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Abstract

This paper is concerned with a two-species delay stochastic competition model with imprecise parameters. We first obtain
the thresholds between persistence and extinction for each species. Then we establish sharp sufficient criteria for the existence
of a unique ergodic stationary distribution of the model. The effects of imprecise parameters on the persistence, extinction and
existence of the stationary distribution are revealed. Finally, we work out some numerical simulations to illustrate the theoretical
results. c©2017 All rights reserved.
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1. Introduction

Competition is a common phenomenon in the natural world. On the other hand, time delay and
stochastic perturbations should not be neglected (see, e.g., [3, 6, 19]). Therefore, it is interesting and
important to study stochastic competition models with delay. A classical delay stochastic competition
model can be expressed as follows:


dy1(t) = y1(t)

[
r1 − c11y1(t) − c12y2(t− τ1)

]
dt+ σ1y1(t)dB1(t),

dy2(t) = y2(t)

[
r2 − c21y1(t− τ2) − c22y2(t)

]
dt+ σ2y2(t)dB2(t),

(1.1)

with initial value:

y(θ) = (y1(θ),y2(θ))
T = (η1(θ),η2(θ))

T ∈ Γ , (1.2)

where for i, j = 1, 2, j 6= i, parameters are shown in Table 1.
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Table 1: Parameters
yi(t) Population size of the ith species
ri > 0 Intrinsic growth rate of the ith species
cii > 0 Intra-specific competition rate of the ith species
cij > 0 Inter-specific competition rate between the species i and j
σ2
i Intensity of the white noise
τi > 0 Time delay
(B1(t),B2(t))

T A standard Brownian motion defined on a complete probability space
(Ω,F, {Ft}t>0, P) with a filtration {Ft}t>0.

Γ The family of all bounded and continuous functions from [−τ, 0] to
R2

+ = {y = (y1,y2)
T ∈ R2|yi > 0, i = 1, 2}, τ = max{τ1, τ2}.

In recent years, model (1.1) and its various generalized forms have been studied extensively, for ex-
ample, persistence and extinction of model (1.1) were considered in [16]; stability in distribution of model
(1.1) was exploited in [13, 15]; optimal control of model (1.1) with harvesting was investigated in [10, 12];
model (1.1) with Lévy jumps was analyzed in [14].

Model (1.1) supposes that all the parameters in the model are precisely known. However, in reality
the values of all parameters can not always be known precisely due to the lack of data and mistakes
in the measurement process ([21, 25]). Some authors ([20–26]) have claimed that models with imprecise
parameters are more realistic. Therefore it is important to consider stochastic delay competition models
with imprecise parameters and to reveal the impact of imprecise parameters on the dynamics of the
models. However, to the best of our knowledge, no results of this aspect have been reported.

Motivated by these, in this paper we consider the following delay stochastic competition model with
interval coefficients:

dy1(t) = y1(t)

[
r̂1 − ĉ11y1(t) − ĉ12y2(t− τ̂1)

]
dt+

n∑
i=1

σ̂1iy1(t)dBi(t),

dy2(t) = y2(t)

[
r̂2 − ĉ21y1(t− τ̂2) − ĉ22y2(t)

]
dt+

n∑
i=1

σ̂2iy2(t)dBi(t),

with initial condition (1.2). Here, (B1(t), . . . ,Bn(t))T is an n-dimensional Brownian motion defined on the
probability space (Ω,F, {Ft}t>0, P); â means the interval counterpart of a, i.e., â = [al,au] = {x ∈ R|al 6
x 6 au}. For biological reasons, in this paper we suppose that ril > 0, cijl > 0, τil > 0, i, j = 1, 2. For any
x ∈ [al,au], there is a q ∈ [0, 1] such that x = a1−q

l a
q
u. Hence we shall consider the following model:

dy1(t;q) = y1(t;q)
[
r

1−q
1l r

q
1u − c1−q

11l c
q
11uy1(t;q) − c

1−q
12l c

q
12uy2

(
t− τ1−q

1l τ
q
1u;q

)]
dt

+

n∑
i=1

σ
1−q
1il σ

q
1iuy1(t;q)dBi(t),

dy2(t;q) = y2(t;q)
[
r

1−q
1l r

q
1u − c1−q

21l c
q
21uy1

(
t− τ1−q

2l τ
q
2u;q

)
− c1−q

22l c
q
22uy2(t;q)

]
dt

+

n∑
i=1

σ
1−q
2il σ

q
2iuy2(t;q)dBi(t),

(1.3)

with initial condition (1.2). Clearly, model (1.3) contains the cases that the random noises are correlated
or independent.

