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Abstract
In this paper, we give new quantitative characteristics of degrees of syndetical transitivity and topological ergodicity for a

given discrete dynamical system, which are nonnegative real numbers and are not more than 1. For selfmaps of many compact
metric spaces it is proved that a given selfmap is syndetically transitive if and only if its degree of syndetical transitivity is 1,
and that it is topologically ergodic if and only if its degree of topological ergodicity is one. Moreover, there exists a selfmap of
[0, 1] having all degrees positive. c©2017 All rights reserved.
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1. Introduction

In fact, a given dynamical system is a fixed pair (A, t), where t is a continuous selfmap of a topological
space A. Various definitions of the behaviours of these systems have been given, such as topological
transitivity, syndetical transitivity, topological ergodicity, topologically weak mixing, topological mixing,
chaos and so on (see [1–22]). For many different definitions of chaos, topological transitivity is one of
the ingredients. It is well-known that the classical definitions of chaos are usually qualitative. That is, by
these definitions, one can only know that a given dynamical system is either chaotic or not. But by using
these different definitions one can not know how large the chaos is. However, it is well-known that the
topological entropy defined in [1] is the most important quantitative tool of chaoticity (also see [14]).

In [12], the authors gave degrees of transitivity, weak mixing and strong mixing that are several
new quantitative characteristics which are nonnegative real numbers and are not more than 1 for given
dynamical systems. Moreover, for selfmaps of many compact metric spaces they proved that a given
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selfmap is topologically transitive (resp. weak mixing or strong mixing) if and only if its degree of
transitivity (resp. weak mixing or strong mixing) is 1. Furthermore, there is a simple selfmap on [0, 1]
with all degrees positive. Snydetical transitivity and topological ergodicity are qualitative characteristics
of a given selfmap of a metric space, but inspired by [12] one can find a way how to measure to which
extent snydetical transitivity or topological ergodicity is present in the dynamics of a given selfmap such
that the result is a nonnegative real number and is not more than 1, and that the value 1 means that the
system satisfies the definition of syndetical transitivity or topological ergodicity. Also, it is well-known
that the syndetical transitivity (resp. topological ergodicity) is an important and stronger transitivity.
This property may happen in a variety of applications. So, it is not surprising that in the physics and
other sciences there was a lot of effort to quantify syndetical transitivity (resp. topological ergodicity) and
compare the complexity of a given selfmap in such a tool. In this paper, inspired by idea of [12] we are
going to rigorously define degrees of syndetical transitivity and topological ergodicity of given selfmaps.
In particular, for given selfmaps of many compact metric spaces it is proven that a given selfmap is
syndetically transitive if and only if its degree of syndetical transitivity is 1, and that it is topologically
ergodic if and only if its degree of topological ergodicity is one.

In Section 2, some basic concepts and notation are recalled, and the definitions of the degrees of
syndetical transitivity and topological ergodicity are given. Our results are obtained in Section 3. We
conclude this paper with some comments in the last section.

2. Preliminaries

A dynamical system is a pair (A, t) such that A is a compact metric space, and that t is a continuous
selfmap of A.

A system (A, t) (or a map t : A → A) is topologically transitive if and only if for any two nonempty
open subsets X, Y ⊂ A we can find an integer l > 0 with tl(X)∩ Y 6= ∅.

A system (A, t) (or a map t : A→ A) is (topologically) weakly mixing if and only if t× t is topologically
transitive.

A system (A, t) (or a map t : A → A) is topologically mixing (or strongly mixing) if and only if for
any two nonempty open subsets X, Y ⊂ A one can find an integer l0 > 0 with tl(X)∩X 6= ∅ for any l > l0.

Write Z+ = {0, 1, 2, · · · }. A subset E ⊂ Z+ is thick, if E can contain arbitrarily large blocks of consecutive
numbers. A subset E ⊂ Z+ is syndetic, if Z+ \ E is not thick.

A dynamical system (A, t) or a map t : A→ A is syndetically transitive (see [4, 11, 16, 18]), if and only
if the set Nt(X, Y) is syndetic for any two nonempty open subsets X, Y ⊂ A, where

Nt(X, Y) = {l ∈ Z+ : tl(X)∩ Y 6= ∅}.

