
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 10 (2017), 4695–4703

Research Article

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Fixed point theorems in dislocated quasi-metric spaces

Shizheng Lia,b, Akbar Zadac, Rahim Shahc, Tongxing Lia,d,∗

aLinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi University, Linyi, Shandong
276005, P. R. China.

bCollege of Mathematical Sciences, Dezhou University, Dezhou, Shandong 253023, P. R. China.
cDepartment of Mathematics, University of Peshawar, Peshawar 25000, Pakistan.
dSchool of Information Science and Engineering, Linyi University, Linyi, Shandong 276005, P. R. China.

Communicated by X. Qin

Abstract

In this paper, we discuss the existence and uniqueness of a fixed point in a dislocated quasi-metric space. Several fixed
point theorems for distinct type of contractive conditions are presented that generalize, extend, and unify a number of related
results reported in the literature. Illustrative examples are provided. c©2017 All rights reserved.
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1. Introduction

The notion of fixed point theory was presented by Poincaré in 1886. Fixed point theory is one of
the most crucial and dynamic research subject of nonlinear analysis. In the area of fixed point theory,
the first important and remarkable result was presented by Banach [4] for a contraction mapping in a
complete metric space. Since then, a number of generalizations have been made by many researchers in
their works. For instance, Dass and Gupta [5] presented the generalized form of well-known Banach con-
traction principle in a metric space for some rational type contractive conditions. The idea of metric space
has also been generalized in different directions. Some of well-known and important generalizations of
metric spaces are dislocated metric space, quasi-metric space, dislocated quasi-metric space, generalized
quasi-metric space, b-metric space, cone metric space, cone b-metric space, etc.

Abramsky and Jung [3] discussed some facts about dislocated metrics under the special name of metric
domains in the context of domain theory. Hitzler and Seda [6] presented the concept of dislocated metric
spaces and generalized the well-known Banach contraction mapping principle in complete dislocated
metric spaces. Dislocated metric space has a key role in logic programming and electronics engineering.
Zeyada et al. [15] established the notion of dislocated quasi-metric spaces by generalizing the results of
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Hitzler and Seda [6]. Aage and Salunke [1, 2], Isufati [7], Jha and Panthi [8], Jha et al. [9], Panthi et al.
[10], Patel and Patel [11], Sarwar et al. [13], Shrivastava et al. [14], Zoto et al. [16], and Zoto et al. [17]
gave some fixed point results in dislocated metric and dislocated quasi-metric spaces. Piri [12] obtained
some Suzuki type fixed point theorems in complete cone b-metric spaces over a solid vector space.

In the present paper, we prove some fixed point results in the setting of dislocated quasi-metric spaces
for single and a pair of continuous self-mappings which generalize, improve, and fuse the results reported
in the cited papers. Throughout, R+ stands for the set of all nonnegative real numbers.

2. Preliminaries

We need the following auxiliary definitions and results.

Definition 2.1 ([15]). Let X be a nonempty set and d : X×X → R+ be a distance function. We give the
following conditions:

(c1) d(ξ, ξ) = 0 for all ξ ∈ X;

(c2) d(ξ,η) = d(η, ξ) = 0 yields ξ = η;

(c3) d(ξ,η) = d(η, ξ) for all ξ,η ∈ X;

(c4) d(ξ,η) 6 d(ξ, ζ) + d(ζ,η) for all ξ,η, ζ ∈ X.

If d satisfies conditions (c1)-(c4), then d is called a metric on X, if d satisfies conditions (c2)-(c4), then d is
said to be a dislocated metric (d-metric) on X, and if d satisfies conditions (c2) and (c4), then d is called a
dislocated quasi-metric (dq-metric) on X. X together with dq-metric d, i.e., (X,d) is termed a dislocated
quasi-metric space (dq-metric space).

It is clear that every metric on X is also a d-metric on X, but the converse is not true. The following
example shows this fact.

