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Abstract

In this paper, the uniqueness of solution for the cantilever beam equation with fully nonlinear term is obtained by using the
method of order reduction and the theory of linear operators. A simple comparison is given to show that the obtained results
provide the same results with weaker conditions. c©2017 All rights reserved.
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1. Introduction

In this paper we establish some new results on the uniqueness of solution for the fully fourth order
boundary value problem {

u(4)(t) = f(t,u(t),u ′(t),u ′′(t),u ′′′(t)), t ∈ [0, 1],
u(0) = u ′(0) = u ′′(1) = u ′′′(1) = 0.

(1.1)

Boundary value problem (1.1) models the deflection of the elastic beam fixed at left and freed at
right. In mechanics, this problem is called cantilever beam equation. Because of the wide applications in
mechanics, it has been studied extensively in recent years, see, for instance, [1–3, 6, 8–13] and references
therein. However, most of the known results in this area concentrate on the existence and multiplicity
of solutions or positive solutions of boundary value problem (1.1). To our knowledge, there are few
papers investigating the uniqueness results of boundary value problem (1.1). For some recent works on
the uniqueness result for boundary value problem, we refer the reader to [4, 5, 7, 14] and the references
therein. The objective of the present paper is to fill this gap.

By the method of order reduction and the theory of linear operators, we give some new result on
the uniqueness of solution for the fully fourth order boundary value problem (1.1) under the assumption
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that the nonlinearity is a Lipschitz continuous function. Then the obtained results is compared to those
ones obtained when the Banach’s contraction mapping principle is applied. The nonlinearity is shown
to satisfy weaker conditions. The interesting point is that the Lipschitz constant is related to the relevant
linear operators.

2. Main results

Let C[0, 1] denote the Banach space of real-valued continuous function with norm ‖x‖ = max
t∈[0,1]

|x(t)|.

Firstly, we use the method of order reduction to transform (1.1) to a nonlinear integral equation. To
do this, we let

(T3v)(t) =

∫ 1

t

v(s)ds, (2.1)

(T2v)(t) =

∫t
0
(T3v)(s)ds =

∫ 1

0
G2(t, s)v(s)ds, (2.2)

(T1v)(t) =

∫t
0
(T2v)(s)ds =

∫ 1

0
G1(t, s)v(s)ds, (2.3)

where

G2(t, s) =
{
t, 0 6 t 6 s 6 1,
s, 0 6 s 6 t 6 1, G1(t, s) =


t2

2
, 0 6 t 6 s 6 1,

2ts− s2

2
, 0 6 s 6 t 6 1.

From the above formulas, it follows that

(T1v)
′′′(t) = (T2v)

′′(t) = (T3v)
′(t) = −v(t), t ∈ [0, 1].

Thus by the above transformations Ti (i = 1, 2, 3), BVP (1.1) can be converted into a terminal value
problem

−v ′(t) = f(t, (T1v)(t), (T2v)(t), (T3v)(t),−v(t)), v(1) = 0,

which is rewritten to the equivalent nonlinear integral equation

v(t) =

∫ 1

t

f(s, (T1v)(s), (T2v)(s), (T3v)(s),−v(s))ds.

Define an operator A : C[0, 1]→ C[0, 1] by

(Av)(t) =

∫ 1

t

f(s, (T1v)(s), (T2v)(s), (T3v)(s),−v(s))ds, v ∈ C[0, 1].

Then the existence of solution of BVP (1.1) is equivalent to the existence of fixed point of A on C[0, 1].
Take u0(t) = 1 − t. By (2.3), we get

(T1u0)(t) =

∫t
0

2ts− s2

2
(1 − s)ds+

∫ 1

t

t2

2
(1 − s)ds =

t2

4
−
t3

6
+
t4

24
,

and ∫ 1

t

(T1u0)(s)ds =
1 − t3

12
−

1 − t4

24
+

1 − t5

120
=

1 − t

120
(6 + 6t+ 6t2 − 4t3 + t4).

After simple computation, we conclude that∫ 1

t

(T1u0)(s)ds 6
1
8
u0(t). (2.4)
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Analogously, from (2.1) and (2.2) we have

(T2u0)(t) =

∫t
0
s(1 − s)ds+

∫ 1

t

t(1 − s)ds =
t

2
−
t2

2
+
t3

6
,∫ 1

t

(T2u0)(s)ds =
1 − t2

4
−

1 − t3

6
+

1 − t4

24
6
u0(t)

6
, (2.5)

and ∫ 1

t

(T3u0)(s)ds =

∫ 1

t

(1 − s)2

2
ds =

(1 − t)3

6
6
u0(t)

6
. (2.6)

By use of (2.4), (2.5), and (2.6), we present the main result of this paper.

Theorem 2.1. Suppose that there exist four nonnegative constantsMi (i = 1, 2, 3, 4) with M1
8 +M2

6 +M3
6 +M4 <

1 such that

|f(t, x1, x2, x3, x4) − f(t,y1,y2,y3,y4)| 6
4∑
i=1

Mi|xi − yi|, xi,yi ∈ R.

Then the boundary value problem (1.1) has a unique solution.