Remark 1.1. In this paper, we consider the Itô integral instead of Stratonovich integral because model (1.3)
is an approximation to age-structured populations ([3]).
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The rest of this paper is organized as follows. In Section 2 we establish the critical value between
persistence and extinction for each species. In Section 3 we obtain sharp sufficient criteria for the existence
of a unique ergodic stationary distribution of the model. In Section 4 we discuss the effects of imprecise
parameters on the persistence, extinction and existence of the stationary distribution of the model with
the help of several numerical simulations, and give some concluding remarks.

2. Persistence and extinction

For the sake of convenience, we define some notations:

〈f(t)〉 = t−1
∫t

0
f(s)ds, bi(q) = r

1−q
il r

q
iu −

n∑
k=1

σ
2(1−q)
ikl σ

2q
iku/2, i = 1, 2,

∆(q) = c1−q
11l c

q
11uc

1−q
22l c

q
22u − c1−q

12l c
q
12uc

1−q
21l c

q
21u,

∆1(q) = b1(q)c
1−q
22l c

q
22u − b2(q)c

1−q
12l c

q
12u, ∆2(q) = b2(q)c

1−q
11l c

q
11u − b1(q)c

1−q
21l c

q
21u.

To begin with, let us prepare several lemmas.

Lemma 2.1 ([17]). Let ρ(t) ∈ C(Ω× [0,+∞), R+).

(i) If there are two positive constants T and β0 such that for all t > T ,

ln ρ(t) 6 βt−β0

∫t
0
ρ(s)ds+

n∑
i=1

αiBi(t),

where αi, i = 1, . . . ,n are constants, then
lim sup
t→+∞ 〈ρ(t)〉 6 β/β0, a.s. (almost surely), if β > 0;

lim
t→+∞ ρ(t) = 0, a.s., if β < 0,

(ii) If there are three positive constants T , β, and β0 such that for all t > T ,

ln ρ(t) > βt−β0

∫t
0
ρ(s)ds+

n∑
i=1

αiBi(t),

then
lim inf
t→+∞ 〈ρ(t)〉 > β/β0, a.s..

Lemma 2.2. For any given initial value η(θ) ∈ Γ , model (1.3) has a unique global positive solution y(t;q) =
(y1(t;q),y2(t;q)) on t > 0 a.s., and

lim sup
t→+∞

lnyi(t;q)
ln t

6 1, a.s., i = 1, 2. (2.1)

In addition, for all p > 0, there is a positive constant K(p) such that

lim sup
t→∞ E

[
y
p
i (t;q)

]
6 K(p), i = 1, 2. (2.2)

Proof. Clearly, the coefficients of model (1.3) are locally Lipschitz continuous; hence for any given initial
condition η(θ) ∈ Γ , model (1.3) has a unique local solution y(t;q) for t ∈ [0, τe), where τe represents the
explosion time. For any t ∈ [0, τe),
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y1(t;q) = y1(0) exp
{∫t

0

(
b1(q) − c

1−q
11l c

q
11uy1(s;q) − c

1−q
12l c

q
12uy2

(
s− τ1−q

1l τ
q
1u;q

))
ds

+

n∑
i=1

∫t
0
σ

1−q
1il σ

q
1iuy1(s;q)dBi(s)

}
,

y2(t;q) = y2(0) exp
{∫t

0

(
b2(q) − c

1−q
21l c

q
21uy1

(
s− τ1−q

2l τ
q
2u;q

)
− c1−q

22l c
q
22uy2(s;q)

)
ds

+

n∑
i=1

∫t
0
σ

1−q
2il σ

q
2iuy2(s;q)dBi(s)

}
.

Therefore, yi(t;q) > 0 for t ∈ [0, τe), i = 1, 2. Now let us prove τe = +∞. To this end, we consider the
following auxiliary equations:

dxi(t;q) = xi(t;q)
[
r

1−q
il r

q
iu − c1−q

iil c
q
iiuxi(t;q)

]
dt+

n∑
k=1

σ
1−q
ikl σ

q
ikuxi(t;q)dBk(t), i = 1, 2, (2.3)

dzj(t;q) = zj(t;q)
[
r

1−q
jl r

q
ju − c1−q

jjl c
q
jjuzj(t;q) − c

1−q
jil c

q
jiuxi

(
t− τ1−q

jl τ
q
ju;q

)]
dt

+

n∑
k=1

σ
1−q
jkl σ

q
jkuzj(t;q)dBk(t), j = 1, 2, j 6= i,

(2.4)

with initial data x(θ) = z(θ) = y(θ). According to the comparison theorem [7], we have

zi(t;q) 6 yi(t;q) 6 xi(t;q), t ∈ [0, τe), i = 1, 2. (2.5)

On the other hand, according to [8], the explicit solutions of equations (2.3) and (2.4) can be expressed as
follows:

xi(t;q) =
exp{bi(p)t+

∑n
k=1 σ

1−q
ikl σ

q
ikuBk(t)}

x−1
i (0) + c1−q

iil c
q
iiu

∫t
0 exp{bi(p)s+

∑n
k=1 σ

1−q
ikl σ

q
ikuBk(s)}ds

, i = 1, 2,

zi(t;q) =
exp{bi(p)t− c

1−q
ijl c

q
iju

∫t
0 xj(s− τ

1−q
il τ

q
iu;q)ds+

∑n
k=1 σ

1−q
ikl σ

q
ikuBk(t)}

z−1
i (0) + c1−q

iil c
q
iiu

∫t
0 exp{bi(p)s− c

1−q
ijl c

q
iju

∫s
0 xj(µ− τ

1−q
il τ

q
iu;q)dµ+

∑n
k=1 σ

1−q
ikl σ

q
ikuBk(s)}ds

, j 6= i.