Example 2.2 ([13]). Let X = R+ and define the distance function d : X×X→ R+ by

d(ξ,η) = max{ξ,η}.

Definition 2.3 ([15]). A sequence {ξn} in a dq-metric space (X,d) is called Cauchy sequence if for any
ε > 0, there exists an n0 ∈N such that d(ξm, ξn) < ε or d(ξn, ξm) < ε for all m,n > n0.

In the above definition, if we replace d(ξm, ξn) < ε or d(ξn, ξm) < ε with

max{d(ξm, ξn),d(ξn, ξm)} < ε,

then {ξn} is called “bi” Cauchy sequence.

Definition 2.4 ([15]). A sequence {ξn} in a dq-metric space (X,d) is said to be dislocated quasi-convergent
(dq-convergent) to ξ if

lim
n→∞d(ξn, ξ) = lim

n→∞d(ξ, ξn) = 0.

In this case, ξ is called a dq-limit of sequence {ξn} and we write ξn → ξ as n→∞.

Definition 2.5 ([15]). Let (X,d1) and (Y,d2) be two dq-metric spaces and let T : X→ Y be a function. T is
said to be continuous if for each sequence {ξn} which is d1q-convergent to ξ0 ∈ X, the sequence {Tξn} is
d2q-convergent to Tξ0 in Y.

Definition 2.6 ([15]). A dq-metric space (X,d) is called complete if every Cauchy sequence in it is dq-
convergent.
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Definition 2.7 ([15]). Let (X,d) be a dq-metric space. A self-mapping T : X → X is called contraction if
there exists a λ ∈ [0, 1) such that d(Tξ,Tη) 6 λd(ξ,η) for all ξ,η ∈ X.

Lemma 2.8 ([15]). Every subsequence of a dq-convergent sequence to a point ξ0 is dq-convergent to ξ0.

Lemma 2.9 ([15]). Let (X,d) be a dq-metric space. If g : X → X is a contraction function, then {gn(ξ0)} is a
Cauchy sequence for each ξ0 ∈ X.

Lemma 2.10 ([15]). dq-limits in a dq-metric space are unique.

In what follows, we present some fixed point theorems in dq-metric spaces which consist of contractive
type conditions and rational contractive conditions.

Theorem 2.11 ([15]). Let (X,d) be a complete dq-metric space and let T : X → X be a continuous contraction
function. Then T has a unique fixed point.

Theorem 2.12 ([2]). Let (X,d) be a complete dq-metric space and T : X → X be a continuous self-mapping
satisfying

d(Tξ,Tη) 6 λ[d(ξ,Tξ) + d(η,Tη)]

for all ξ,η ∈ X, where 0 6 λ < 1/2. Then T has a unique fixed point.

Theorem 2.13 ([7]). Let (X,d) be a complete dq-metric space and T : X → X be a continuous self-mapping
satisfying

d(Tξ,Tη) 6 a∗1d(ξ,Tη) + a∗2d(η,Tξ) + a∗3d(ξ,η)

for all ξ,η ∈ X, where a∗1 ,a∗2 ,a∗3 ∈ R+ which may depend on both ξ and η and satisfy sup{2a∗1 + 2a∗2 + a∗3 } < 1.
Then T has a unique fixed point.

Theorem 2.14 ([14]). Let T be a continuous self-mapping defined on a complete dq-metric space (X,d). If

d(Tξ,Tη) 6 a∗1d(ξ,η) + a∗2
d(ξ,Tξ)d(η,Tη)

d(ξ,η)

for all ξ,η ∈ X satisfying d(ξ,η) 6= 0, where a∗1 ,a∗2 ∈ R+ and 0 6 a∗1 + a
∗
2 < 1, then T has a unique fixed point.

