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Abstract
This paper shows that every well-defined solution of the following max-type difference equation

xn+1 = max{
A

xn
,
A

xn−1
, xn−2}, n ∈ N0,

where A ∈ R and the initial conditions x−2, x−1, x0 are arbitrary non-zero real numbers is eventually periodic with period
three by using new iteration method for the more general nonlinear difference equations and inequality skills as well as the
mathematical induction. Our main results considerably improve results appearing in the literature. c©2017 All rights reserved.
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1. Introduction

Although difference equations which appear naturally as discrete analogues in the numerical solutions
of differential and delay differential equations have been predominantly studied so far (see, for example,
[11, 16, 21] and the references therein), the study of nonlinear difference equations which are not discrete
analogues of differential equations has been also of a great interest recently (see, for example, [7, 9, 13] and
the references therein). Recently, so called, max-type difference equations have attracted some attention
(see, for example, [6, 17, 20] and the references therein) because the max operator have great importance in
automatic control models (see, [15, 19]) and have wide applications in biology (see, [8]), ecology (see, [12,
18]), and physics (see, [4, 10]). However, the maxima operator is not a smooth function in n-dimensional
real vector space so that the techniques which use derivatives could be of almost no use, so the study of
max-type systems of difference equations become more difficult. In 2002, Mishev et al. [14] considered
the positive solutions of the following difference equation

xn+1 = max{
A

xn
,
B

xn−2
},n = 0, 1, 2, · · · ,
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where A, B are any positive coefficients and the initial values x−2, x−1, x0 are any positive numbers, and
proved that every positive solution is eventually periodic. In 2009, Elsayed and Stević [3] showed that
every well-defined solution of the difference equation

xn+1 = max{
A

xn
, xn−2}, n ∈ N0,

where A ∈ R is eventually periodic with period three. In [25], Xiao et al. showed that every well-defined
solution of the following difference equation

xn+1 = max{
β

xn
, xn−1}, n ∈ N0,

where the initial conditions x−1, x0 are arbitrary non-zero real numbers and β ∈ R, is eventually periodic
with period two. Sun et al. [24] studied the global behavior of the following max-type difference equation

xn = max{
1

xn−m
,
An

xn−r
}, n = 0, 1, 2, · · · ,

where {An}n>0 is a sequence of positive numbers with An ∈ (0, 1) for every n > 0 and supAn < 1, and
m, r ∈ {1, 2, 3, · · ·}, and the initial values are positive real number.

Motivated by this line of investigations, our aim here is to show that the solution of the following
max-type difference equation

xn+1 = max{
A

xn
,
A

xn−1
, xn−2}, n ∈ N0, (1.1)

where the initial conditions x−2, x−1, x0 are arbitrary non-zero real numbers and A ∈ R is eventually
periodic with period three. For closely related papers in this research area, see, for example, [1, 2, 5, 22, 23]
and the references therein.
Remark 1.1. Note that if A = 0, then the Eq. (1.1) becomes xn+1 = xn−2, from which it follows that every
solution is periodic with period three. Therefore, in the sequel we will consider the case A 6= 0.

2. Main results

2.1. An auxiliary result
In this section we will prove a simple auxiliary result which will be used many times in the rest of the

paper.

Lemma 2.1. Assume that {xn}∞n=−2 is a solution of Eq. (1.1) and there is k0 ∈ N0 ∪ {−2, −1} such that

xk0 = xk0+3, xk0+1 = xk0+4, xk0+2 = xk0+5. (2.1)

Then this solution is eventually periodic with period three.

Proof. We prove that

xk0 = xk0+3m, xk0+1 = xk0+1+3m, xk0+2 = xk0+2+3m (2.2)

for every m ∈ N, from which the lemma follows.
We use the method of induction. For m = 1, (2.2) becomes (2.1). Assume that (2.2) holds for 1 6 m 6

m0. From this and by using (1.1) and (2.1) as well as iterative method, one can obtain

xk0+3(m0+1) = max{
A

xk0+3m0+2
,

A

xk0+3m0+1
, xk0+3m0} = max{

A

xk0+2
,
A

xk0+1
, xk0} = xk0+3 = xk0 ,

xk0+1+3(m0+1) = max{
A

xk0+3m0+3
,

A

xk0+3m0+2
, xk0+3m0+1} = max{

A

xk0+3
,
A

xk0+2
, xk0+1} = xk0+4 = xk0+1,

xk0+2+3(m0+1) = max{
A

xk0+3m0+4
,

A

xk0+3m0+3
, xk0+3m0+2} = max{

A

xk0+4
,
A

xk0+3
, xk0+2} = xk0+5 = xk0+2,

the proof is completed.
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2.2. The case A > 0
In this section, we will consider the case A > 0 of Eq. (1.1). Firstly we prove another auxiliary result

which is incorporated in the following lemma, and then we formulate and prove the main results in this
section.

