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Abstract

This paper is concerned with a two-species delay stochastic competition model with imprecise parameters. We first obtain
the thresholds between persistence and extinction for each species. Then we establish sharp sufficient criteria for the existence
of a unique ergodic stationary distribution of the model. The effects of imprecise parameters on the persistence, extinction and
existence of the stationary distribution are revealed. Finally, we work out some numerical simulations to illustrate the theoretical
results. (©2017 All rights reserved.
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1. Introduction

Competition is a common phenomenon in the natural world. On the other hand, time delay and
stochastic perturbations should not be neglected (see, e.g., [3, 6, 19]). Therefore, it is interesting and
important to study stochastic competition models with delay. A classical delay stochastic competition
model can be expressed as follows:

dy1(t) = y1(t) |r1 —c11y1(t) — crpy2 (t — 1) |dt + o1y1 (t)dB1 (1),
(1.1)

dyz(t) =yo(t) |12 — c2a1y1(t — T2) — c2oya(t) [dt + o2y2(t)dBa(t),

with initial value:

y(0) = (y1(6),y2(8)) " = (m1(6),m2(0))" €T, (1.2)

where for i,j = 1,2, j # i, parameters are shown in Table 1.
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Table 1: Parameters

yi(t) Population size of the ith species

i >0 Intrinsic growth rate of the ith species

ciy >0 Intra-specific competition rate of the ith species

cij >0 Inter-specific competition rate between the species 1 and j
0% Intensity of the white noise

T, >0 Time delay

(B1(t),B2(t))"T | A standard Brownian motion defined on a complete probability space
(Q, T, {Ft}t>0,P) with a filtration {F¢}i>o0.

I The family of all bounded and continuous functions from [—T,0] to
R2 ={y= (y1,y2)" € R?ly; > 0,i =1,2}, T = max{ty, T2}.

In recent years, model (1.1) and its various generalized forms have been studied extensively, for ex-
ample, persistence and extinction of model (1.1) were considered in [16]; stability in distribution of model
(1.1) was exploited in [13, 15]; optimal control of model (1.1) with harvesting was investigated in [10, 12];
model (1.1) with Lévy jumps was analyzed in [14].

Model (1.1) supposes that all the parameters in the model are precisely known. However, in reality
the values of all parameters can not always be known precisely due to the lack of data and mistakes
in the measurement process ([21, 25]). Some authors ([20-26]) have claimed that models with imprecise
parameters are more realistic. Therefore it is important to consider stochastic delay competition models
with imprecise parameters and to reveal the impact of imprecise parameters on the dynamics of the
models. However, to the best of our knowledge, no results of this aspect have been reported.

Motivated by these, in this paper we consider the following delay stochastic competition model with
interval coefficients:

dy(t) = ui (1 [ﬁ ey (1) — Erayalt — m} dt+ Y 6ry (B (1),

i=1

Ayalt) = yalt) 12— Eaayn (£ %) ~ Czmyalt) | de+ 3 Omalt)tBa(e),

i=1

with initial condition (1.2). Here, (B (t),...,Bn(t))" is an n-dimensional Brownian motion defined on the
probability space (Q,J,{F}t>0,P); @ means the interval counterpart of a, i.e.,, d = [ay, au] = {x € Rla; <
x < ay}. For biological reasons, in this paper we suppose that ri1 > 0, cij1 >0, Ti1 > 0, 1,j = 1,2. For any
x € [ay, a,], there is a q € [0, 1] such that x = a%_q ad. Hence we shall consider the following model:

= 1— 1— 1— |
dyi(t; q) =y1(t; q) ™ qrﬁu - C111q C?luyl (t;q) — Clzlq C?Zuyz (t — T q’f?u/' q) dt

+Y olg%of it q)dBi(t),
- (1.3)

dya(t;q) = ya(t; ) |11, — o ded v (t — 1y g q> —codesh ot q) |dt

mn
+ Y oo osh 2t q)dBs(t),

i=1

with initial condition (1.2). Clearly, model (1.3) contains the cases that the random noises are correlated
or independent.

Remark 1.1. In this paper, we consider the It6 integral instead of Stratonovich integral because model (1.3)
is an approximation to age-structured populations ([3]).
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The rest of this paper is organized as follows. In Section 2 we establish the critical value between
persistence and extinction for each species. In Section 3 we obtain sharp sufficient criteria for the existence
of a unique ergodic stationary distribution of the model. In Section 4 we discuss the effects of imprecise
parameters on the persistence, extinction and existence of the stationary distribution of the model with
the help of several numerical simulations, and give some concluding remarks.