Theorem 2.15 ([14]). Let (X,d) be a complete dq-metric space and let T : X→ X be a continuous self-mapping. If

d(Tξ,Tη) 6 a∗1d(ξ,η) + a∗2
d(ξ,Tξ)d(η,Tη)

d(ξ,η)
+ a∗3 [d(ξ,Tξ) + d(η,Tη)] + a∗4 [d(ξ,Tη) + d(η,Tξ)]

for all ξ,η ∈ X satisfying d(ξ,η) 6= 0, where a∗1 ,a∗2 ,a∗3 ,a∗4 ∈ R+ and 0 6 a∗1 + a
∗
2 + 2a∗3 + 2a∗4 < 1, then T has a

unique fixed point.

Theorem 2.16 ([16]). Let (X,d) be a complete dq-metric space and T : X→ X be a continuous self-mapping. If

d(Tξ,Tη) 6 a∗1d(ξ,η) + a∗2
d(ξ,Tξ)d(η,Tη)

d(ξ,η)
+ a∗3 [d(ξ,Tξ) + d(η,Tη)]

+ a∗4 [d(ξ,Tη) + d(η,Tξ)] + a∗5 [d(ξ,Tξ) + d(ξ,η)]

for all ξ,η ∈ X satisfying d(ξ,η) 6= 0, where a∗1 ,a∗2 ,a∗3 ,a∗4 ,a∗5 ∈ R+ and 0 6 a∗1 + a∗2 + 2a∗3 + 2a∗4 + 2a∗5 < 1,
then T has a unique fixed point.

Theorem 2.17 ([10]). Let (X,d) be a complete dq-metric space and let T : X → X be a continuous self-mapping.
Assume that

d(Tξ,Tη) 6 a∗1d(ξ,η) + a∗2
d(ξ,Tξ)d(η,Tη)

d(ξ,η)
+ a∗3 [d(ξ,Tξ) + d(η,Tη)] + a∗4 [d(ξ,Tη) + d(η,Tξ)]

+ a∗5 [d(ξ,Tξ) + d(ξ,η)] + a∗6 [d(η,Tη) + d(ξ,η)]

for all ξ,η ∈ X satisfying d(ξ,η) 6= 0, where a∗1 ,a∗2 ,a∗3 ,a∗4 ,a∗5 ,a∗6 ∈ R+ and
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0 6 a∗1 + a
∗
2 + 2a∗3 + 4a∗4 + 2a∗5 + 2a∗6 < 1.

Then T has a unique fixed point.

Theorem 2.18 ([1]). Let (X,d) be a complete dq-metric space and let T : X→ X be a continuous self-mapping. If

d(Tξ,Tη) 6 a∗1d(ξ,η) + a∗2d(ξ,Tξ) + a∗3d(η,Tη)

for all ξ,η ∈ X, where a∗1 ,a∗2 ,a∗3 ∈ R+ and 0 6 a∗1 + a
∗
2 + a

∗
3 < 1, then T has a unique fixed point.

Theorem 2.19 ([1]). Let (X,d) be a complete dq-metric space and let S,T : X → X be two continuous self-
mappings. If

d(Sξ,Tη) 6 a∗1d(ξ,η) + a∗2d(ξ,Sξ) + a∗3d(η,Tη)

for all ξ,η ∈ X, where a∗1 ,a∗2 ,a∗3 ∈ R+ and 0 6 a∗1 + a∗2 + a∗3 < 1, then S and T have a unique common fixed
point.

Theorem 2.20 ([11]). Let (X,d) be a complete dq-metric space and let T : X → X be a continuous self-mapping
satisfying

d(Tξ,Tη) 6 a∗1d(ξ,η) + a∗2d(ξ,Tξ) + a∗3d(η,Tη) + a∗4 [d(ξ,Tξ) + d(η,Tη)] + a∗5 [d(ξ,Tη) + d(η,Tξ)]

for all ξ,η ∈ X, where a∗1 ,a∗2 ,a∗3 ,a∗4 ,a∗5 ∈ R+ and 0 6 a∗1 + a
∗
2 + a

∗
3 + 2a∗4 + 2a∗5 < 1. Then T has a unique fixed

point.

