t61

∫ 1

0
G(t, s)F∗n(s,u(s) −w(s))ds

= max
06t61

∫ 1

0
G(t, s)[H∗n(s,u(s) −w(s)) + L(s)]ds

6
∫ 1

0
J(s)ϕ(s, r̂1)ds < r̂1,

i.e.,
‖T∗nu‖ 6 ‖u‖, ∀ u ∈ K∩ ∂Ω(̂r1). (3.9)

If u ∈ K∩ ∂Ω(̂r2), then ‖u‖ = r̂2 and u(t) > r̂2e(t), 0 6 t 6 1. Thus, for n > 1
r̂2

, we get

r̂2 > max
{
u(t) −w(t),

1
n

}
> (̂r2 −C‖L‖1)e(t).

By the definition of ψ(t, r̂2), one has

H∗n(t,u(t) −w(t)) + L(t) > ψ(t, r̂2). (3.10)

By Lemma 2.6, (B3), and (3.10), we have

‖T∗nu‖ = max
06t61

∫ 1

0
G(t, s)F∗n(s,u(s) −w(s))ds

> max
06t61

∫ 1

0

1
(α− 1)

tα−1J(s)[H∗n(s,u(s) −w(s)) + L(s)]ds

>
∫ 1

0

1
(α− 1)

J(s)ψ(s, r̂2)ds > r̂2,

i.e.,
‖T∗nu‖ > ‖u‖, ∀ u ∈ K∩ ∂Ω(̂r2). (3.11)

Take m0 = max{ 1
r̂1

, 1
r̂2
}. Let N = {m0,m0 + 1, · · · }. Then, for n ∈ N, both (3.9) and (3.11) hold. This together

with Lemma 2.9 shows that T∗n(n ∈ N) has at least one fixed point ûn ∈ K∩Ωr̂2\Ωr̂1 .
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(III) In a similar manner, we can show that ûn(t) > w(t), n > N, t ∈ [0, 1] and satisfies

ûn(t) =

∫ 1

0
G(t, s)[H∗n(s, ûn(s) −w(s)) + L(s)]ds, 0 < t < 1. (3.12)

By (B1), we know {ûn : n > N} is a bounded, equicontinuous family on [0, 1]. Arzelà-Ascoli theorem
guarantees the existence of a subsequence of N0 of N and a function û ∈ C[0, 1] with ûn converging
uniformly on [0, 1] to û as n → ∞ through N0. Let n → ∞ on both sides of (3.12), considering the fact
ûn(t) > e(t)‖ûn‖ > r̂1e(t), we get

û(t) =

∫ 1

0
G(t, s)[f(s, û(s) −w(s)) + L(s)]ds, 0 < t < 1. (3.13)

Let u(t) = û(t) −w(t), then (3.13) means that u(t) is a positive solution for BVP (1.1)-(1.2).

Next, we rewrite conditions (B2) and (B3) as follows:

(B ′2) there exists r̂i > C‖L‖1 (i = 1, 2, · · · ,m) such that∫ 1

0
J(s)ϕ(s, r̂i)ds < r̂i,

where ϕ(t, r̂i) = max{f(t,u) : (̂ri −C‖L‖1)e(t) 6 u 6 r̂i}+ L(t);
(B ′3) there exists R̂i (i = 1, 2, · · · ,m) with

0 < r̂1 < R̂1 < r̂2 < R̂2 < · · · < r̂m < R̂m

such that ∫ 1

0

1
(α− 1)

J(s)ψ(s, R̂i)ds > R̂i,

where ψ(t, R̂i) = min{f(t,u) : (R̂i −C‖L‖1)e(t) 6 u 6 R̂i}+ L(t).

The following theorem on multiple positive solutions for BVP (1.1)-(1.2) can be given easily by Lemma
2.9.

Theorem 3.3. Suppose that conditions (H1), (B1), (B ′2), and (B ′3) hold. Then BVP (1.1)-(1.2) has at leastm positive
solutions.

Remark 3.4. Similar multiplicity result can be given for the first case, we omit it here.

4. Examples

Example 4.1. Consider the following singular fractional differential equation
D

17
6

0+u(t) +
1

8
√
t(1−t)

(u
1
2 + u6) − 1

20 3√
t2

= 0, 0 < t < 1,

u(0) = u ′(0) = 0, D
13
12
0+u(1) =

2
3

∫ 4
5

0
t−

3
4D

13
12
0+u(t)dt.