2. Persistence and extinction

For the sake of convenience, we define some notations:
t n )
— — 1— .
(f(1)) =t 1L f(s)ds, bi(q) =71, T8, — Y ofy Vo2, i=12,
k=1

_l—q.q9 _1-q_q 1-q.q 1—q_.q
A(q) = ¢y C11,C01 Coou — €121 C12u 211 Co1u

A1) = bi(q)ezn ey, — ba(a)ery el Aa(a) = bala)er e, —brlaley e
To begin with, let us prepare several lemmas.

Lemma 2.1 ([17]). Let p(t) € C(Q x [0, +00), R ).

(i) If there are two positive constants T and (¢ such that forall t > T,

t
0

Inp(t) < Bt—Bo | pls)ds+ ) asbi(t),
i=1

where oy, 1 =1,...,n are constants, then

limsup(p(t)) < B/Po, a.s. (almost surely), if B >0;

t—+o0

lim p(t)=0, as, if B<O,

t—+o00

(ii) If there are three positive constants T, 3, and 3o such that forall t > T,

t
0

Inp(t) > Bt—Bo | plslds+ ) asbi(t),
i=1

then
liminf(p(t)) > B/Po, a.s..

t—+4o00
Lemma 2.2. For any given initial value n(8) € T, model (1.3) has a unique global positive solution y(t;q) =
(y1(t;q),ya(t; q)) on t > O as., and

Inyi(t; q) <1

lim sup <1, as,i=1,2. (2.1)

t—+o0 Int

In addition, for all p > 0, there is a positive constant K(p) such that

limsup E[y? (t;q)] <K(p), i=1,2. (2.2)

t—o00

Proof. Clearly, the coefficients of model (1.3) are locally Lipschitz continuous; hence for any given initial
condition 1(0) € T, model (1.3) has a unique local solution y(t; q) for t € [0, 1), where T, represents the
explosion time. For any t € [0, T¢),



X. He, M. Liu, J. Nonlinear Sci. Appl., 10 (2017), 47764788 4779

t
y1(t;q) =y1(0) exp { Jo <b1(q) —cl9ed vils;q) —cinded uo <S—Tthﬂu;q>>ds
+ZJ Gm 9ot ,yi(s; q)dBi(s )},
t . ) 1
Y2(t; q) = y2(0) exp{JO <bz(q) _Czﬁch1uyl<5—Tzqu§'u;q> _sz_quE'Zuyz(S;q)>ds
+ZJ o1 UZluUZ(S’q)dBi(S)}-

Therefore, yi(t;q) > 0 for t € [0,7e), i = 1,2. Now let us prove T, = +oo. To this end, we consider the
following auxiliary equations:

dxi(t; q) = xi(t; q) [r%;qrﬁu cinded xiltq ]dt+Z i 0k xi(t q)dBi(t), 1=1,2, 23)
k=1

cq) — . 1-q.q 1—q.q cl-da.d
dlj(t,q)—Zj(t,q)[le T~ Cijt ]Juz](t q)— Gt CiiuXi (t Tll TJu,q)]d

3 2.4)
* Z G}ﬁq G]qkulj(t; q)dBy(t), j =1,2, j #1,
k=1
with initial data x(0) = z(8) = y(0). According to the comparison theorem [7], we have
zi(t;q) <yilt q) <xiltq), te0,te), i=12 2.5)

On the other hand, according to [8], the explicit solutions of equations (2.3) and (2.4) can be expressed as
follows:

1—

xi(t; q) = explbi(p)t+ 3 i_q 05, 05 Bi (b)) 1o

v 1 1— 4 — L4y
(0)+Culq ?IILJ‘O eXP{b 5+Z]T<l 10 lquG?kuBk(s)}ds

1—
exp{bi(p )t_cul ju IO X] S_T il qT?u;q dS+ZE 1 O-Lquo-?kuBk(t)}

zi(t;q) = i #i
Zfl(o) + C%qu ?tu J‘O eXp{b ( )S - Ci]lq ?]u IO XJ H— T ngu’ q du+ Zk 1 Utqu 0-tku ( )}ds
Note that x;(t; q) > 0 and z;(t; q) > 0 exist on [0, +00), hence T, = +o0.
Now let us show (2.1) and (2.2). In fact, according to the results in [9],
Inx;(t;
lim sup M <1, as., i=1,2,
t—+oo Int
and for all p > 0, there is a positive constant K(p) such that
limsup E[xP(t; q)] <K(p), i=1,2
t—o0
Hence the desired assertions (2.1) and (2.2) follow from (2.5). O