Theorem 2.21 ([13]). Let (X,d) be a complete dq-metric space and let S,T : X → X be two continuous self-
mappings satisfying

d(Sξ,Tη) 6 a∗1d(ξ,η) + a∗2d(ξ,Sξ) + a∗3d(η,Tη) + a∗4 [d(ξ,Sξ) + d(η,Tη)] + a∗5 [d(ξ,Tη) + d(η,Sξ)]

for all ξ,η ∈ X, where a∗1 ,a∗2 ,a∗3 ,a∗4 ,a∗5 ∈ R+ and 0 6 a∗1 + a∗2 + a∗3 + 2a∗4 + 4a∗5 < 1. Then S and T have a
unique common fixed point.

3. Main results

In this section, we prove some fixed point theorems in complete dq-metric spaces.

Theorem 3.1. Let (X,d) be a complete dq-metric space and let T : X→ X be a continuous self-mapping. If

d(Tξ,Tη) 6 a1d(ξ,η) + a2
d(ξ,Tξ)d(η,Tη)

d(ξ,η)
+ a3[d(ξ,Tξ) + d(η,Tη)] + a4[d(ξ,Tη) + d(η,Tξ)]

+ a5[d(ξ,Tξ) + d(ξ,η)] + a6[d(η,Tη) + d(ξ,η)] + a7[d(ξ,Tη) + d(ξ,η)]
(3.1)

for all ξ,η ∈ X satisfying d(ξ,η) 6= 0, where a1,a2,a3,a4,a5,a6,a7 ∈ R+ and

0 6 a1 + a2 + 2a3 + 4a4 + 2a5 + 2a6 + 3a7 < 1,

then T has a unique fixed point.

Proof. Let ξ0 ∈ X and define a sequence {ξn} by

Tξn = ξn+1 for n = 0, 1, 2, . . . ,

where d(ξn−1, ξn) 6= 0. Set ξ = ξn−1 and η = ξn. It follows from (3.1) and

d(ξn, ξn) 6 d(ξn−1, ξn) + d(ξn, ξn+1)
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that

d(ξn, ξn+1) = d(Tξn−1,Tξn)

6 a1d(ξn−1, ξn) + a2
d(ξn−1,Tξn−1)d(ξn, ξn+1)

d(ξn−1, ξn)
+ a3[d(ξn−1,Tξn−1) + d(ξn,Tξn)] + a4[d(ξn−1,Tξn) + d(ξn,Tξn−1)]

+ a5[d(ξn−1,Tξn−1) + d(ξn−1, ξn)] + a6[d(ξn,Tξn) + d(ξn−1, ξn)]
+ a7[d(ξn−1,Tξn) + d(ξn−1, ξn)]

= a1d(ξn−1, ξn) + a2
d(ξn−1, ξn)d(ξn, ξn+1)

d(ξn−1, ξn)
+ a3[d(ξn−1, ξn) + d(ξn, ξn+1)]

+ a4[d(ξn−1, ξn+1) + d(ξn, ξn)] + a5[d(ξn−1, ξn) + d(ξn−1, ξn)]
+ a6[d(ξn, ξn+1) + d(ξn−1, ξn)] + a7[d(ξn−1, ξn+1) + d(ξn−1, ξn)]

6 (a1 + a3 + 2a4 + 2a5 + a6 + 2a7)d(ξn−1, ξn) + (a2 + a3 + 2a4 + a6 + a7)d(ξn, ξn+1).

Hence, we have

d(ξn, ξn+1) 6
a1 + a3 + 2a4 + 2a5 + a6 + 2a7

1 − (a2 + a3 + 2a4 + a6 + a7)
d(ξn−1, ξn).

Let
h =

a1 + a3 + 2a4 + 2a5 + a6 + 2a7

1 − (a2 + a3 + 2a4 + a6 + a7)
.

Then 0 6 h < 1,

d(ξn, ξn+1) 6 hd(ξn−1, ξn) and d(ξn−1, ξn) 6 hd(ξn−2, ξn−1).