(4.1)

It is clear, (4.1) has the form of (1.1), where α = 17
6 ,β = 13

12 ,n = 3, λ = 2
3 ,η = 4

5 ,h(t) = t−
3
4 . Obviously,

(H0) holds for L(t) = 1
20 3√

t2
. By simple computation, we know that Γ(α) = 1.7245,α − β − 1 = 3

4 >

0,
∫η

0 h(t)t
α−β−1dt = 0.8000, λ

∫η
0 h(t)t

α−β−1dt = 0.5333 < 1, ‖L‖1 = 0.15, C = 3.1639. It is clear that (A1)

is valid for γr(t) = 1
8
√
t(1−t)

(r
1
2 + r6) + 1

20 3√
t2

.
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Next, we check (A2) and (A3). It is clear that∫η
0
h(t)H(t, s)dt <

∫ 4
5

0
t−

3
4
tα−β−1

Γ(α)
dt(1 − s)α−β−1 = 0.4639(1 − s)

3
4 . (4.2)

Take r1 = 1 > 0.4746 = C‖L‖1, then we have by (4.2)∫ 1

0
J(s)ϕ(s, 1)ds =

∫ 1

0

[ 1
Γ(α)

(α− 1)s(1 − s)α−β−1 +
λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt

]
ϕ(s, 1)ds

<

∫ 1

0

[
1.0631s(1 − s)

3
4 + 1.4285× 0.4639(1 − s)

3
4

] 1
8
√
s(1 − s)

(1 + 1)ds

=
1
4

∫ 1

0

[
1.0631s

1
2 (1 − s)

1
4 + 0.6667s−

1
2 (1 − s)

1
4

]
ds = 0.4241 < 1.

Thus, (A2) is verified. We have that∫η
0
h(t)H(t, s)dt =

∫ 4
5

0
t−

3
4
tα−β−1(1 − s)α−β−1

Γ(α)
dt−

∫ 4
5

s

t−
3
4
(t− s)α−β−1

Γ(α)
dt

>
1
Γ(α)

∫ 4
5

0
1dt(1 − s)

3
4 −

1
Γ(α)

∫ 4
5

s

1dt = 0.4639(1 − s)
3
4 + 0.5799s− 0.4639.

Take a = 2
3 ,b = 1, r2 = 20, then, we have

1
α− 1

∫b
a

J(s)ψ(s, 20)ds =
4
7

∫ 1

2
3

[ 1
Γ(α)

(α− 1)s(1 − s)α−β−1

+
λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt

]
ψ(s, 10)ds

>
4
7

∫ 1

2
3

[
1.0631s(1 − s)

3
4 + 1.4285

(
0.4639(1 − s)

3
4 + 0.5799s− 0.4639

)]
× 1

8
√
s(1 − s)

min{(u
1
2 + u6) : 5.0649 6 u 6 20}ds

>
1
8
× 4

7
× 5.06496

∫ 1

2
3

[
1.0631s

1
2 (1 − s)

1
4 + 1.4285

(
0.4639s−

1
2 (1 − s)

1
4

+ 0.5799s
1
2 (1 − s)−

1
2 − 0.4639s−

1
2 (1 − s)−

1
2

)]
ds

>
1
8
× 4

7
× 5.06496

∫ 1

2
3

[
1.0631(

2
3
)

1
2 (1 − s)

1
4 + 1.4285

(
0.4639(1 − s)

1
4

+ 0.5799(
2
3
)

1
2 (1 − s)−

1
2 − 0.4639s−

1
2 (1 − s)−

1
2

)]
ds

=
1
8
× 4

7
× 16882× [1.0631× 0.1654 + 1.4285(0.4639× 0.2026

+ 0.5799× 0.9428 − 0.4639× 1.2310)]
= 87.7864 > 20.

Thus, (A3) is verified. It follows from Theorem 3.1 that BVP (4.1) has at least one positive solution.