Note that xi(t;q) > 0 and zi(t;q) > 0 exist on [0,+∞), hence τe = +∞.
Now let us show (2.1) and (2.2). In fact, according to the results in [9],

lim sup
t→+∞

ln xi(t;q)
ln t

6 1, a.s., i = 1, 2,

and for all p > 0, there is a positive constant K(p) such that

lim sup
t→∞ E

[
x
p
i (t;q)

]
6 K(p), i = 1, 2.

Hence the desired assertions (2.1) and (2.2) follow from (2.5).

The aim of this section is to study the persistence and extinction of model (1.3). If bi(q) < 0, then the
species i in model (1.3) goes to extinction, i.e., lim

t→+∞yi(t;q) = 0, a.s., i = 1, 2 (the proof is standard and

hence is omitted (see, e.g. [17]). Hence from now on, we always suppose that b1(q) > 0 and b2(q) > 0.
Besides, we also suppose the following.

Assumption 2.3. ∆(q) > 0, that is to say, the intra-specific competition is stronger than the inter-specific
competition.
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Remark 2.4. If ∆(q) > 0, it is easy to show that ∆1(q) < 0 and ∆2(q) < 0 will not hold simultaneously.
Now we are in the position to state and prove our first main result.

Theorem 2.5. Suppose that b1(q) > 0, b2(q) > 0 and Assumption 2.3 holds.

(i) If ∆1(q) > 0 and ∆2(q) < 0, then y2 goes to extinction a.s. and y1 is persistent in the mean a.s.:

lim
t→+∞ t−1

∫t
0
y1(s;q)ds =

b1(q)

c
1−q
11l c

q
11u

, a.s.; (2.6)

(ii) If ∆1(q) < 0 and ∆2(q) > 0, then y1 goes to extinction a.s. and y2 is persistent in the mean a.s.:

lim
t→+∞ t−1

∫t
0
y2(s;q)ds =

b2(q)

c
1−q
22l c

q
22u

, a.s.;

(iii) If ∆1(q) > 0 and ∆2(q) > 0, then both y1 and y2 are persistent in the mean a.s.:

lim
t→+∞ t−1

∫t
0
y1(s;q)ds =

∆1(q)

∆(q)
, lim
t→+∞ t−1

∫t
0
y2(s;q)ds =

∆2(q)

∆(q)
, a.s.. (2.7)

Proof. Applying Itô’s formula to (2.3) yields

ln xi(t;q) − ln xi(0) = bi(q)t− c
1−q
iil c

q
iiu

∫t
0
xi(s;q)ds+

n∑
k=1

σ
1−q
ikl σ

q
ikuBk(t), i = 1, 2.

Note that bi(q) > 0, it then follows from Lemma 2.1 that

bi(q)

c
1−q
iil c

q
iiu

6 lim inf
t→+∞ 〈xi(t;q)〉 6 lim sup

t→+∞ 〈xi(t;q)〉 6
bi(q)

c
1−q
iil c

q
iiu

, a.s., i = 1, 2.

Therefore

lim
t→+∞〈xi(t;q)〉 = lim

t→+∞ t−1
∫t

0
xi(s;q)ds =

bi(q)

c
1−q
iil c

q
iiu

, a.s., i = 1, 2. (2.8)

Consequently,

lim
t→+∞ t−1

∫t
t−τ1−q

jl τ
q
ju

xi(s;q)ds = lim
t→+∞ t−1

[ ∫t
0
xi(s;q)ds−

∫t−τ1−q
jl τ

q
ju

0
xi(s;q)ds

]
=

bi(q)

c
1−q
iil c

q
iiu

−
bi(q)

c
1−q
iil c

q
iiu

= 0, a.s., i, j = 1, 2, j 6= i.