Continuing this process, we conclude that

d(ξn, ξn+1) 6 h
nd(ξ0, ξ1).

Now, for any m,n satisfying m > n, using triangle inequality, we obtain

d(ξn, ξm) 6 d(ξn, ξn+1) + d(ξn+1, ξn+2) + · · ·+ d(ξm−1, ξm)

6 hnd(ξ0, ξ1) + h
n+1d(ξ0, ξ1) + · · ·+ hm−1d(ξ0, ξ1)

6 (hn + hn+1 + hn+2 + · · · )d(ξ0, ξ1) =
hn

1 − h
d(ξ0, ξ1).

By h ∈ [0, 1), hn → 0 as n → ∞, which shows that {ξn} is a Cauchy sequence in the complete dq-metric
space (X,d). Therefore, by virtue of the fact that T is continuous, there exists a point p ∈ X such that

Tp = T lim
n→∞ ξn = lim

n→∞Tξn = lim
n→∞ ξn+1 = p.

Uniqueness. Suppose to the contrary that p and p∗ are two different fixed points of T. Then Tp = p

and Tp∗ = p∗. We assert that d(p,p) = d(p∗,p∗) = 0. If d(p,p) > 0 and d(p∗,p∗) > 0, then we derive
from (3.1) that

d(p,p) = d(Tp,Tp)
6 a1d(p,p) + a2d(p,p) + 2a3d(p,p) + 2a4d(p,p)

+ 2a5d(p,p) + 2a6d(p,p) + 2a7d(p,p)
= (a1 + a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7)d(p,p)

and
d(p∗,p∗) 6 (a1 + a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7)d(p

∗,p∗),

respectively, which are contradictions due to 0 6 a1 + a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7 < 1. Now, we
consider the following three cases separately.
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Case 1. Assume first that d(p,p∗) > 0 and d(p∗,p) = 0. An application of (3.1) yields

d(p,p∗) = d(Tp,Tp∗)

6 a1d(p,p∗) + a2
d(p,p)d(p∗,p∗)

d(p,p∗)
+ a3[d(p,p) + d(p∗,p∗)] + a4[d(p,p∗) + d(p∗,p)]

+ a5[d(p,p) + d(p,p∗)] + a6[d(p
∗,p∗) + d(p,p∗)] + a7[d(p,p∗) + d(p,p∗)]

= (a1 + a4 + a5 + a6 + 2a7)d(p,p∗) + a4d(p
∗,p),

(3.2)

which is a contradiction due to d(p∗,p) = 0 and 0 6 a1 + a4 + a5 + a6 + 2a7 < 1.

Case 2. Suppose that d(p,p∗) = 0 and d(p∗,p) > 0. By virtue of (3.1),

d(p∗,p) 6 (a1 + a4 + a5 + a6 + 2a7)d(p
∗,p) + a4d(p,p∗), (3.3)

which is a contradiction due to d(p,p∗) = 0 and 0 6 a1 + a4 + a5 + a6 + 2a7 < 1.

Case 3. Assume now that d(p,p∗) > 0 and d(p∗,p) > 0. It follows from (3.1) that (3.2) and (3.3) hold.
Combining (3.2) and (3.3), we are led to

|d(p,p∗) − d(p∗,p)| 6 (a1 + a5 + a6 + 2a7)|d(p,p∗) − d(p∗,p)|,

which implies that d(p,p∗) = d(p∗,p) due to 0 6 a1 + a5 + a6 + 2a7 < 1. Using (3.2), we conclude that

d(p,p∗) 6 (a1 + 2a4 + a5 + a6 + 2a7)d(p,p∗),

which is a contradiction due to 0 6 a1 + 2a4 + a5 + a6 + 2a7 < 1.
Hence, d(p,p∗) = d(p∗,p) = 0. This fact yields p = p∗. The proof is complete.