The aim of this section is to study the persistence and extinction of model (1.3). If bi(q) < 0, then the
species i in model (1.3) goes to extinction, i.e., . lirf yi(t;q) =0, as., i =1,2 (the proof is standard and
—+00
hence is omitted (see, e.g. [17]). Hence from now on, we always suppose that bi(q) > 0 and by(q) > 0.
Besides, we also suppose the following.

Assumption 2.3. A(q) > 0, that is to say, the intra-specific competition is stronger than the inter-specific
competition.
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Remark 2.4. If A(q) > 0, it is easy to show that A;(q) < 0 and Ay(q) < 0 will not hold simultaneously.

Now we are in the position to state and prove our first main result.

Theorem 2.5. Suppose that bi(q) > 0, ba(q) > 0 and Assumption 2.3 holds.

(i) If A1(q) > 0and Ay(q) < 0, then yo goes to extinction a.s. and yy is persistent in the mean a.s.:

. _ bi(q)
1 _ 1 .
thI:Ikl t J yi(s;q)ds = - , a.s.; (2.6)

q.49
€111 C11u

(ii) If A1(q) < 0and Ay(q) > 0, then yy goes to extinction a.s. and \y is persistent in the mean a.s.:

t
b
lim t_1J Yya(s; q)ds = %, a.s.;
toreo 0 Coo1 Coou

(iii) If A1(q) > 0and Ay(q) > 0, then both yy and yy are persistent in the mean a.s.:

Ai(q) 1
Alq) ot J Yals; q)ds =

lim tlj yi(s; q)ds =

t—+o0

a.s.. (2.7)

Proof. Applying Itd’s formula to (2.3) yields

t
Inxi(t;q) —Inx;(0) = b; (q)t—CquCiuL xi(s; q ds—i—Z Oil leuBk( ), 1=1,2.
k=1

Note that b;i(q) > 0, it then follows from Lemma 2.1 that

b; b;
% < liminf(xi(t; q)) < limsup(xi(t; q)) < %, as., i=12.
Ciit Cijny T t—=+oo Ciit Ciiu
Therefore .
b.
tgrf (xi(t;q)) = tgrf t_1J xi(s; q)ds = %, a.s., i=1,2. (2.8)
°° °° 0 Ciil Ciiu
Consequently,
. t . t t—; 9T,
li - — (o _ (q
t_1&100‘( L_T}qu?u xi(s; q)ds = t_l)rfoot UO xi(s; q)ds Jo xi(s; q)ds
) b
- gq(qg — 1jq(qi —0, a5, 1,j=1,2j#1
Ciit Giiw Gt Giiu
In light of (2.5), we have
t
lim tlj yi(s;q)ds =0, as., i,j =1,2, j #i. (2.9)
t—4o0 t— Tl q.4

u

Applying Itd’s formula to (1.3) yields
Iny; (t; q) —Iny, (0)

t t
=bi(q)t— C%l_lq C?lu L y1(s; q)ds — Ciz_lq C?Zu Jo Y2 (5 - Til quu’ q) ds + Z 071 Glqu (t)
i=1
t

(2.10)

t 0
:bl(q)t—c%;lqcquL yz(s;q)ds—i—c%z_lqcfh“ L yz(s;q)ds—J yz(s;q)ds]

_ q 1-q_q
=T T T Ty

1
Cchou yi(s; q dS+ZUm 0T, Bilt).
i=1
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Iny>(t; q) —Inyz(0)

t t
=by(q)t C21qu§1uJ 91<S_T21 qTZu,q>ds C221q‘3§2uj Ya(s; q ds‘f‘Zqu 0%, Bi(t)