In light of (2.5), we have

lim
t→+∞ t−1

∫t
t−τ1−q

jl τ
q
ju

yi(s;q)ds = 0, a.s., i, j = 1, 2, j 6= i. (2.9)

Applying Itô’s formula to (1.3) yields

lny1(t;q) − lny1(0)

= b1(q)t− c
1−q
11l c

q
11u

∫t
0
y1(s;q)ds− c

1−q
12l c

q
12u

∫t
0
y2

(
s− τ1−q

1l τ
q
1u;q

)
ds+

n∑
i=1

σ
1−q
1il σ

q
1iuBi(t)

= b1(q)t− c
1−q
12l c

q
12u

∫t
0
y2(s;q)ds+ c

1−q
12l c

q
12u

[ ∫t
t−τ1−q

1l τ
q
1u

y2(s;q)ds−
∫ 0

−τ1−q
1l τ

q
1u

y2(s;q)ds
]

− c1−q
11l c

q
11u

∫t
0
y1(s;q)ds+

n∑
i=1

σ
1−q
1il σ

q
1iuBi(t).

(2.10)
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lny2(t;q) − lny2(0)

= b2(q)t− c
1−q
21l c

q
21u

∫t
0
y1

(
s− τ1−q

2l τ
q
2u;q

)
ds− c1−q

22l c
q
22u

∫t
0
y2(s;q)ds+

n∑
i=1

σ
1−q
2il σ

q
2iuBi(t)

= b2(q)t− c
1−q
21l c

q
21u

∫t
0
y1(s;q)ds+ c

1−q
21l c

q
21u

[ ∫t
t−τ1−q

2l τ
q
2u

y1(s;q)ds−
∫ 0

−τ1−q
2l τ

q
2u

y1(s;q)ds
]

− c1−q
22l c

q
22u

∫t
0
y2(s;q)ds+

n∑
i=1

σ
1−q
2il σ

q
2iuBi(t).

(2.11)

Computing (2.11)×c1−q
11l c

q
11u−(2.10)×c1−q

21l c
q
21u, we can see that

c
1−q
11l c

q
11u ln

y2(t;q)
y2(0)

= c1−q
11l c

q
11uc

1−q
21l c

q
21u

[ ∫t
t−τ1−q

2l τ
q
2u

y1(s;q)ds−
∫ 0

−τ1−q
2l τ

q
2u

y1(s;q)ds
]

− c1−q
21l c

q
21uc

1−q
12l c

q
12u

[ ∫t
t−τ1−q

1l τ
q
1u

y2(s;q)ds−
∫ 0

−τ1−q
1l τ

q
1u

y2(s;q)ds
]

+ c1−q
21l c

q
21u ln

x1(t;q)
x1(0)

+∆2(q)t−∆(q)

∫t
0
y2(s;q)ds

− c1−q
21l c

q
21u

n∑
i=1

σ
1−q
1il σ

q
1iuBi(t) + c

1−q
11l c

q
11u

n∑
i=1

σ
1−q
2il σ

q
2iuBi(t).

(2.12)

According to (2.1) and (2.9), for arbitrary ε > 0, there exists a T > 0 such that for t > T ,

t−1c
1−q
21l c

q
21u ln

y1(t;q)
y1(0)

6 ε/4,

t−1c
1−q
11l c

q
11u lny2(0) 6 ε/4,

t−1c
1−q
11l c

q
11uc

1−q
21l c

q
21u

[ ∫t
t−τ1−q

2l τ
q
2u

y1(s;q)ds−
∫ 0

−τ1−q
2l τ

q
2u

y1(s;q)ds
]
6 ε/4,

− t−1c
1−q
21l c

q
21uc

1−q
12l c

q
12u

[ ∫t
t−τ1−q

1l τ
q
1u

y2(s;q)ds−
∫ 0

−τ1−q
1l τ

q
1u

y2(s;q)ds
]
6 ε/4.

When the above inequalities are used in (2.12), we can see that for t > T ,

c
1−q
11l c

q
11u lny2(t;q) 6 (∆2(q) + ε)t−∆(q)

∫t
0
y2(s;q)ds

− c1−q
21l c

q
21u

n∑
i=1

σ
1−q
1il σ

q
1iuBi(t) + c

1−q
11l c

q
11u

n∑
i=1

σ
1−q
2il σ

q
2iuBi(t).

(2.13)

Similarly, computing (2.10)×c1−q
22l c

q
22u−(2.11)×c1−q

12l c
q
12u results in

c
1−q
22l c

q
22u ln

y1(t;q)
y1(0)

= c1−q
22l c

q
22uc

1−q
12l c

q
12u

[ ∫t
t−τ1−q

1l τ
q
1u

y2(s;q)ds−
∫ 0

−τ1−q
1l τ

q
1u

y2(s;q)ds
]

− c1−q
12l c

q
12uc

1−q
21l c

q
21u

[ ∫t
t−τ1−q

2l τ
q
2u

y1(s;q)ds−
∫ 0

−τ1−q
2l τ

q
2u

y1(s;q)ds
]

+ c1−q
12l c

q
12u ln

y2(t;q)
y2(0)

+∆1(q)t−∆(q)

∫t
0
y1(s;q)ds

+ c1−q
22l c

q
22u

n∑
i=1

σ
1−q
1il σ

q
1iuBi(t) − c

1−q
12l c

q
12u

n∑
i=1

σ
1−q
2il σ

q
2iuBi(t).