A dynamical system (A, t) or a map t : A→ A is topologically ergodic, if and only if the set Nt(X, Y)
has positive upper density for any two nonempty open subsets X, Y ⊂ A, that is,

lim sup
l→∞

1
l
|Nf(X, Y)∩ {0, 1, · · · , l− 1}| > 0,

where |D| denotes the cardinality of D (see [3, 4, 15, 19]).
Clearly, by the definitions, syndetical transitivity implies topological ergodicity, and topological ergod-

icity implies transitivity. Moreover, topological mixing implies syndetical transitivity, and it is well-known
that the converse implications is not necessarily true.

Let t be a continuous selfmap of a compact metric space A. For any given finite cover D of A and any
given integer m > 1, the cell C×C ′ ∈ D ×D is Tm-admissible if tm(C)∩C ′ 6= ∅ (see [12]). Let A (tm, D)
be the set of all tm-admissible cells from D ×D . Moreover, we use Am>1(t, D), A ∞(t, D), A cofin(t, D) to
denote the set of all cells C×C ′ ∈ D ×DD which are tm-admissible for at least one m > 0, for infinitely
many m’s, for all but finitely many m’s, respectively. Therefore, one has that
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Am>1(t, D) =

∞⋃
m=1

A (tm, D),

A ∞(t, D) = lim sup
m→∞ A (tm, D),

and
A cofin(t, D) = lim inf

m→∞ A (tm, D).

Let B denote the cardinality of a set B. Then, the ratio |A (tm,D)|
|D |2

can show how large portion of cells
from D ×D is intersected by the graph of the map tm. Obviously, this ratio is always a real number
from

[
1
|D |

, 1
]
. Analogously for A (tm, D) replaced by Am>1(t, D) or A ∞(t, D). Moreover, the case of that

A cofin(t, D) = ∅ can be true.
For a given a finite cover D of A, ∗-degree of strong mixing, degree of strong mixing, degree of

weak mixing, degree of transitivity and ∗-degree of transitivity of t with respect to this cover D are

defined by dsm∗(t, D) =
|A cofin(t,D)|

|D |2
, dsm(t, D) = lim inf

m→∞ |A cofin(tm,D)|
|D |2

, dwm(t, D) = lim sup
m→∞

|A cofin(tm,D)|
|D |2

,

dt(t, D) =
|A ∞(t,D)|

|D |2
and dt∗(t, D) =

|A >1(t,D)|
|D |2

, respectively (see [12]). Inspired by the above definitions
we introduce two new quantitative characteristics of a given dynamical system (A, t).

Definition 2.1. For a given finite cover A of A and a given dynamical system (A, t), we give degree of
syndetical transitivity and degree of topological ergodicivity of t with respect to this cover D respectively,
by dst(t, D) =

|A syn(t,D)|
|D |2

and dte(t, D) =
|A erg(t,D)|

|C |2
, where A syn(t, D) = {C×C ′ ∈ D ×D : there exists a

syndetic set S ⊂ Z+ such that C×C ′ is tm-admissible for any m ∈ S} and A erg(t, D) = {C×C ′ ∈ D ×D :
there exists a set S ⊂ Z+ with positive upper density such that C×C ′ is tm-admissible for any m ∈ S}.

It is clear that for any given dynamical system (A, t) and any given cover C , one has that

0 6 dsm∗(t, D) 6 dsm(t, D) 6 dst(t, D) 6 dte(t, D) 6 1,

and
0 6 dsm(t, D) 6 dwm(t, D) 6 dt(t, D) 6 dt∗(t, D) 6 1.

3. Main results

Theorem 3.1. Let (A, t) be a given dynamical system. Then the following hold.

(a) t is syndetically transitive if and only if dst(t, D) = 1 for any finite open cover C .

(b) t is topologically ergodic if and only if dte(t, D) = 1 for any finite open cover D .

Proof.

(a) Suppose that t is syndetically transitive and D is a given finite open cover of A. Then, by the definition,
Nt(C,C ′) is syndetic for any C,C ′ ∈ D . This means C×C ′ ∈ A syn(t, D). So, dst(t, D) = 1 for any given
finite open cover D .

Now we suppose that dst(t, D) = 1 for any given finite open cover D . Let W, Y ⊂ A be nonempty and
open subsets. Choose any finite open cover D0 such that W, Y ∈ D0. Then W × Y ∈ A syn(t, D0), which
implies that Nt(W, Y) is syndetic. That is, t is syndetically transitive.