i=1
) ¢ ) ¢ 0 (2.11)
:bZ(q)t_C;qu%uJ yl(s;q)ds—i—céuchluH _ yl(s;q)ds—J ) yl(s;q)ds}
0 t—1y T, *Tét ngu
C;ZquZZuJ Ya(s; q dS"‘ZUzu 0-21uB (t).
i=1
Computing (2.11)x ¢y e —(2.10)xchdedl ., we can see that
t 0
1—q .q UZ(t}q)_ 1-q.9 .1—q.q [J X J i
Ci1q Cyy. In Ci17 €11, Coqp'C 1(s; q)ds — 1(s; q)ds
LI N 1) u e | | E—y Yiis;q _T;qT;uU q
t 0
1— 1—
_C21qu§1uC12qu?2u|:J ag Uz(S}Q)dS—J e UZ(S}q)dS]
=1 T —Tn T (2 12)
cd x1(t; q) t .
+C211 Copp I +A2(q)t—A(q) | yals;q)ds
x1(0) 0
mn mn
1— 1— 1— 1—
—cmied, Z o Yot Bilt) +opp Tt Z 0y 1034, Bilt).
i=1 i=1
According to (2.1) and (2.9), for arbitrary ¢ > 0, there exists a T > 0 such that for t > T,
N t;q)
t1cl-9¢a In Yl < ¢/4,
211 “21u yl(O) /
t_lc%l_lqclq1u Iny,(0) < e/4,
t 0
e euentch, H .. yils;q)ds —J ooyl q)ds} <e/4,
t— T qTun —Ty qTun
. t 0
-t Czuchlucqu?zu“ . Uz(S;Q)dS—J . Y2(s;q)d } /4.
t—1y, qT?u —Tn qT?u
When the above inequalities are used in (2.12), we can see that for t > T,
t
ended, Inya(t q) < (Az(CI)-i-ﬁ)t—A(q)J uls; q)ds
(2.13)
Czu C21u Z cr111 Ghu 111 ClluZ O—le O—Zlu ().
Similarly, computing (2.10)x ¢35, %csh —(2.11)x 15, %, results in
t 0
1—q .q Ul(t}q) _1-q.9 .1-q.q [J . J .
Cooy Cony, IN = Chyy Coh, Cinr ' C Yo(s; q)ds — (s;q)ds
21 “2u N o) 21 2uCi2L Cr2u | | o qT? q 7T}qu]qu92 q
t 0
1— 1—
_Clzqu?ZuCZHchlu[J e yl(s;q)ds—J e yl(S}q)dS]
t_TZI Tou —T Ty (2 14)
cd yZ(t; q) t .
+C121 Cipy I 12(0) +A1(q)t—A(q) yl(SQQ)dS

mn
1—q .q 1
€1 Cony Zcm GlluB (t) C121 ClZu Zczu sz ().
i=1
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Similar to (2.13), by virtue of (2.14) we can observe that for t > T,

ety Inya(t q) < (Al(q)+e)t—A(q)J0 yi(s; q)ds
(2.15)

n n
1—q .q 1-q.d p.(+)_ ~1—4d.9 1-q q p.
+ Coo1 CZZuZGHl 071, Bi(t) — ¢ ClZuZGZil 051y, Bi(t).
i=1 i=1

(i). Since A>(q) < 0, then we can choose ¢ sufficiently small such that Ay(q) +¢ < 0. Applying (i) in Lemma
2.1 to (2.13) gives . liT y2(t; q) =0, a.s.. The proof of (2.6) is similar to that of (2.8) and hence is omitted.
—+00

The proof of (ii) is similar to that of (i) and we also omit it.
Now we are in the position to prove (iii). Note that Ay(q) > 0, according to (2.13) and Lemma 2.1, we
obtain

. Nor(q)+¢
lim su t; <=,
t—>+oop<y2( 9 Alq)

As an application of the arbitrariness of ¢, one can observe that

. M (q)
1 ; < ,
ltrgigop@z(t q)) < Alq)

a.s.. (2.16)
In the same way, by (2.15), Lemma 2.1, and the arbitrariness of ¢, we have

) Aq1(q)
1 ;q)) < ,
ltrgiliop@l(t q)) < Alq)

a.s.. (2.17)

1—q .q
Let e < Ciit c11u A

.9) and (2.16) into (2.10) results in that for sufficiently large t,

n
t'Inyi(tq) =t " Inys(0) + bi(q) — ey tefh Wit @) — el et (Walti ) + ) oy dofh Bi(t)/t
i=1

t 0
+epp et H Ya(s; q)ds — J

1-q,q
=T T

Yals; q)dS]

1—q

q
L

Tiu
>by(q) —e—ci9cd (yi(t;q)) — o 1 (t; —i—ZquB(t)/t
>b1(q) —e—cppefi (Wit q)) — e el 1rnsup<yz q)) 01i1 O7iu

—+oo i=1
JAVS
A q

1— 1
= bl(q) — &€ C111q C?1u<91(t; Q)> ClZlq C?Zu

1
+ Z o Yol Bi(t)/t
i=1

A1(q)
1 1
Cmq 1q1u A(q) — &€ C111 Cllu (y1(t; q)) +Z“hl Ghu t)/t.