(2.14)
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Similar to (2.13), by virtue of (2.14) we can observe that for t > T ,

c
1−q
22l c

q
22u lny1(t;q) 6 (∆1(q) + ε)t−∆(q)

∫t
0
y1(s;q)ds

+ c1−q
22l c

q
22u

n∑
i=1

σ
1−q
1il σ

q
1iuBi(t) − c

1−q
12l c

q
12u

n∑
i=1

σ
1−q
2il σ

q
2iuBi(t).

(2.15)

(i). Since ∆2(q) < 0, then we can choose ε sufficiently small such that ∆2(q)+ ε < 0. Applying (i) in Lemma
2.1 to (2.13) gives lim

t→+∞y2(t;q) = 0, a.s.. The proof of (2.6) is similar to that of (2.8) and hence is omitted.

The proof of (ii) is similar to that of (i) and we also omit it.
Now we are in the position to prove (iii). Note that ∆2(q) > 0, according to (2.13) and Lemma 2.1, we

obtain

lim sup
t→+∞ 〈y2(t;q)〉 6

∆2(q) + ε

∆(q)
, a.s..

As an application of the arbitrariness of ε, one can observe that

lim sup
t→+∞ 〈y2(t;q)〉 6

∆2(q)

∆(q)
, a.s.. (2.16)

In the same way, by (2.15), Lemma 2.1, and the arbitrariness of ε, we have

lim sup
t→+∞ 〈y1(t;q)〉 6

∆1(q)

∆(q)
, a.s.. (2.17)

Let ε < c1−q
11l c

q
11u

∆1(q)
∆(q) . Substituting (2.9) and (2.16) into (2.10) results in that for sufficiently large t,

t−1 lny1(t;q) = t−1 lny1(0) + b1(q) − c
1−q
11l c

q
11u〈y1(t;q)〉− c1−q

12l c
q
12u〈y2(t;q)〉+

n∑
i=1

σ
1−q
1il σ

q
1iuBi(t)/t

+ c1−q
12l c

q
12ut

−1
[ ∫t
t−τ1−q

1l τ
q
1u

y2(s;q)ds−
∫ 0

−τ1−q
1l τ

q
1u

y2(s;q)ds
]

> b1(q) − ε− c
1−q
11l c

q
11u〈y1(t;q)〉− c1−q

12l c
q
12u lim sup

t→+∞ 〈y2(t;q)〉+
n∑
i=1

σ
1−q
1il σ

q
1iuBi(t)/t

> b1(q) − ε− c
1−q
11l c

q
11u〈y1(t;q)〉− c1−q

12l c
q
12u
∆2(q)

∆(q)
+

n∑
i=1

σ
1−q
1il σ

q
1iuBi(t)/t

= c1−q
11l c

q
11u
∆1(q)

∆(q)
− ε− c1−q

11l c
q
11u〈y1(t;q)〉+

n∑
i=1

σ
1−q
1il σ

q
1iuBi(t)/t.

By virtue of (ii) in Lemma 2.1 and the arbitrariness of ε, one can observe that

lim inf
t→+∞ 〈y1(t;q)〉 >

∆1(q)

∆(q)
, a.s..

In the same way, substituting (2.9) and (2.17) into (2.11), we obtain

lim inf
t→+∞ 〈y2(t;q)〉 >

∆2(q)

∆(q)
, a.s..

Then the desired assertion (2.7) follows.
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3. Stationary distribution

In this section, we will consider the existence of a unique stationary distribution of model (1.3), i.e.,
to prove that there is a probability measure ν with support R2

+ such that for any initial data η ∈ Γ , the
transition probability p(t,η, ·;q) of y(t;q) converges weakly to ν as t → +∞ (see e.g. [18]). To this end,
we introduce a technical assumption.

Assumption 3.1. c1−q
11l c

q
11u > c

1−q
21l c

q
21u, c1−q

22l c
q
22u > c

1−q
12l c

q
12u.

Remark 3.2. Clearly, under Assumption 3.1, we have ∆(q) > 0 and Remark 2.4.

Theorem 3.3. Let Assumption 3.1 holds.

(a) If ∆1(q) > 0 and ∆2(q) > 0, then the distribution of y(t;q) weakly converges to a unique distribution ν which
is ergodic: ∫

R2
+

ξiν(dξ1, dξ2;q) = lim
t→+∞〈yi(t;q)〉 = ∆i(q)

∆(q)
, i = 1, 2. (3.1)

(b) If ∆1(q)∆2(q) < 0, then model (1.3) does not have a stationary distribution.

Proof. (a). The proof is divided into three parts.