(b) Suppose that t is topologically ergodic and D is a given finite open cover of A. By the definition,
Nt(C,C ′) has positive upper density for any C,C ′ ∈ D . This means C×C ′ ∈ A erg(t, D). So, dte(t, D) = 1
for any given finite open cover D of A.
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Now, we suppose that dte(t, D) = 1 for every finite open cover D . Let W, Y ⊂ A be nonempty and
open subsets. Choose any finite open cover D0 such that W, Y ∈ D0. Then W × Y ∈ A erg(t, D0), which
implies that Nt(W, Y) has positive upper density. That is, t is topologically ergodic.

Thus, the entire proof is finished.

Let A be a compact metric space with a metric s. For any W ⊂ A and any α > 0, let N(W,α) be the
smallest number of α-balls (open balls with radius α) needed to cover W, that is,

N(W,α) = min{l ∈N :W ⊂
l⋃
j=1

B(yj,α) for some y1,y2, · · · ,yl ∈ X},

where B(y,α) is the α-ball with center y (see [12]). It is easily seen that lim
α→0+

N(W,α) = ∞ if and only if

W is infinite.
A cover with no proper subcover is said to be minimal. A cover D of A is said to be an α-cover if any

element of D is an α-ball. An α-cover of a compact metric space A is economical (see [12]) if and only if
its cardinality equals N(A,α), that is, if it is an α-cover of A with minimal cardinality. Let E (A,α) be the
set of all economical α-covers of A (see [12]).

For a continuous selfmap t of a compact metric space A, its ∗-degree of strong mixing, degree of
strong mixing, degree of weak mixing, degree of transitivity and ∗-degree of transitivity (see [12]) are
given, respectively, by

dsm∗(t) = lim inf
α→0+

min
D∈E (A,α)

dsm∗(t, D),

dsm(t) = lim inf
α→0+

min
D∈E (A,α)

dsm(t, D),

dwm(t) = lim inf
α→0+

min
D∈E (A,α)

dwm(t, D),

dt(t) = lim inf
α→0+

min
D∈E (A,α)

dt(t, ),

and
dt∗(t) = lim inf

α→0+
min

D∈E (A,α)
dt∗(t, D).

Inspired by these definitions, we give the following definitions.

Definition 3.2. For a continuous selfmap t of a compact metric spaceA, its degree of syndetical transitivity
and degree of topological ergodicity are given, respectively, by

dst(t) = lim inf
α→0+

min
D∈E (A,α)

dst(t, D),

and
dte(t) = lim inf

α→0+
min

D∈E (A,α)
dte(t, D).

From the definitions it follows that

0 6 dsm∗(t) 6 dsm(t) 6 dst(t) 6 dte(t) 6 1,

and
0 6 dsm(t) 6 dwm(t) 6 dt(t) 6 dt∗(t) 6 1.

Further, for any m > 1 we have that dsm∗(tm) >dsm∗(t), dsm(tm) >dsm(t), dwm(t) >dwm(tm),
dt(t) >dt(tm), dt∗(t) >dt∗(tm), dst(t) >dst(tm), and dte(t) >dte(tm).

Theorem 3.3. Let t be a continuous selfmap of a compact metric space A. Then the following hold.
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(a) The syndetical transitivity of t implies dst(t) = 1.

(b) The topological ergodicity of t implies dte(t) = 1.

Proof. By Theorem 3.1 and the definitions, Theorem 3.3 is true.

The following example shows that in general, the converse implications of Theorem 3.3 are not true.

Example 3.4 ([12]). Let A = I2 ∪ ([−1, 0] × {0}) with Euclidean metric, where I = [0, 1]. Choose any
transitive or topologically weakly mixing or topologically mixing or syndeticaly transitive or topologically
ergodic continuous selfmap q of I2 with (0, 0) as a fixed point and extend it to a continuous selfmap t of
A by putting t(y, 0) = (0, 0) for any y ∈ [−1, 0). Then t is not transitive (or topologically weakly mixing
or topologically mixing or syndetically transitive or topologically ergodic). Furthermore, it is well-known
that the degrees of t are the same as the degrees of q.

The above example shows that in order to give full characterization of transitivity, topologically weak
mixing, topological mixing, syndetical transitivity and topological ergodicity of a given continuous self-
map on a compact metric space the above degrees, some additional “regularity” assumption on A is
required. This kind of assumption is said to be weak regularity (see [12]). For a given compact metric
space A and any given subset B ⊂ A, let

µ(B) = lim inf
α→0+

N(B,α)
N(A,α)

.