By virtue of (ii) in Lemma 2.1 and the arbitrariness of ¢, one can observe that

Ai(q)
Alq)’

In the same way, substituting (2.9) and (2.17) into (2.11), we obtain

A
lim inf(ya(t; q)) > AZ(((;‘)),

1€§‘${.§<91(t; q)) = a.s..

Then the desired assertion (2.7) follows. O
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3. Stationary distribution

In this section, we will consider the existence of a unique stationary distribution of model (1.3), i.e.,
to prove that there is a probability measure v with support R% such that for any initial data € T, the
transition probability p(t,n,-; q) of y(t; q) converges weakly to v as t — +oo (see e.g. [18]). To this end,
we introduce a technical assumption.

. 1— 1— 1— 1—
Assumption 3.1. cip ety > o fegy, e ey, > epp el
Remark 3.2. Clearly, under Assumption 3.1, we have A(q) > 0 and Remark 2.4.

Theorem 3.3. Let Assumption 3.1 holds.
(@) If A1(q) > 0and Ax(q) > O, then the distribution of y(t; q) weakly converges to a unique distribution v which

is ergodic:
||, eviden dezia) = tim ey = F, =12 1)
R2 A(q)
(b) If A1(q)A2(q) < O, then model (1.3) does not have a stationary distribution.
Proof. (a). The proof is divided into three parts.
Part 1. In this part, let us prove
Jim Eys(t i)~ wi 1) | =0, =12, 62)

where y(t; q;m) and y(t; ;) are any two solutions of (1.3) with initial values n(0) € T and P(0) € T
respectively. Define

2

V(tq) =)

i=1

Yals; q;n) —ya(s; q; ) |ds

t
Inyi(t; ;) —lnyi(t;q;ll))‘ +C%2_lqc?2uj g
t=ry Ty

t
1—q .q
+Co1 Co1n L

yil(s; q;m) —yals; q; ) |ds
7T;l ngu

According to It0’s formula, one can see that
dv(t;q) = sgﬂ(yl(t; 4;n) —yi(t; Cl}ll))> [ —cnfefhy (yl(t; a;n) — vt qﬂb))
— ey (yz <t—Tth?u; qm) —yz(t—ﬁlqﬁh; q;lb))] dt
+sgn (yz(t; q;n) —y2(t; q;ll))) { — ool (yl (t — 9Tl qm)
—VY1 <t —y g q;ll’)) — e (yz(t; qa;n) —ya(t; Q;IP))} dt

+Z Z Cl]lqcl]u

i= 1) 1]751

1-q,.
Sy i e

i= 1) 1,j#1

1—q q
Zcul uu

yj(tq;m) — Uj(t}q}lb)'dt

Yj <t 9 s g; n> —Y; <t—'rh_q'ciqu; q;tb)'dt

yiltq;m) — yi(t;q;ll))'dt
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1 1— 1— )
+Z Z cined, v (t—Tu qT?u;qm> —yj <t_Tu Il qAI)) ‘dt

i= 1) 1]7é1

+Z Z cipded, yj(t;q;n)—yj(t;q;tb)'dt

i=1j=1,j#i

2 2
1— 1— cq-
Y Y ehteuu (o) u (- ) ac
j=1j#1

1j=1j#i

‘L
{C et — Cznqczlu] yi(t; g;n) — Ul(t}q}lb)‘dt

e, — Clzlqclzu] Y2(t; q;m) —y2(t; qill))’dt-

Hence

yil(s; ;) —yils; q; ) |ds

t
E(V(t;q)) < V(0) - [chﬂc?lu —o’ 0314 L E

Ya(s; q;m) —yals; q; ) |ds

t
1—
- [szlq Chu — C1.21q C?Zu:| L E
It then follows from V(t; q) > 0 that

yil(s; q;m) —yals; q; ) |ds

t
1-q.q _ .1—q_.q
[Cm C11u ~ Co11 Co1u . E

Ya(s; ;1) —yals; q; ) |ds < V(0) < oo.

t
1—-q_q 1—q_.q
+ [CZZL Conu — €121 Crou . E
Thereby,

Elyi(t, g;m) —vilt; q; )| € Ll[O,oo), i=1,2.