Lemma 2.2. Assume that A > 0. Then every solution of Eq. (1.1) is eventually positive if initial conditions satisfy
one of the following conditions

(i) x−2, x−1, x0 > 0;
(ii) x−1, x0 > 0, x−2 < 0;

(iii) x−2, x0 > 0, x−1 < 0;
(iv) x−2, x−1 > 0, x0 < 0;
(v) x0 > 0, x−2, x−1 < 0;

(vi) x−2 > 0, x−1, x0 < 0;
(vii) x−1 > 0, x−2, x0 < 0.

Proof. If x0 > 0 or x−1 > 0 or x−2 > 0, then one has

x1 = max{
A

x0
,
A

x−1
, x−2} > 0.

From this, (1.1) and by induction and iterative method it follows that xn > 0 for every n ∈ N0.

Theorem 2.3. Assume that A > 0. Then every solution of Eq. (1.1) with positive initial conditions is eventually
periodic with period three.

Proof. From Eq. (1.1), we can obtain that

x1 = max{
A

x0
,
A

x−1
, x−2}.

There are three cases to be considered.

Case 1. Assume that A
x0

> A
x−1

and A
x0

> x−2, then x1 = A
x0

, x−1 > x0, A
x−2

> x0, thus we have

x2 = max{
A

x1
,
A

x0
, x−1} = max{x0,

A

x0
, x−1}.

(a1) Assume that A
x0

> x−1 > x0, then x2 = A
x0

, and from the iterative method we have

x3 = max{
A

x2
,
A

x1
, x0} = max{x0, x0, x0} = x0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
, x0,

A

x0
} =

A

x0
,

x5 = max{
A

x4
,
A

x3
, x2} = max{x0,

A

x0
,
A

x0
} =

A

x0
.

Hence x3 = x0, x4 = x1, x5 = x2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, from the induction and iterative method we have

x3n = x0, x3n+1 =
A

x0
, x3n+2 =

A

x0
, n ∈ N0.

In the meantime, we can find the solution of Eq. (1.1) has the following form

{x−2, x−1, x0,
A

x0
,
A

x0
, x0,

A

x0
,
A

x0
, · · · }.
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(a2) Assume that x−1 > A
x0

> x0, then x2 = x−1, x0 > A
x−1

. From the induction and iterative method we
have

x3 = max{
A

x2
,
A

x1
, x0} = max{

A

x−1
, x0, x0} = x0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
,
A

x−1
,
A

x0
} =

A

x0
,

x5 = max{
A

x4
,
A

x3
, x2} = max{x0,

A

x0
, x−1} = x−1.

Hence x3 = x0, x4 = x1, x5 = x2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

x3n = x0, x3n+1 =
A

x0
, x3n+2 = x−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{x−2, x−1, x0,
A

x0
, x−1, x0,

A

x0
, x−1, · · · }.

(a3) Assume that x−1 > x0 > A
x0

, then x2 = x−1, x0 > A
x−1

and we have

x3 = max{
A

x2
,
A

x1
, x0} = max{

A

x−1
, x0, x0} = x0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
,
A

x−1
,
A

x0
} =

A

x0
,

x5 = max{
A

x4
,
A

x3
, x2} = max{x0,

A

x0
, x−1} = x−1.

Hence x3 = x0, x4 = x1, x5 = x2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

x3n = x0, x3n+1 =
A

x0
, x3n+2 = x−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{x−2, x−1, x0,
A

x0
, x−1, x0,

A

x0
, x−1, · · · }.

Case 2. Assume that x−2 > A
x0

and x−2 > A
x−1

, then x1 = x−2, x−1 > A
x−2

, x0 > A
x−2

, and we have

x2 = max{
A

x1
,
A

x0
, x−1} = max{

A

x−2
,
A

x0
, x−1}.