Note that there are examples showing that this limit may be not exist (see [12]). A compact metric space
A is weakly regular, if and only if µ(W) > 0 for any nonempty open subset W of A. A dynamical system
(A, t) or a continuous selfmap t on a compact metric space is weakly regular, if and only if A is weakly
regular (see [12]). It is known from [12] that any compact manifold is weakly regular, and that the Cantor
ternary set is weakly regular. However, it is well-known that the space A from Example 3.4 is not weakly
regular, and that any infinite compact metric space with an isolated point is also not weakly regular.

Theorem 3.5. If (A, t) is a given weakly regular dynamical system, then the following hold.

(a) the map t is syndetically transitive if and only if dst(t) = 1.

(b) the map t is topologically ergodic if and only if dte(t) = 1.

By Theorem 3.5 we know that for any given weakly regular dynamical system, the maximal value
(= 1) of any of the above two degrees is a topological invariant. The following two lemmas which come
from [12] are useful.

Lemma 3.6 ([12]). If D is a given economical α-cover of A and W ⊂ A is open, and if DW = {F ∈ D : D ⊂ W},
then N(int2αW,α) 6 |DW | 6 N(W,α), where int2αW = {y ∈W : B(y, 2α) ⊂W}.

Lemma 3.7 ([12]). If A is a given weakly regular and W, T ⊂ A is nonempty and open, then there exist

α0 = αW,T > 0 and λ = λW,T ,

satisfying that for any continuous selfmap t of A, any α ∈ (0,α0) and any integer m > 0, tm(W)∩ T = ∅ implies
|A (tm,D)|

|D |2
6 1 − λ for any D ∈ E (A,α).

Proof of Theorem 3.5.

(a) By Theorem 3.3 it is enough to prove that if dst(t) = 1 then t is syndetically transitive. Suppose on the
contrary that t is not syndetically transitive. Then, by the definition there exist two open subsets W, Y of
A with

W, Y 6= ∅,
such that for any positive integer L there is mL satisfying that fj(W)∩ Y = ∅ for any integer

j ∈ [mL,mL + L] .

Let DW and DY be defined as in Lemma 3.6. Choose α0 > 0 and λ > 0 satisfying that both int2α0W
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and int2α0Y are nonempty, and that N(int2αW,α) >
√
λN(A,α) and N(int2αY,α) >

√
λN(A,α) for any

0 < α < α0. From the proof of [12, Lemma 11], we know that for any continuous selfmap t on A, any
α ∈ (0,α0) and any D ∈ E (A,α), if tj(W) ∩ Y = ∅ then A (tj, D) ∩ (DW ×DY) = ∅. This implies that
|A (tj,D)|

|D |2
6 1 − λ for any D ∈ E (A,α), any integer L, some integer mL and any integer j ∈ [mL,mL + L].

So, by the definitions of dst(t, D) and A syn(t, D) we have dst(t, D)
|A (tj,D)|

|D |2
6 1− λ for some j > 0. This is

a contradiction.

(b) By Theorem 3.3 it is enough to prove that if dte(t) = 1, then t is topologically ergodic. Assume on
the contrary that t is not topologically ergodic. Then, by the definition there are two open subsets W, Y
of A with W, Y 6= ∅ and S ⊂ {0, 1, 2, · · · } with lim sup

n→∞
|S∩{0,1,··· ,n−1}|

n = 1 such that tj(W) ∩ Y = ∅ for any

integer j ∈ S. Let DW and DY be defined as in Lemma 3.6. Choose α0 > 0 and λ > 0 satisfying that both
int2α0W and int2α0Y are nonempty, and that N(int2αW,α) >

√
λN(A,α) and N(int2αY,α) >

√
λN(A,α)

for any 0 < α < α0. From the proof of [12, Lemma 11] we know that for any continuous selfmap t on
A, any α ∈ (0,α0) and any D ∈ E (A,α), if tj(W) ∩ Y = ∅ then A (tj, D) ∩ (DW ×DY) = ∅. This implies
that |A (tj,D)|

|D |2
6 1 − λ for any D ∈ E (A,α) and any integer j ∈ S. So, by the definitions of dte(t, D) and

A erg(t, D) we have dte(t, D)
|A (tj,D)|

|D |2
6 1 − λ for some j ∈ S. It is a contradiction.

Thus, the entire proof is finished.

Remark 3.8. From [12, Proposition 12] and its proof, we know that there is a continuous selfmap t on the
unit interval J = [0, 1] which is of type 1 (even t(y) > y for any y ∈ J) and has all seven degrees positive.