Proof. According to the foregoing arguments, we only need to prove that A has a unique fixed point in
C[0, 1]. Let us introduce a linear operator T on C[0, 1] as

(Tv)(t) =

∫ 1

t

(M1(T1v)(s) +M2(T2v)(s) +M3(T3v)(s) +M4v(s))ds. (2.7)

As a first step, we show that for all v ∈ C[0, 1] with v(t) > 0 (t ∈ [0, 1]), there exists N = N(v) such that

(Tv)(t) 6 Nu0(t), t ∈ [0, 1]. (2.8)

In fact, we take N = M1‖T1v‖+M2‖T2v‖+M3‖T3v‖+M4‖v‖. Then by (2.7), we obtain that (Tv)(t) 6
Nu0(t), t ∈ [0, 1]. Moreover, it follows from (2.4), (2.5), and (2.6) that

(Tu0)(t) 6Mu0(t), (2.9)

where M = M1
8 + M2

6 + M3
6 +M4 < 1.

For any given v0 ∈ C[0, 1], let

vn(t) = (Avn−1)(t), wn(t) = |vn(t) − vn−1(t)|, n = 1, 2, . . . . (2.10)

Then for t ∈ [0, 1], we have

wn+1(t) = |vn+1(t) − vn(t)|

= |(Avn)(t) − (Avn−1)(t)|

6
∫ 1

t

|f(s, (T1vn)(s), (T2vn)(s), (T3vn)(s),−vn(s))

− f(s, (T1vn−1)(s), (T2vn−1)(s), (T3vn−1)(s),−vn−1(s))|ds

6
∫ 1

t

(M1T1(|vn − vn−1|)(s) +M2T2(|vn − vn−1|)(s)

+M3T3(|vn − vn−1|)(s) +M4|vn(s) − vn−1(s)|)ds = (T |vn − vn−1|)(t) = (Twn)(t).

By (2.8), (2.9), and the method of induction, there exists N = N(w1) such that

wn+1(t) 6 (Twn)(t) 6 · · · 6 (Tnw1)(t) 6 N(Tn−1u0)(t) 6 NM
n−1u0(t), t ∈ [0, 1].
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Thus for all m,n ∈N and t ∈ [0, 1],

|vn+m+1(t) − vn(t)| = |vn+m+1(t) − vn+m(t) + · · ·+ vn+1(t) − vn(t)|

6 wn+m+1(t) + · · ·+wn+1(t)

6 NMn+m−1u0(t) + · · ·+NMn−1u0(t)

=
NMn−1(1 −Mm+1)

1 −M
u0(t) <

NMn−1

1 −M
.

(2.11)

This shows that {vn} is a uniform Cauchy sequence in C[0, 1] and since C[0, 1] is complete there exists
v∗ ∈ C[0, 1] such that lim

n→∞ vn = v∗. Moreover, v∗ is a fixed point of A that follows from the continuity of
A.

Next we show that A has at most one fixed point. Suppose that there are two elements x,y ∈ C[0, 1]
with x = Ax and y = Ay. By (2.8), there exists N = N(|x− y|) such that

(T(|x− y|))(t) 6 Nu0(t), t ∈ [0, 1].

Then for n ∈N, we have

|x(t) − y(t)| = |(Anx)(t) − (Any)(t)| 6 (Tn(|x− y|))(t) 6 N(Tn−1u0)(t) 6 NM
n−1u0(t), t ∈ [0, 1].

Consequently, we assert that x = y. This means that A has at most one fixed point. This completes the
proof.

Remark 2.2. If v∗ is the unique fixed point of operator A, T1v
∗ is the unique solution of boundary value

problem (1.1). For any given v0 ∈ C[0, 1], the iterative sequence {T1vn} converges to T1v
∗ in C[0, 1], where

vn(t) is given by (2.10). Furthermore, it follows from (2.11) that the estimation on the convergence rate
can be described by

‖T1vn − T1v
∗‖ 6 max

t∈[0,1]

∫ 1

0
G1(t, s)ds‖vn − v∗‖ 6 NMn−1

3(1 −M)
.

The following uniqueness result for the boundary value problem (1.1) is obtained by the Banach’s
contraction mapping principle. A simple comparison shows that the former theorem provides the same
results with weaker conditions.

Theorem 2.3. Suppose that there exist four nonnegative constantsMi (i = 1, 2, 3, 4) with M1
8 +M2

3 +M3
2 +M4 <

1 such that

|f(t, x1, x2, x3, x4) − f(t,y1,y2,y3,y4)| 6
4∑
i=1

Mi|xi − yi|, xi,yi ∈ R.

Then the boundary value problem (1.1) has a unique solution.