Example 4.2. Consider the following singular fractional differential equation
D

5
2
0+u(t) +

1
48 4
√
t2(1−t)

(u5 + 1
6√u) −

1
15 5√

t2
= 0, 0 < t < 1,

u(0) = u ′(0) = 0, D
5
4
0+u(1) =

1
2

∫ 2
3

0
t−

1
6D

5
4
0+u(t)dt.

(4.3)
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It is clear, (4.3) has the form of (1.1), where α = 5
2 ,β = 5

4 ,n = 3, λ = 1
2 ,η = 2

3 ,h(t) = t−
1
6 . Obviously,

(H1) holds for L(t) = 1
15 5√

t2
. By simple computation, we know that Γ(α) = 1.3293,

∫η
0 h(t)t

α−β−1dt =

0.5949, λ
∫η

0 h(t)t
α−β−1dt = 0.2974 < 1,C = 2.1702, ‖L‖1 = 1

9 . It is clear that (B1) is valid for γr1,r2 =
1

48 4
√
t2(1−t)

[r2
5 + ( 2

3r1t
3
2 )−

1
6 ] + 1

15 5√
t2

. Next, we check (B2) and (B3). It is clear that

∫η
0
h(t)H(t, s)dt <

∫ 2
3

0
t−

1
6
tα−β−1

Γ(α)
dt(1 − s)α−β−1 = 0.4475(1 − s)

1
4 .

Take r1 = 2 > 0.2411 = C‖L‖1, then by (4.3) we have∫ 1

0
J(s)ϕ(s, 2)ds

=

∫ 1

0

[ 1
Γ(α)

(α− 1)s(1 − s)
1
4

+
λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt

] 1
48 4
√
s2(1 − s)

max{(u5 +
1

6
√
u
) : 1.1726s

3
2 6 u 6 2}ds

<
1
48

∫ 1

0

[
1.1284s

1
2 + 0.7116× 0.4475s−

1
2

](
25 +

1
6
√

1.1726s
3
2

)
ds

=
1
48
× 25(1.1284× 0.6667 + 0.7116× 0.4475× 2)

+
1

48
× 0.9738×

∫ 1

0

[
1.1284s

1
4 + 0.7116× 0.4475s−

3
4

]
ds

= 0.9261 + 0.0442 = 0.9703 < 2.

Thus, (B2) is verified. We have that∫η
0
h(t)H(t, s)dt =

∫ 2
3

0
t−

1
6
tα−β−1(1 − s)α−β−1

Γ(α)
dt−

∫ 2
3

s

t−
1
6
(t− s)α−β−1

Γ(α)
dt

>
1
Γ(α)

∫ 2
3

0
t

1
12 dt(1 − s)

1
4 −

1
Γ(α)

∫ 2
3

s

t
1

12 dt

= 0.4475(1 − s)
1
4 + 0.6944s

13
12 − 0.4475.

Take r2 = 15, then, we have

1
α− 1

∫ 1

0
J(s)ϕ(s, 15)ds

=
1

α− 1

∫ 1

0

[ 1
Γ(α)

(α− 1)s(1 − s)
1
4

+
λ

1 − λ
∫η

0 h(t)t
α−β−1dt

∫η
0
h(t)H(t, s)dt

] 1
48 4
√
s2(1 − s)

min{(u5 +
1

6
√
u
) : 9.8393s

3
2 6 u 6 15}ds

>
2
3
× 1

48

∫ 1

0

[
1.1284s

1
2 + 0.7116× 0.4475s−

1
2 + 0.7116× 0.6944s

7
12 (1 − s)−

1
4

− 0.7116× 0.4475s−
1
2 (1 − s)−

1
4

](
9.83935s

15
2 +

1
6
√

15

)
ds

>
2
3
× 1

48
× 9.83935

∫ 1

0

[
1.1284s8 + 0.7116× 0.4475s7
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+ 0.7116× 0.6944s
97
12 (1 − s)−

1
4 − 0.7116× 0.4475s7(1 − s)−

1
4

]
ds

=
1
72
× 92219(1.1284× 1

9
+ 0.7116× 0.4475× 1

8
+ 0.7116× 0.6944× 0.2366

− 0.7116× 0.4475× 0.2606)
= 1281.8× 0.1991 = 255.2064 > 15.

Thus, (B3) is verified. It follows from Theorem 3.2 that BVP (4.3) has at least one positive solution.
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