4. Conclusion

In this paper we present new quantitative characteristics of degrees of syndetical transitivity and
topological ergodicity for a discrete dynamical system, which are nonnegative real numbers and are not
more than 1. For selfmaps of many compact metric spaces, we prove that a selfmap is syndetically
transitive (resp. topologically ergodic) if and only if its degree of syndetical transitivity (resp. topological
ergodicity) is one. Also, there is a selfmap of [0, 1] with all positive degrees of the above seven transitivity
properties. Based on some conclusions obtained by Snoha and Špitalský in [12] and us in this paper, we
will further discuss some applications of the quantitative characteristics of the above seven degrees in the
future.

Acknowledgement

The authors are very grateful to the referees for their careful reading, comments, and suggestions,
which help us improve this paper.

This research was supported by the Project of Enhancing School With Innovation of Guangdong Ocean
University (Grant NO. GDOU2016050207), the Key Scientific and Technological Research Project of Sci-
ence and Technology Department of Zhanjiang City (Grant 2010C3112005), the National Natural Science
Foundation of China (11501391), the Opening Project of Artificial Intelligence Key Laboratory of Sichuan
Province (2015RZJ01) and the Opening Project of Bridge Non-destruction Detecting and Engineering
Computing Key Laboratory of Sichuan Province (2014QZJ02).

References

[1] R. L. Adler, A. G. Konheim, M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309–319. 1
[2] R. Li, A note on the three versions of distributional chaos, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1993–

1997.
[3] R. Li, A note on shadowing with chain transitivity, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2815–2823.

2
[4] R. Li, A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons Fractals, 45 (2012), 753–758.2



Y. Zhao, et al., J. Nonlinear Sci. Appl., 10 (2017), 4680–4686 4686

[5] R. Li, The large deviations theorem and ergodic sensitivity, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 819–825.
[6] R. Li, A note on decay of correlation implies chaos in the sense of Devaney, Appl. Math. Model., 39 (2015), 6705–6710.
[7] R. Li, A note on chaos and the shadowing property, Int. J. Gen. Syst., 45 (2016), 675–688.
[8] R. Li, Y. Shi, Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces, Abstr. Appl.

Anal., 2014 (2014), 10 pages.
[9] R. Li, H.-Q. Wang, Y. Zhao, Kato’s chaos in duopoly games, Chaos Solitons Fractals, 84 (2016), 69–72.

[10] R. Li, X.-L. Zhou, A note on chaos in product maps, Turkish J. Math., 37 (2013), 665–675.
[11] T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115–2126. 2
[12] L. Snoha, V. Špitalský, A quantitative approach to transitivity and mixing, Chaos Solitons Fractals, 40 (2009), 958–965.

1, 2, 3, 3.4, 3, 3, 3.6, 3.7, 3, 3.8, 4
[13] X.-X. Wu, Chaos of transformations induced onto the space of probability measures, Internat. J. Bifur. Chaos Appl. Sci.

Engrg., 26 (2016), 12 pages.
[14] X.-X. Wu, A remark on topological sequence entropy, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 7 pages. 1
[15] X.-X. Wu, G.-R. Chen, Sensitivity and transitivity of fuzzified dynamical systems, Inform. Sci., 396 (2017), 14–23. 2
[16] X.-X. Wu, P. Oprocha, G.-R. Chen, On various definitions of shadowing with average error in tracing, Nonlinearity, 29

(2016), 1942–1972. 2
[17] X.-X. Wu, X. Wang, On the iteration properties of large deviations theorem, Internat. J. Bifur. Chaos Appl. Sci. Engrg.,

2016 (2016), 6 pages.
[18] X.-X. Wu, J.-J. Wang, G.-R. Chen, F -sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal.

Appl., 429 (2015), 16–26. 2
[19] X.-X. Wu, X. Wang, G.-R. Chen, On the large deviations of weaker types, Internat. J. Bifur. Chaos Appl. Sci. Engrg.,

2017 (2017), 12 pages. 2
[20] X.-X. Wu, L.-D. Wang, G.-R. Chen, Weighted backward shift operators with invariant distributionally scrambled subsets,

Ann. Funct. Anal., 8 (2017), 199–210.
[21] X.-X. Wu, L.-D. Wang, J.-H. Liang, The chain properties and average shadowing property of iterated function systems,

Qual. Theory Dyn. Syst., 2016 (2016), 9 pages.
[22] J.-C. Xiong, Chaos in a topologically transitive system, Sci. China Ser. A, 48 (2005), 929–939. 1


	Introduction
	Preliminaries
	Main results
	Conclusion