Part 1. In this part, let us prove

lim
t→∞E

∣∣∣∣yi(t;q;η) − yi(t;q;ψ)
∣∣∣∣ = 0, i = 1, 2, (3.2)

where y(t;q;η) and y(t;q;ψ) are any two solutions of (1.3) with initial values η(θ) ∈ Γ and ψ(θ) ∈ Γ ,
respectively. Define

V(t;q) =
2∑
i=1

∣∣∣∣ lnyi(t;q;η) − lnyi(t;q;ψ)
∣∣∣∣+ c1−q

12l c
q
12u

∫t
t−τ1−q

1l τ
q
1u

∣∣∣∣y2(s;q;η) − y2(s;q;ψ)
∣∣∣∣ds

+ c1−q
21l c

q
21u

∫t
t−τ1−q

2l τ
q
2u

∣∣∣∣y1(s;q;η) − y1(s;q;ψ)
∣∣∣∣ds.

According to Itô’s formula, one can see that

dV(t;q) = sgn
(
y1(t;q;η) − y1(t;q;ψ)

)[
− c1−q

11l c
q
11u

(
y1(t;q;η) − y1(t;q;ψ)

)
− c1−q

12l c
q
12u

(
y2

(
t− τ1−q

1l τ
q
1u;q;η

)
− y2

(
t− τ1−q

1l τ
q
1u;q;ψ

))]
dt

+ sgn
(
y2(t;q;η) − y2(t;q;ψ)

)[
− c1−q

21l c
q
21u

(
y1

(
t− τ1−q

2l τ
q
2u;q;η

)
− y1

(
t− τ1−q

2l τ
q
2u;q;ψ

))
− c1−q

22l c
q
22u

(
y2(t;q;η) − y2(t;q;ψ)

)]
dt

+

2∑
i=1

2∑
j=1,j6=i

c
1−q
ijl c

q
iju

∣∣∣∣yj(t;q;η) − yj(t;q;ψ)
∣∣∣∣dt

−

2∑
i=1

2∑
j=1,j6=i

c
1−q
ijl c

q
iju

∣∣∣∣yj(t− τ1−q
il τ

q
iu;q;η

)
− yj

(
t− τ1−q

il τ
q
iu;q;ψ

)∣∣∣∣dt
6 −

2∑
i=1

c
1−q
iil c

q
iiu

∣∣∣∣yi(t;q;η) − yi(t;q;ψ)
∣∣∣∣dt
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+

2∑
i=1

2∑
j=1,j6=i

c
1−q
ijl c

q
iju

∣∣∣∣yj(t− τ1−q
il τ

q
iu;q;η

)
− yj

(
t− τ1−q

il τ
q
iu;q;ψ

)∣∣∣∣dt
+

2∑
i=1

2∑
j=1,j6=i

c
1−q
ijl c

q
iju

∣∣∣∣yj(t;q;η) − yj(t;q;ψ)
∣∣∣∣dt

−

2∑
i=1

2∑
j=1,j6=i

c
1−q
ijl c

q
iju

∣∣∣∣yj(t− τ1−q
il τ

q
iu;q;η

)
− yj

(
t− τ1−q

il τ
q
iu;q;ψ

)∣∣∣∣dt
= −

[
c

1−q
11l c

q
11u − c1−q

21l c
q
21u

]∣∣∣∣y1(t;q;η) − y1(t;q;ψ)
∣∣∣∣dt

−

[
c

1−q
22l c

q
22u − c1−q

12l c
q
12u

]∣∣∣∣y2(t;q;η) − y2(t;q;ψ)
∣∣∣∣dt.

Hence

E(V(t;q)) 6 V(0) −
[
c

1−q
11l c

q
11u − c1−q

21l c
q
21u

] ∫t
0

E

∣∣∣∣y1(s;q;η) − y1(s;q;ψ)
∣∣∣∣ds

−

[
c

1−q
22l c

q
22u − c1−q

12l c
q
12u

] ∫t
0

E

∣∣∣∣y2(s;q;η) − y2(s;q;ψ)
∣∣∣∣ds.

It then follows from V(t;q) > 0 that[
c

1−q
11l c

q
11u − c1−q

21l c
q
21u

] ∫t
0

E

∣∣∣∣y1(s;q;η) − y1(s;q;ψ)
∣∣∣∣ds

+

[
c

1−q
22l c

q
22u − c1−q

12l c
q
12u

] ∫t
0

E

∣∣∣∣y2(s;q;η) − y2(s;q;ψ)
∣∣∣∣ds 6 V(0) <∞.

Thereby,

E

∣∣∣∣yi(t;q;η) − yi(t;q;ψ)
∣∣∣∣ ∈ L1[0,∞), i = 1, 2.