Example 3.2. Let X = [0, 1]. Define a complete dq-metric by d(ξ,η) = |η| for all ξ,η ∈ X and define a
continuous self-mapping T by Tη = η/4 for all η ∈ X. Set a1 = 1/8, a2 = 1/12, a3 = 1/20, a4 = 1/24,
a5 = 1/30, a6 = 1/34, and a7 = 1/30. Then T satisfies all assumptions of Theorem 3.1 and η = 0 is the
unique fixed point of T in X.

Remark 3.3. Theorem 3.1 includes a number of results in [2, 7, 10, 14–16]; see the following details.

(1) If a7 = 0, then Theorem 3.1 reduces to Theorem 2.17.

(2) If a6 = a7 = 0, then Theorem 3.1 includes some assumptions in Theorem 2.16.

(3) If a5 = a6 = a7 = 0, then Theorem 3.1 includes some conditions in Theorem 2.15.

(4) If a2 = a3 = a5 = a6 = a7 = 0, then Theorem 3.1 involves some assumptions in Theorem 2.13.

(5) If a3 = a4 = a5 = a6 = a7 = 0, then Theorem 3.1 reduces to Theorem 2.14.

(6) If a1 = a2 = a4 = a5 = a6 = a7 = 0, then Theorem 3.1 reduces to Theorem 2.12.

(7) If a2 = a3 = a4 = a5 = a6 = a7 = 0, then Theorem 3.1 reduces to Theorem 2.11.

Theorem 3.4. Let (X,d) be a complete dq-metric space and let S,T : X→ X be two continuous self-mappings. If

d(Sξ,Tη) 6 a1d(ξ,η) + a2d(ξ,Sξ) + a3d(η,Tη) + a4[d(ξ,Sξ) + d(η,Tη)]
+ a5[d(ξ,Tη) + d(η,Sξ)] + a6[d(ξ,Sξ) + d(ξ,η)]

(3.4)

for all ξ,η ∈ X, where a1,a2,a3,a4,a5,a6 ∈ R+ and 0 6 a1 +a2 +a3 + 2a4 + 4a5 + 2a6 < 1, then S and T have
a unique common fixed point.
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Proof. Let ξ0 ∈ X and define a sequence {ξn} by

ξ1 = Sξ0, · · · , ξ2n+1 = Sξ2n

and
ξ2 = Tξ1, · · · , ξ2n = Tξ2n−1

for all n ∈N. We claim that {ξn} is a Cauchy sequence in X. Note that

d(ξ2n+1, ξ2n+2) = d(Sξ2n,Tξ2n+1).

By virtue of (3.4),

d(ξ2n+1, ξ2n+2) 6 a1d(ξ2n, ξ2n+1) + a2d(ξ2n,Sξ2n) + a3d(ξ2n+1,Tξ2n+1)

+ a4[d(ξ2n,Sξ2n) + d(ξ2n+1,Tξ2n+1)] + a5[d(ξ2n,Tξ2n+1) + d(ξ2n+1,Sξ2n)]

+ a6[d(ξ2n,Sξ2n) + d(ξ2n, ξ2n+1)]

= a1d(ξ2n, ξ2n+1) + a2d(ξ2n, ξ2n+1) + a3d(ξ2n+1, ξ2n+2)

+ a4[d(ξ2n, ξ2n+1) + d(ξ2n+1, ξ2n+2)] + a5[d(ξ2n, ξ2n+2) + d(ξ2n+1, ξ2n+1)]

+ a6[d(ξ2n, ξ2n+1) + d(ξ2n, ξ2n+1)]

6 (a1 + a2 + a4 + 2a5 + 2a6)d(ξ2n, ξ2n+1) + (a3 + a4 + 2a5)d(ξ2n+1, ξ2n+2),

which implies that

d(ξ2n+1, ξ2n+2) 6
a1 + a2 + a4 + 2a5 + 2a6

1 − (a3 + a4 + 2a5)
d(ξ2n, ξ2n+1).

Let
h =

a1 + a2 + a4 + 2a5 + 2a6

1 − (a3 + a4 + 2a5)
.