According to model (1.3), one obtains
t
E(yi(t;q)) = yi(0) +JO [r; i E(yi(s; ) — el fefl E(ul(si )

Ci)lq o E (yl(s q)y]< T qrf'u,q)ﬂ ds, i,j=1,2, j #1i.
That is to say, [E(yi(t; q)) is continuously differentiable. In addition, by virtue of (2.2),

dE(yi(t;q)) _

dt rll LT 1u E(yl(t q)) < K1, i=1,2,

where K; is a positive constant. Therefore, E(yi(t; q)) is uniformly continuous. An application of Bar-
balat’s conclusion [2] leads to the required assertion (3.2).

Part 2. In this part let us prove that there is a unique probability measure v with support R? such that
for any initial datan € T, the transition probability p(t,n,-; q) of y(t; q) converges weakly to v as t — +oo0.

Denote by P(t,1m, A; q) the probability of y(t; q;n) € A. According to (2.2) and Chebyshev’s inequality,
one can observe that the family of {p(t,n,-; q)} is tight. Let IP(T’; q) be all the probability measures on T.
For all Py, P, € IP, define

Dy (P, P2) = sup
heH

J ()Pl(dx)—J R(x)Pa(dx)|,
R% RZ



X. He, M. Liu, J. Nonlinear Sci. Appl., 10 (2017), 47764788 4785

where
H= {h: r— lR‘Ih(x) —h(z) < |Ix =z, ()] < 1}.

Foranyhe Hand t, s >0,

Eh(y(t+s;q;m)) — Eh(y(t; q;n))‘ = ‘JE [IE (h(y(t+ s; qm))l%)] —Eh(y(t; q;n))'

LRZ Eh(y(t; q; &£))p(s,m, d&) — Eh(y(t; q;n))‘

gJ
RZ

+

Eh(y(t; q;&)) — Eh(y(t; q;n))‘P(s,n, dé; q).
It then follows from (3.2) that there is a T such that for t > T,

sup
heH

Eh(y(t;q;£)) —Eh(y(t;q;n))‘ <e.

In other words,

Eh(y(t+s; i) — ER(y(t; q;n))’ <e.

An application of the arbitrariness of h yields

sup
heH

Eh(y(t+s;q;m)) —Eh(y(t; q;n))’ < €.

Consequently,

Dy (P(t+s,n,-;q),P(t,n,';q)> <e Vt>T,s>0.

Namely, {p(t,A,-;q) : t > 0} is Cauchy in P, where A = A(6) = (0.2, 0.2)T, 8 € [—1,0]. That is to say there
is a unique v(-; q) € IP(T') such that

hm DH <p(t/)\/ ';q)ry(';q)> :0

t——+o0
By (3.2),
t—+o0
Thereby

tim D (plen 50, v65a)) < tim D (pltnsalp(eAsa) )+ tim Du(pltA 50, v(a)) =0

t—+o00 t——+o0

According to (iii) in Theorem 2.5, then we obtain the desired assertion.

Part 3. In this part, let us prove v is ergodic and (3.1) holds. According to the uniqueness of v and
Corollary 3.4.3 in [5], we can obtain that v(-) is strong mixing. Hence Theorem 3.2.6 in [5] means v(-) is
ergodic. An application of (3.3.2) in [5] gives

t
tim +1 | ilsialds = | | ecvides diaia), =12

t—o00 0

This together with (2.7) means (3.1).

(b). Note that A1(q)A2(q) < 0, without loss of generality, we suppose that A;(q) < 0, Ax(q) > 0. Accord-
ing to (ii) in Theorem 2.5, the species 1 goes to extinction. Hence model (1.3) does not have a stationary
distribution. O
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4. Numerical simulations, discussions, and conclusions

In this paper, we proposed and studied a two-species delay stochastic competition model with im-
precise parameters. Our main results are Theorem 2.5 and Theorem 3.3. Theorem 2.5 establishes the
threshold between persistence and extinction for each species. Theorem 3.3 gives the sharp sufficient
criteria for the existence of a unique ergodic stationary distribution of the model. To the best of our
knowledge, this paper is the first attempt to study stochastic delay population models with imprecise
parameters.