(b1) Assume that A
x0

> x−1 > A
x−2

, then x2 = A
x0

, x−2 > x0, and we have

x3 = max{
A

x2
,
A

x1
, x0} = max{x0,

A

x−2
, x0} = x0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
, x0, x−2} = x−2,

x5 = max{
A

x4
,
A

x3
, x2} = max{

A

x−2
,
A

x0
,
A

x0
} =

A

x0
.

Hence x3 = x0, x4 = x1, x5 = x2. From this and by Lemma 2.1 we have that the solution is eventually
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periodic with period three. Moreover, we have

x3n = x0, x3n+1 = x−2, x3n+2 =
A

x0
, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{x−2, x−1, x0, x−2,
A

x0
, x0, x−2,

A

x0
, · · · }.

(b2) Assume that x−1 > A
x0

> A
x−2

, then x2 = x−1, x0 > A
x−1

, and we have

x3 = max{
A

x2
,
A

x1
, x0} = max{

A

x−1
,
A

x−2
, x0} = x0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
,
A

x−1
, x−2} = x−2,

x5 = max{
A

x4
,
A

x3
, x2} = max{

A

x−2
,
A

x0
, x−1} = x−1.

Hence x3 = x0, x4 = x1, x5 = x2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

x3n = x0, x3n+1 = x−2, x3n+2 = x−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{x−2, x−1, x0, x−2, x−1, x0, x−2, x−1, · · · }.

(b3) Assume that x−1 > A
x−2

> A
x0

, then x2 = x−1, x0 > A
x−1

, and we have

x3 = max{
A

x2
,
A

x1
, x0} = max{

A

x−1
,
A

x−2
, x0} = x0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
,
A

x−1
, x−2} = x−2,

x5 = max{
A

x4
,
A

x3
, x2} = max{

A

x−2
,
A

x0
, x−1} = x−1.

Hence x3 = x0, x4 = x1, x5 = x2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

x3n = x0, x3n+1 = x−2, x3n+2 = x−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{x−2, x−1, x0, x−2, x−1, x0, x−2, x−1, · · · }.

Case 3. Assume that A
x−1

> x−2 and A
x−1

> A
x0

, then x1 = A
x−1

, x0 > x−1, and we have

x2 = max{
A

x1
,
A

x0
, x−1} = max{x−1,

A

x0
, x−1}.

(c1) Assume that x−1 > A
x0

, then x2 = x−1, x0 > A
x−1

, and we have

x3 = max{
A

x2
,
A

x1
, x0} = max{

A

x−1
, x−1, x0} = x0,
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x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
,
A

x−1
,
A

x−1
} =

A

x−1
,

x5 = max{
A

x4
,
A

x3
, x2} = max{x−1,

A

x0
, x−1} = x−1.

Hence x3 = x0, x4 = x1, x5 = x2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

x3n = x0, x3n+1 =
A

x−1
, x3n+2 = x−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{x−2, x−1, x0,
A

x−1
, x−1, x0,

A

x−1
, x−1, · · · }.

(c2) Assume that A
x0

> x−1, then x2 = A
x0

, A
x−1

> x0, and we have

x3 = max{
A

x2
,
A

x1
, x0} = max{x0, x−1, x0} = x0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
, x0,

A

x−1
} =

A

x−1
,

x5 = max{
A

x4
,
A

x3
, x2} = max{x−1,

A

x0
,
A

x0
} =

A

x0
.

Hence x3 = x0, x4 = x1, x5 = x2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

x3n = x0, x3n+1 =
A

x−1
, x3n+2 =

A

x0
, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{x−2, x−1, x0,
A

x−1
,
A

x0
, x0,

A

x−1
,
A

x0
, · · · }.

The proof is completed.

Theorem 2.4. Assume A > 0 and that initial conditions of Eq. (1.1) satisfy one of conditions (ii)-(vii) in Lemma
2.2. Then every such solution of Eq. (1.1) is eventually periodic with period three.

Proof. If initial conditions of Eq. (1.1) satisfy one of conditions (ii)-(vii) in Lemma 2.2, then by Lemma 2.2,
we can obtain that the corresponding solution of Eq. (1.1) is eventually positive. This means that there
is N ∈ N0 ∪ {−2, −1} such that xn > 0 for every n > N. In particular, we have that xN, xN+1, xN+2 > 0.
Since Eq. (1.1) is autonomous if {xn}∞n=−2 is a solution of Eq. (1.1), then yn = xn+N+2 is also a solution
of Eq. (1.1), but such that y−2, y−1, y0 > 0. Hence the problem is reduced to the case when all the initial
conditions are positive. Applying Theorem 2.3, the result follows.