According to model (1.3), one obtains

E(yi(t;q)) = yi(0) +
∫t

0

[
r

1−q
il r

(q)
iu E(yi(s;q)) − c

1−q
iil c

q
iiuE(y2

i(s;q))

− c1−q
ijl c

q
ijuE

(
yi(s;q)yj

(
s− τ1−q

il τ
q
iu;q

))]
ds, i, j = 1, 2, j 6= i.

That is to say, E(yi(t;q)) is continuously differentiable. In addition, by virtue of (2.2),

dE(yi(t;q))
dt

6 r1−q
il r

(q)
iu E(yi(t;q)) 6 K1, i = 1, 2,

where K1 is a positive constant. Therefore, E(yi(t;q)) is uniformly continuous. An application of Bar-
balat’s conclusion [2] leads to the required assertion (3.2).

Part 2. In this part let us prove that there is a unique probability measure ν with support R2
+ such that

for any initial data η ∈ Γ , the transition probability p(t,η, ·;q) of y(t;q) converges weakly to ν as t→ +∞.
Denote by P(t,η,A;q) the probability of y(t;q;η) ∈ A. According to (2.2) and Chebyshev’s inequality,

one can observe that the family of {p(t,η, ·;q)} is tight. Let P(Γ ;q) be all the probability measures on Γ .
For all P1,P2 ∈ P, define

DH(P1,P2) = sup
h∈H

∣∣∣∣ ∫
R2

+

h(x)P1(dx) −

∫
R2

+

h(x)P2(dx)

∣∣∣∣,



X. He, M. Liu, J. Nonlinear Sci. Appl., 10 (2017), 4776–4788 4785

where

H =

{
h : Γ → R

∣∣∣∣|h(x) − h(z)| 6 ‖x− z‖, |h(·)| 6 1
}

.

For any h ∈ H and t, s > 0,∣∣∣∣Eh(y(t+ s;q;η)) − Eh(y(t;q;η))
∣∣∣∣ = ∣∣∣∣E[

E

(
h(y(t+ s;q;η))|Fs

)]
− Eh(y(t;q;η))

∣∣∣∣
=

∣∣∣∣ ∫
R2

+

Eh(y(t;q; ξ))p(s,η,dξ) − Eh(y(t;q;η))
∣∣∣∣

6
∫

R2
+

∣∣∣∣Eh(y(t;q; ξ)) − Eh(y(t;q;η))
∣∣∣∣p(s,η,dξ;q).

It then follows from (3.2) that there is a T such that for t > T ,

sup
h∈H

∣∣∣∣Eh(y(t;q; ξ)) − Eh(y(t;q;η))
∣∣∣∣ 6 ε.

In other words, ∣∣∣∣Eh(y(t+ s;q;η)) − Eh(y(t;q;η))
∣∣∣∣ 6 ε.

An application of the arbitrariness of h yields

sup
h∈H

∣∣∣∣Eh(y(t+ s;q;η)) − Eh(y(t;q;η))
∣∣∣∣ 6 ε.

Consequently,

DH

(
p(t+ s,η, ·;q),p(t,η, ·;q)

)
6 ε, ∀ t > T , s > 0.

Namely, {p(t, λ, ·;q) : t > 0} is Cauchy in P, where λ = λ(θ) ≡ (0.2, 0.2)T , θ ∈ [−τ, 0]. That is to say there
is a unique ν(·;q) ∈ P(Γ) such that

lim
t→+∞DH

(
p(t, λ, ·;q),ν(·;q)

)
= 0.

By (3.2),

lim
t→+∞DH

(
p(t,η, ·;q),p(t, λ, ·;q)

)
= 0.

Thereby

lim
t→+∞DH

(
p(t,η, ·;q),ν(·;q)

)
6 lim
t→+∞DH

(
p(t,η, ·;q),p(t, λ, ·;q)

)
+ lim
t→+∞DH

(
p(t, λ, ·;q),ν(·;q)

)
= 0.

According to (iii) in Theorem 2.5, then we obtain the desired assertion.

Part 3. In this part, let us prove ν is ergodic and (3.1) holds. According to the uniqueness of ν and
Corollary 3.4.3 in [5], we can obtain that ν(·) is strong mixing. Hence Theorem 3.2.6 in [5] means ν(·) is
ergodic. An application of (3.3.2) in [5] gives

lim
t→∞ t−1

∫t
0
yi(s;q)ds =

∫
R2

+

ξiν(dξ1,dξ2;q), i = 1, 2.

This together with (2.7) means (3.1).

(b). Note that ∆1(q)∆2(q) < 0, without loss of generality, we suppose that ∆1(q) < 0, ∆2(q) > 0. Accord-
ing to (ii) in Theorem 2.5, the species 1 goes to extinction. Hence model (1.3) does not have a stationary
distribution.
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4. Numerical simulations, discussions, and conclusions

In this paper, we proposed and studied a two-species delay stochastic competition model with im-
precise parameters. Our main results are Theorem 2.5 and Theorem 3.3. Theorem 2.5 establishes the
threshold between persistence and extinction for each species. Theorem 3.3 gives the sharp sufficient
criteria for the existence of a unique ergodic stationary distribution of the model. To the best of our
knowledge, this paper is the first attempt to study stochastic delay population models with imprecise
parameters.