Our results show that the imprecise parameters have close relationships with the persistence, extinc-
tion and the existence of stationary distribution of the model. To see these more clearly, let us consider
the following example (in the following example and simulations, the values of parameters are chosen
hypothetically). We choose 111 = 0.2, 11, = 0.3, 751 = 0.15, 12, = 0.2, c111 = 04, ¢34 = 0.5, 121 = 0.1,
Ciou = 0.2, Co1l = 0.2, Colu = 0.3, Coxo1 = 0.3, Coou = 0.4, 0-%11 = 0.1, O‘%lu = 0.2, 01j1 = O1ju = 0, ] = 2, ...n,
03, = 0.2, 03,, = 0.1, o2x1 = 02k, =0, k =1,3,...,m, Ty = Ty =5, T1y = Tou = 6. Hence Assumption
3.1 holds. The only difference between the conditions of Figs. 1 and 2 is that the value of q is different.

(A) In Fig. 1, we choose q = 0.8, then A;(0.8) = 0.0503 > 0 and A;(0.8) = 0.0054 > 0. According to
(@) in Theorem 3.3, both y; and y, are persistent and the model has a unique ergodic stationary
distribution v and:

. 1(0.8)
‘ki&VM&AﬁLQ& Him (y1(4,08)) = Aos) — 7%
‘[ £2v(dEs, dEg;0.8) = lim (ya(t;08)) = 22008) _ ) hu04

RR2 (0.8)

Fig. 1 (a) is a sample path of the model and Fig. 1 (b) is the distribution of the solution at t = 8000
(see e.g., [4]).

(B) In Fig. 2, we choose q = 0.5, then A;(0.5) > 0 and A3(0.5) = —0.0037 < 0. It then follows from (b) in
Theorem 3.3 that y, goes to extinction and y; is persistent:

b1(05
lim (u1(6:05)) = 102 _ 3873
torbeo CIMCiu

And hence the model does not have a stationary distribution.

Comparing Figs. 1 and 2 we can see that the imprecise parameters have close relationships with the
persistence, extinction and the existence of stationary distribution of the model. In fact, in the above
example, if q > ]nl 5, then the model has a unique ergodic stationary distribution; if q < 1“% g, then the
model does not have a stationary distribution.

Some topics deserve further consideration. Firstly, it is interesting to study some more realistic but
more complex systems, for example, reaction diffusion ([1]). Secondly, it is interesting to investigate food-
chain models or cooperation models [11, 27]. Thirdly, in this paper we only consider the two-species
model. It is of interest to investigate the n-species model. In fact, we also attempt to investigate this
problem. However, we can not establish the critical values between persistence and extinction for each
species at present stage. Finally, it is useful to study what happens if Assumption 2.3 is not satisfied. In
this case, A1(q) > 0 and Ay(q) > 0 will not hold simultaneously. Similar to the proof of Theorem 2.5, we
can show that

(") if A1(q) > 0 and Ay(q) < 0, then (i) in Theorem 2.5 holds;
(ii") if A1(q) < 0 and Az(q) > 0, then (ii) in Theorem 2.5 holds.

However, what happens if A1(q) < 0 and Ay(q) < 0 are still unknown. We leave all of these for future
work.
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Figure 1: Model (1.3) with q = 0.8, 11} = 0.2, 71y, = 0.3, 151 = 0.15, 19y, = 0.2, c111 = 04, ¢33, = 0.5, ¢ = 0.1, c1py, = 0.2,
con = 0.2, ¢y = 03, copp = 0.3, cooy = 0.4, 0% = 0.1, 02, = 02, 0951 = 045y = 0, j = 2,...,m, 035, = 0.2, 03,, = 0.1,
Okl = 0oy =0, k=1,3,...,M, T1y = To1 =5, T1u = Tou = 6, P1(0) = 0.38+0.05sin 0, P»(0) = 0.05+0.03sin 6, 6 € [—6,0]. (a)
is a sample path; (b) is the distribution of the solution at t = 8000.

0.45

0.4

0.35

—

0.3}

¥,(H)

0.25} —— 'Ly, (5)ds|]

0.2
0.15

0.1}

" L

0 .
0 500

1000 1500

Time

2000
Figure 2: Model (1.3) with q = 0.5, other parameters are the same with those in Fig. 1.
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