In the next section, we will study the solutions of Eq. (1.1) with the condition x−2, x−1, x0 < 0.

Theorem 2.5. Assume A > 0 and x−2, x−1, x0 < 0. Then every solution of Eq. (1.1) is eventually periodic with
period three.

Proof. Since x−2, x−1, x0 < 0 and A > 0, by the induction and iterative method, we can obtain that xn < 0
for every n ∈ N. If we use the change yn = −xn, then Eq. (1.1) becomes

yn+1 = min{
A

yn
,
A

yn−1
, yn−2}, (2.3)

where yn > 0 for every n = −2, −1, 0, · · · .
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Now in order to prove the theorem, we can prove that such solutions of Eq. (2.3) are eventually
periodic with period three, from which the result follows. We have

y1 = min{
A

y0
,
A

y−1
, y−2}.

There are three cases to be considered.

Case 1. Assume that A
y0

6 A
y−1

and A
y0

6 y−2, then y1 = A
y0

, y−1 6 y0, A
y−2

6 y0, and we have

y2 = min{
A

y1
,
A

y0
, y−1} = min{y0,

A

y0
, y−1}.

(a1) Assume that A
y0

6 y−1 6 y0, then y2 = A
y0

, and we have

y3 = min{
A

y2
,
A

y1
, y0} = min{y0, y0, y0} = y0,

y4 = min{
A

y3
,
A

y2
, y1} = min{

A

y0
, y0,

A

y0
} =

A

y0
,

y5 = min{
A

y4
,
A

y3
, y2} = min{y0,

A

y0
,
A

y0
} =

A

y0
.

Hence y3 = y0, y4 = y1, y5 = y2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

y3n = y0, y3n+1 =
A

y0
, y3n+2 =

A

y0
, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{y−2, y−1, y0,
A

y0
,
A

y0
, y0,

A

y0
,
A

y0
, · · · }.

(a2) Assume that y−1 6 A
y0

6 y0, then y2 = y−1, y0 6 A
y−1

and we have

y3 = min{
A

y2
,
A

y1
, y0} = min{

A

y−1
, y0, y0} = y0,

y4 = min{
A

y3
,
A

y2
, y1} = min{

A

y0
,
A

y−1
,
A

y0
} =

A

y0
,

y5 = min{
A

y4
,
A

y3
, y2} = min{y0,

A

y0
, y−1} = y−1.

Hence y3 = y0, y4 = y1, y5 = y2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

y3n = y0, y3n+1 =
A

y0
, y3n+2 = y−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{y−2, y−1, y0,
A

y0
, y−1, y0,

A

y0
, y−1, · · · }.

(a3) Assume that y−1 6 y0 6 A
y0

, then y2 = y−1, y0 6 A
y−1

and we have

y3 = min{
A

y2
,
A

y1
, y0} = min{

A

y−1
, y0, y0} = y0,
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y4 = min{
A

y3
,
A

y2
, y1} = min{

A

y0
,
A

y−1
,
A

y0
} =

A

y0
,

y5 = min{
A

y4
,
A

y3
, y2} = min{y0,

A

y0
, y−1} = y−1.

Hence y3 = y0, y4 = y1, y5 = y2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

y3n = y0, y3n+1 =
A

y0
, y3n+2 = y−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{y−2, y−1, y0,
A

y0
, y−1, y0,

A

y0
, y−1, · · · }.

Case 2. Assume that y−2 6 A
y0

and y−2 6 A
y−1

, then y1 = y−2, y−1 6 A
y−2

, y0 6 A
y−2

, and we have

y2 = min{
A

y1
,
A

y0
, y−1} = min{

A

y−2
,
A

y0
, y−1}.

(b1) Assume that A
y0

6 y−1 6 A
y−2

, then y2 = A
y0

, y−2 6 y0, and we have

y3 = min{
A

y2
,
A

y1
, y0} = min{y0,

A

y−2
, y0} = y0,

y4 = min{
A

y3
,
A

y2
, y1} = min{

A

y0
, y0, y−2} = y−2,

y5 = min{
A

y4
,
A

y3
, y2} = min{

A

y−2
,
A

y0
,
A

y0
} =

A

y0
.