Then 0 6 h < 1,

d(ξ2n+1, ξ2n+2) 6 hd(ξ2n, ξ2n+1) and d(ξ2n, ξ2n+1) 6 hd(ξ2n−1, ξ2n),

and thus
d(ξ2n+1, ξ2n+2) 6 h

2d(ξ2n−1, ξ2n).

Continuing this process, we get
d(ξn, ξn+1) 6 h

nd(ξ0, ξ1).

Since h ∈ [0, 1), hn → 0 as n → ∞, which shows that {ξn} is a Cauchy sequence in the complete dq-
metric space (X,d). Therefore, there exists a p∗ ∈ X such that ξn → p∗ as n → ∞. Furthermore, the
subsequences {ξ2n} and {ξ2n+1} converge to p∗. Since T is a continuous mapping, we deduce that

lim
n→∞ ξ2n+1 = p∗ ⇒ lim

n→∞Tξ2n+1 = Tp∗ ⇒ lim
n→∞ ξ2n+2 = Tp∗.

Hence, Tp∗ = p∗. Similarly, taking into account that S is continuous, we prove that Sp∗ = p∗. Therefore,
p∗ is a common fixed point of S and T.

Uniqueness. Suppose to the contrary that S and T have two different common fixed points p∗ and q∗.
By virtue of (3.4), we can obtain d(p∗,p∗) = d(q∗,q∗) = 0. It follows from (3.4) that

d(p∗,q∗) = d(Sp∗,Tq∗)
6 a1d(p

∗,q∗) + a2d(p
∗,Sp∗) + a3d(q

∗,Tq∗) + a4[d(p
∗,Sp∗) + d(q∗,Tq∗)]

+ a5[d(p
∗,Tq∗) + d(q∗,Sp∗)] + a6[d(p

∗,Sp∗) + d(p∗,q∗)]
= (a1 + a5 + a6)d(p

∗,q∗) + a5d(q
∗,p∗).

(3.5)
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Similarly,
d(q∗,p∗) 6 (a1 + a5 + a6)d(q

∗,p∗) + a5d(p
∗,q∗). (3.6)

Subtracting (3.6) from (3.5), we have

|d(p∗,q∗) − d(q∗,p∗)| 6 (a1 + a6)|d(p
∗,q∗) − d(q∗,p∗)|,

which implies that d(p∗,q∗) = d(q∗,p∗) due to 0 6 a1 + a6 < 1. Using (3.5), we obtain

d(p∗,q∗) 6 (a1 + 2a5 + a6)d(p
∗,q∗),

which yields d(p∗,q∗) = 0 due to 0 6 a1 + 2a5 + a6 < 1. Hence, d(p,p∗) = d(p∗,p) = 0. An application
of this fact implies that p = p∗. The proof is complete.

Example 3.5. Let X = [0, 1]. Define a complete dq-metric by d(ξ,η) = |η| for all ξ,η ∈ X and define two
continuous self-mappings S and T by Sη = 0 and Tη = η/6 for all η ∈ X. Set a1 = 1/8, a2 = 1/12,
a3 = 1/14, a4 = 1/20, a5 = 1/21, and a6 = 1/24. Then the mappings S and T satisfy all assumptions of
Theorem 3.4 and η = 0 is the unique common fixed point of S and T in X.

Remark 3.6. Theorem 3.4 includes a number of results in [1, 2, 11, 13]; see the following details.

(1) If a6 = 0, then Theorem 3.4 reduces to Theorem 2.21.

(2) If S = T and a6 = 0, then Theorem 3.4 includes some conditions in Theorem 2.20.

(3) If a4 = a5 = a6 = 0, then Theorem 3.4 reduces to Theorem 2.19.

(4) If S = T and a4 = a5 = a6 = 0, then Theorem 3.4 reduces to Theorem 2.18.

(5) If S = T and a1 = a2 = a3 = a5 = a6 = 0, then Theorem 3.4 reduces to Theorem 2.12.
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