Proof. Note that ∫ 1

t

∫ 1

0
G1(τ, s)dsdτ 6

∫ 1

0

∫ 1

0
G1(τ, s)dsdτ =

∫ 1

0
(
τ2

2
−
τ3

6
)dτ =

1
8

,∫ 1

t

∫ 1

0
G2(τ, s)dsdτ 6

∫ 1

0

∫ 1

0
G2(τ, s)dsdτ =

∫ 1

0
(τ−

τ2

2
)dτ =

1
3

,

and ∫ 1

t

∫ 1

τ

1dsdτ 6
∫ 1

0

∫ 1

τ

1dsdτ =
∫ 1

0
(1 − τ)dτ =

1
2

.
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Then for all u, v ∈ C[0, 1] and t ∈ [0, 1], we have

|(Au)(t) − (Av)(t)| 6M1

∫ 1

t

|(T1u)(s) − (T1v)(s)|ds+M2

∫ 1

t

|(T2u)(s) − (T2v)(s)|ds

+M3

∫ 1

t

|(T3u)(s) − (T3v)(s)|ds+M4

∫ 1

t

|u(s) − v(s)|ds

6M1

∫ 1

t

T1(|u(s) − v(s)|)ds+M2

∫ 1

t

T2(|u(s) − v(s)|)ds

+M3

∫ 1

t

T3(|u(s) − v(s)|)ds+M4

∫ 1

t

|u(s) − v(s)|ds

= (T |u− v|)(t)

6

(
M1

∫ 1

t

∫ 1

0
G1(τ, s)dsdτ+M2

∫ 1

t

∫ 1

0
G2(τ, s)dsdτ+M3

∫ 1

t

∫ 1

τ

1dsdτ+M4

)
‖u− v‖

6

(
M1

8
+
M2

3
+
M3

2
+M4

)
‖u− v‖,

which implies ‖Au−Av‖ 6 (M1
8 + M2

3 + M3
2 +M4)‖u− v‖. Since M1

8 + M2
3 + M3

2 +M4 < 1, A is a contract
operator. Therefore, by the well-known Banach’s contraction mapping principle, we conclude that A has
a unique fixed point which means that the boundary value problem (1.1) has a unique solution. The proof
is completed.

From the proof of Theorem 2.3, we know that

‖T‖ 6 M1

8
+
M2

3
+
M3

2
+M4 < 1, (2.12)

where T is defined by (2.7). But, (2.12) may be false under the assumptions of Theorem 2.1. For example,
if we take M2 = 4, M1 =M3 =M4 = 0, and u(t) ≡ 1, we have

|(Tu)(t)| = max
t∈[0,1]

M2

∫ 1

t

∫ 1

0
G2(τ, s)dsdτ =

4
3

,

which implies that ‖T‖ > 4
3 . It seems that there are few uniqueness results if the norm of related linear

operator is greater than 1. In fact, Theorems 2.1 and 2.3 conclude that r(T) is less than 1, where r(T) is the
spectral radius of linear operator T .

Theorem 2.4. Suppose that there exist four nonnegative constants Mi (i = 1, 2, 3, 4) satisfying

|f(t, x1, x2, x3, x4) − f(t,y1,y2,y3,y4)| 6
4∑
i=1

Mi|xi − yi|, xi,yi ∈ R,

and r(T) < 1. Then the boundary value problem (1.1) has a unique solution.

Proof. Set ε =
1
2
(1 − r(T)). Since r(T) < 1, then by Gelfand’s formula, we have that there exists a natural

number N such that for n > N,

‖ Tn ‖6 [r(T) + ε]n = [
r(T) + 1

2
]n.

For every x ∈ C[0, 1], define

‖x‖∗ =
N∑
i=1

[
r(T) + 1

2
]N−i‖T i−1x‖, (2.13)
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where T 0 = I is the identity operator. By (2.13), it is easy to see

[
r(T) + 1

2
]N‖x‖ 6 ‖x‖∗ 6

N∑
i=1

[
r(T) + 1

2
]N−i‖T i−1‖ · ‖x‖,

which implies ‖ · ‖∗ is a norm in C[0, 1] and equivalent with the norm ‖ · ‖.
Then for all u, v ∈ C[0, 1], by (2.13), we have

‖Au−Av‖∗ =
N∑
i=1

[
r(T) + 1

2
]N−i‖T i−1(Au−Av)‖

=

N∑
i=1

[
r(T) + 1

2
]N−i max

t∈[0,1]
|(T i−1(Au−Av))(t)|

6
N∑
i=1

[
r(T) + 1

2
]N−i max

t∈[0,1]
|(T i−1(T |u− v|))(t)|

=
r(T) + 1

2

N−1∑
i=1

[
r(T) + 1

2
]N−i−1‖(T i|u− v|)‖+ ‖(TN|u− v|)‖

6
r(T) + 1

2

N−1∑
i=1

[
r(T) + 1

2
]N−i−1‖(T i|u− v|)‖+ [

r(T) + 1
2

]N‖u− v‖

=
r(T) + 1

2

N∑
i=1

[
r(T) + 1

2
]N−i‖T i−1(|u− v|)‖ = r(T) + 1

2
‖u− v‖∗.

Thus the Banach contraction mapping principle implies that A has a unique fixed point x∗ in C[0, 1] which
means that the boundary value problem (1.1) has a unique solution. The proof is completed.

Remark 2.5. From the above three theorems, we know that the conditions of Theorem 2.4 imposed on Mi

are optimal. Correspondingly, it is difficult to calculate the value of r(T) and the convergence rate of
iterative sequences.
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