Hence y3 = y0, y4 = y1, y5 = y2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

y3n = y0, y3n+1 = y−2, y3n+2 =
A

y0
, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{y−2, y−1, y0, y−2,
A

y0
, y0, y−2,

A

y0
, · · · }.

(b2) Assume that y−1 6 A
y0

6 A
y−2

, then y2 = y−1, y0 6 A
y−1

, and we have

y3 = min{
A

y2
,
A

y1
, y0} = min{

A

y−1
,
A

y−2
, y0} = y0,

y4 = min{
A

y3
,
A

y2
, y1} = min{

A

y0
,
A

y−1
, y−2} = y−2,

y5 = min{
A

y4
,
A

y3
, y2} = min{

A

y−2
,
A

y0
, y−1} = y−1.

Hence y3 = y0, y4 = y1, y5 = y2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

y3n = y0, y3n+1 = y−2, y3n+2 = y−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{y−2, y−1, y0, y−2, x−1, y0, y−2, y−1, · · · }.
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(b3) Assume that y−1 6 A
y−2

6 A
y0

, then y2 = y−1, y0 6 A
y−1

, and we have

y3 = min{
A

y2
,
A

y1
, y0} = min{

A

y−1
,
A

y−2
, y0} = y0,

y4 = min{
A

y3
,
A

y2
, y1} = min{

A

y0
,
A

y−1
, y−2} = y−2,

y5 = min{
A

y4
,
A

y3
, y2} = min{

A

y−2
,
A

y0
, y−1} = y−1.

Hence y3 = y0, y4 = y1, y5 = y2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

y3n = y0, y3n+1 = y−2, y3n+2 = y−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{y−2, y−1, y0, y−2, y−1, y0, y−2, y−1, · · · }.

Case 3. Assume that A
y−1

6 y−2 and A
y−1

6 A
y0

, then y1 = A
y−1

, y0 6 y−1, and we have

y2 = min{
A

y1
,
A

y0
, y−1} = min{y−1,

A

y0
, y−1}.

(c1) Assume that y−1 6 A
y0

, then y2 = y−1, y0 6 A
y−1

, and we have

y3 = min{
A

y2
,
A

y1
, y0} = min{

A

y−1
, y−1, y0} = y0,

y4 = min{
A

y3
,
A

y2
, y1} = min{

A

y0
,
A

y−1
,
A

y−1
} =

A

y−1
,

y5 = min{
A

y4
,
A

y3
, y2} = min{y−1,

A

y0
, y−1} = y−1.

Hence y3 = y0, y4 = y1, y5 = y2. From this and by Lemma 2.1 we have that the solution is eventually
periodic with period three. Moreover, we have

y3n = y0, y3n+1 =
A

y−1
, y3n+2 = y−1, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{y−2, y−1, y0,
A

y−1
, y−1, y0,

A

y−1
, y−1, · · · }.

(c2) Assume that A
y0

6 y−1, then y2 = A
y0

, A
y−1

6 y0, and we have

y3 = min{
A

y2
,
A

y1
, y0} = min{y0, y−1, y0} = y0,

y4 = min{
A

y3
,
A

y2
, y1} = min{

A

y0
, y0,

A

y−1
} =

A

y−1
,

y5 = min{
A

y4
,
A

y3
, y2} = min{y−1,

A

y0
,
A

y0
} =

A

y0
.

Hence y3 = y0, y4 = y1, y5 = y2. From this and by Lemma 2.1 we have that the solution is eventually
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periodic with period three. Moreover, we have

y3n = y0, y3n+1 =
A

y−1
, y3n+2 =

A

y0
, n ∈ N0,

and we can find the solution of Eq. (1.1) has the following form

{y−2, y−1, y0,
A

y−1
,
A

y0
, y0,

A

y−1
,
A

y0
, · · · }.

The proof is completed.

2.3. The case A < 0.

In this section we study the solutions of (1.1) when A < 0.

Theorem 2.6. Assume that A < 0. Then every solution of Eq. (1.1) is eventually periodic with period three.

Proof. There are eight cases to be considered.

Case 1. x−2, x−1, x0 > 0. Since A < 0 we have

x1 = max{
A

x0
,
A

x−1
, x−2}.

From this, (1.1) and by induction we have xn > 0 for every n ∈ N0. Hence

xn+1 = max{
A

xn
,
A

xn−1
, xn−2} = xn−2,

from which the result follows in this case.