Our results show that the imprecise parameters have close relationships with the persistence, extinc-
tion and the existence of stationary distribution of the model. To see these more clearly, let us consider
the following example (in the following example and simulations, the values of parameters are chosen
hypothetically). We choose r1l = 0.2, r1u = 0.3, r2l = 0.15, r2u = 0.2, c11l = 0.4, c11u = 0.5, c12l = 0.1,
c12u = 0.2, c21l = 0.2, c21u = 0.3, c22l = 0.3, c22u = 0.4, σ2

11l = 0.1, σ2
11u = 0.2, σ1jl = σ1ju = 0, j = 2, . . . ,n,

σ2
22l = 0.2, σ2

22u = 0.1, σ2kl = σ2ku = 0, k = 1, 3, . . . ,n, τ1l = τ2l = 5, τ1u = τ2u = 6. Hence Assumption
3.1 holds. The only difference between the conditions of Figs. 1 and 2 is that the value of q is different.

(A) In Fig. 1, we choose q = 0.8, then ∆1(0.8) = 0.0503 > 0 and ∆2(0.8) = 0.0054 > 0. According to
(a) in Theorem 3.3, both y1 and y2 are persistent and the model has a unique ergodic stationary
distribution ν and: ∫

R2
+

ξ1ν(dξ1, dξ2; 0.8) = lim
t→+∞〈y1(t; 0.8)〉 = ∆1(0.8)

∆(0.8)
= 0.3799,∫

R2
+

ξ2ν(dξ1, dξ2; 0.8) = lim
t→+∞〈y2(t; 0.8)〉 = ∆2(0.8)

∆(0.8)
= 0.0404.

Fig. 1 (a) is a sample path of the model and Fig. 1 (b) is the distribution of the solution at t = 8000
(see e.g., [4]).

(B) In Fig. 2, we choose q = 0.5, then ∆1(0.5) > 0 and ∆2(0.5) = −0.0037 < 0. It then follows from (b) in
Theorem 3.3 that y2 goes to extinction and y1 is persistent:

lim
t→+∞〈y1(t; 0.5)〉 = b1(0.5)

c0.5
11lc

0.5
11u

= 0.3873.

And hence the model does not have a stationary distribution.

Comparing Figs. 1 and 2 we can see that the imprecise parameters have close relationships with the
persistence, extinction, and the existence of stationary distribution of the model. In fact, in the above
example, if q > ln 1.8

ln 1.5 , then the model has a unique ergodic stationary distribution; if q < ln 1.8
ln 1.5 , then the

model does not have a stationary distribution.
Some topics deserve further consideration. Firstly, it is interesting to study some more realistic but

more complex systems, for example, reaction diffusion ([1]). Secondly, it is interesting to investigate food-
chain models or cooperation models [11, 27]. Thirdly, in this paper we only consider the two-species
model. It is of interest to investigate the n-species model. In fact, we also attempt to investigate this
problem. However, we can not establish the critical values between persistence and extinction for each
species at present stage. Finally, it is useful to study what happens if Assumption 2.3 is not satisfied. In
this case, ∆1(q) > 0 and ∆2(q) > 0 will not hold simultaneously. Similar to the proof of Theorem 2.5, we
can show that

(i’) if ∆1(q) > 0 and ∆2(q) < 0, then (i) in Theorem 2.5 holds;
(ii’) if ∆1(q) < 0 and ∆2(q) > 0, then (ii) in Theorem 2.5 holds.

However, what happens if ∆1(q) < 0 and ∆2(q) < 0 are still unknown. We leave all of these for future
work.
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Figure 1: Model (1.3) with q = 0.8, r1l = 0.2, r1u = 0.3, r2l = 0.15, r2u = 0.2, c11l = 0.4, c11u = 0.5, c12l = 0.1, c12u = 0.2,
c21l = 0.2, c21u = 0.3, c22l = 0.3, c22u = 0.4, σ2

11l = 0.1, σ2
11u = 0.2, σ1jl = σ1ju = 0, j = 2, . . . ,n, σ2

22l = 0.2, σ2
22u = 0.1,

σ2kl = σ2ku = 0, k = 1, 3, . . . ,n, τ1l = τ2l = 5, τ1u = τ2u = 6, ψ1(θ) = 0.38 + 0.05 sin θ, ψ2(θ) = 0.05 + 0.03 sin θ, θ ∈ [−6, 0]. (a)
is a sample path; (b) is the distribution of the solution at t = 8000.
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Figure 2: Model (1.3) with q = 0.5, other parameters are the same with those in Fig. 1.
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