Case 2. x−2, x0 > 0, x−1 < 0. Since A < 0 we have

x1 = max{
A

x0
,
A

x−1
, x−2} = max{

A

x−1
, x−2} > 0.

(a1) If A
x−1

> x−2, then x1 = A
x−1

, x−1 > A
x−2

. Further we have

x2 = max{
A

x1
,
A

x0
, x−1} = max{x−1,

A

x0
, x−1} < 0.

There exist two subcases.

(a11) If x−1 > A
x0

, then x2 = x−1, x0 6 A
x−1

, we have

x3 = max{
A

x2
,
A

x1
, x0} = max{

A

x−1
, x−1, x0} =

A

x−1
> 0,

x4 = max{
A

x3
,
A

x2
, x1} = max{x−1,

A

x−1
,
A

x−1
} =

A

x−1
> 0,

x5 = max{
A

x4
,
A

x3
, x2} = max{x−1, x−1, x−1} = x−1 < 0,

x6 = max{
A

x5
,
A

x4
, x3} = max{

A

x−1
, x−1,

A

x−1
} =

A

x−1
> 0,

x7 = max{
A

x6
,
A

x5
, x4} = max{x−1,

A

x−1
,
A

x−1
} =

A

x−1
> 0.



C. Y. Wang, X. T. Jing, X. H. Hu, R. Li, J. Nonlinear Sci. Appl., 10 (2017), 4648–4661 4658

Hence x5 = x2, x6 = x3, x7 = x4, from which the result follows in the case.

(a12) If A
x0

> x−1, then x2 = A
x0

, x0 > A
x−1

, we have

x3 = max{
A

x2
,
A

x1
, x0} = max{x0, x−1, x0} = x0 > 0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
, x0,

A

x−1
} = x0 > 0,

x5 = max{
A

x4
,
A

x3
, x2} = max{

A

x0
,
A

x0
,
A

x0
} =

A

x0
< 0,

x6 = max{
A

x5
,
A

x4
, x3} = max{x0,

A

x0
, x0} = x0 > 0,

x7 = max{
A

x6
,
A

x5
, x4} = max{

A

x0
, x0, x0} = x0 > 0.

Hence x5 = x2, x6 = x3, x7 = x4, from which the result follows in the case.

(a2) If x−2 > A
x−1

, then x1 = x−2, A
x−2

> x−1, Further we have

x2 = max{
A

x1
,
A

x0
, x−1} = max{

A

x−2
,
A

x0
, x−1} < 0.

Now we have three subcases.

(a21) If A
x0

> A
x−2

> x−1, then x2 = A
x0

, x0 > x−2, then we have

x3 = max{
A

x2
,
A

x1
, x0} = max{x0,

A

x−2
, x0} = x0 > 0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
, x0, x−2} = x0 > 0,

x5 = max{
A

x4
,
A

x3
, x2} = max{

A

x0
,
A

x0
,
A

x0
} =

A

x0
< 0,

x6 = max{
A

x5
,
A

x4
, x3} = max{x0,

A

x0
, x0} = x0 > 0,

x7 = max{
A

x6
,
A

x5
, x4} = max{

A

x0
, x0, x0} = x0 > 0.

Hence x5 = x2, x6 = x3, x7 = x4, from which the result follows in the case.

(a22) If A
x−2

> A
x0

> x−1, then x2 = A
x−2

, x−2 > x0, then we have

x3 = max{
A

x2
,
A

x1
, x0} = max{x−2,

A

x−2
, x0} = x−2 > 0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x−2
, x−2, x−2} = x−2 > 0,

x5 = max{
A

x4
,
A

x3
, x2} = max{

A

x−2
,
A

x−2
,
A

x−2
} =

A

x−2
< 0,

x6 = max{
A

x5
,
A

x4
, x3} = max{x−2,

A

x−2
, x−2} = x−2 > 0,

x7 = max{
A

x6
,
A

x5
, x4} = max{

A

x−2
, x−2, x−2} = x−2 > 0.

Hence x5 = x2, x6 = x3, x7 = x4, from which the result follows in the case.
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(a23) If A
x−2

> x−1 > A
x0

, then x2 = A
x−2

, x−2 > x0, then we have

x3 = max{
A

x2
,
A

x1
, x0} = max{x−2,

A

x−2
, x0} = x−2 > 0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x−2
, x−2, x−2} = x−2 > 0,

x5 = max{
A

x4
,
A

x3
, x2} = max{

A

x−2
,
A

x−2
,
A

x−2
} =

A

x−2
< 0,

x6 = max{
A

x5
,
A

x4
, x3} = max{x−2,

A

x−2
, x−2} = x−2 > 0,

x7 = max{
A

x6
,
A

x5
, x4} = max{

A

x−2
, x−2, x−2} = x−2 > 0.

Hence x5 = x2, x6 = x3, x7 = x4, from which the result follows in the case.

Case 3. x0 > 0, x−2, x−1 < 0, since A < 0, we have

x1 = max{
A

x0
,
A

x−1
, x−2} =

A

x−1
> 0, x2 = max{

A

x1
,
A

x0
, x−1} = max{x−1,

A

x0
, x−1}.

Now we have two cases.

(b1) If x−1 > A
x0

, then we have x2 = x−1, x0 6 A
x−1

. Further we have

x3 = max{
A

x2
,
A

x1
, x0} = max{

A

x−1
, x−1, x0} =

A

x−1
> 0,

x4 = max{
A

x3
,
A

x2
, x1} = max{x−1,

A

x−1
,
A

x−1
} =

A

x−1
> 0,

x5 = max{
A

x4
,
A

x3
, x2} = max{x−1, x−1, x−1} = x−1 < 0,

x6 = max{
A

x5
,
A

x4
, x3} = max{

A

x−1
, x−1,

A

x−1
} =

A

x−1
> 0.

Hence x4 = x1, x5 = x2, x6 = x3, from which the result follows in the case.

(b2) If A
x0

> x−1, then we have x2 = A
x0

, x0 > A
x−1

. Further we have

x3 = max{
A

x2
,
A

x1
, x0} = max{x0, x−1, x0} = x0 > 0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
, x0,

A

x−1
} = x0 > 0,

x5 = max{
A

x4
,
A

x3
, x2} = max{

A

x0
,
A

x0
,
A

x0
} =

A

x0
< 0,

x6 = max{
A

x5
,
A

x4
, x3} = max{x0,

A

x0
, x0} = x0 > 0,

x7 = max{
A

x6
,
A

x5
, x4} = max{

A

x0
, x0, x0} = x0 > 0.

Hence x5 = x2, x6 = x3, x7 = x4, from which the result follows in the case.

Case 4. x−2, x−1, x0 < 0. Since A < 0, we have

x1 = max{
A

x0
,
A

x−1
, x−2} = max{

A

x0
,
A

x−1
} > 0.

Now we have two cases.
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(c1) If A
x0

> A
x−1

, then x1 = A
x0

. Further we have

x2 = max{
A

x1
,
A

x0
, x−1} = max{x0,

A

x0
, x−1} =

A

x0
> 0,

x3 = max{
A

x2
,
A

x1
, x0} = max{x0, x0, x0} = x0 < 0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
, x0,

A

x0
} =

A

x0
> 0,

x5 = max{
A

x4
,
A

x3
, x2} = max{x0,

A

x0
,
A

x0
} =

A

x0
> 0.

Hence x3 = x0, x4 = x1, x5 = x2, from which the result follows in the case.

(c2) If A
x−1

> A
x0

, then x1 = A
x−1

, x0 > x−1. Further we have

x2 = max{
A

x1
,
A

x0
, x−1} = max{x−1,

A

x0
, x−1} =

A

x0
> 0,

x3 = max{
A

x2
,
A

x1
, x0} = max{x0, x−1, x0} = x0 < 0,

x4 = max{
A

x3
,
A

x2
, x1} = max{

A

x0
, x0,

A

x−1
} =

A

x−1
> 0,

x5 = max{
A

x4
,
A

x3
, x2} = max{x−1,

A

x0
,
A

x0
} =

A

x0
> 0.

Hence x3 = x0, x4 = x1, x5 = x2, from which the result follows in the case.
In the same way, when x−2 > 0, x−1, x0 < 0 or x−1 > 0, x−2, x0 < 0 or x−2, x−1 > 0, x0 < 0 or

x−1, x0 > 0, x−2 < 0, we can imply the result in the case. This completes the proof of the theorem.

From Remark 1.1 and Theorems 2.3, 2.4, 2.5, 2.6 the following result follows.

Theorem 2.7. Let A ∈ R, then every well-defined solution of Eq. (1.1) is eventually periodic with period three.
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