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Abstract

In this manuscript, we construct three viscosity implicit iteration schemes based on generalized contractions for strictly
pseudo-contractive mappings. The first scheme is used to approximate a fixed point of a single strictly pseudo-contractive
mapping, the second scheme is used to approximate a common fixed point of a finite family of strictly pseudo-contractive
mappings, the third scheme is used to approximate a common fixed point of a countable family of strictly pseudo-contractive
mappings. Furthermore, three strong convergence theorems based on the purposed iterative schemes are established in the
framework of Banach spaces. Finally, three numerical examples are also given to show the efficiency and implementation of our
schemes. The main results of this paper modify and improve many important recent results in the literature. (©2017 All rights
reserved.
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1. Introduction

Throughout this paper, we assume that X is a real Banach space and X* is the dual space of X. Let C
be a subset of X. The duality mapping ] : X — 2X" is defined by

Jx = {x* € X*: (x,x*) = ||x||* = |[x*]|?}, VxeX

It is well-known that if X is a Hilbert space, then | is the identity mapping and if X is smooth, then ] is
single-valued, which is denoted by j.
Let T be a self-mapping of C and F(T) be the set of fixed points of mapping T. That is,

F(T)={xe C:Tx =x}
Recall that T : C — C is said to be L-Lipschitzian if for all x,y € C, there exists a constant L > 0 such that
[Tx—Ty| < Lfjx—yl-

If 0 < L <1, then T is a contraction and if L =1, then T is a nonexpansive mapping.
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T:C — Cis called to be p-strictly pseudo-contraction, if there exists a fixed constant n € (0,1) and
some j(x —y) € J(x —y) such that

(Tx —Ty,j(x—y)) < Hx—y||2—p||(I—T)x— (I—T)y||2, vx,y € C,
or equivalently
(I=Tx—=(I=Ty,jlx—y)) > ul(I-T)x—(I-Ty|? VvxyeC.

It is well-known that every p-strictly pseudocontractive mapping is 1+T”-Lipschitzian.
Let (X, d) be a metric space. A mapping f : X — X is called a contraction, if there exists a constant
o € [0,1) such that
[f0x) = fY)ll < aflx —yll, vy eC

Let N and R* be the set of all positive integers and all positive real numbers, respectively. A mapping
P : RT — R is said to be an L-function if ¥ (0) = 0, P(t) > 0 for each t > 0 and for every s > 0, there
exists u > s such that {(t) < s for each t € [s,u]. As a consequence, every L-function 1 satisfies \(t) < t
for each t > 0.

A mapping f : X — X is said to be a ({, L)-contraction if { : R* — R* is said to be an L-function and
d(f(x), f(y)) < ¥(d(x,y)), for all x,y € X, x # y.

A mapping f : X — X is said to be a Meir-Keeler type mapping if for each € > 0 there exists o = d(e) >
0 such that for each x,y € X, with € < d(x,y) < € + 9, we have d(f(x), f(y)) < e.

Proposition 1.1 ([7]). Let (X, d) be a metric space and f : X — X be a mapping. The following assertions are
equivalent:

(i) fis a Meir-Keeler type mapping;
(ii) there exists an L-function \ : Rt — R™ such that f is a (\, L)-contraction.

Proposition 1.2 ([15]). Let C be a convex subset of a Banach space X and f : C — C be a Meir-Keeler type
mapping. Then, for each € > 0 there exists v € (0,1) such that

Ix—yll = e implies |[f(x) —f(y)|| < rllx—yll.

In this paper, generalized contraction mappings refer to Meir-Keeler type mappings or (1, L)- contrac-
tions and we assume that the L-function from the definition of ({, L)-contraction is continuous, strictly
increasing and lim_,, 1(t) = 0o, where n(t) =t —{(t) for all t € R™.

Fixed point theory plays a very important role for solving all kinds of problems, such as variational
inequality problems in Hilbert spaces or Banach spaces, equilibrium problems, optimization problems
and so on. A well-known iteration method for approximating fixed points of a nonexpansive mapping
is the viscosity approximation method introduced by Moudafi [8] in 2000. Later, the explicit viscosity
method for nonexpansive mappings was proposed in the framework of Hilbert spaces by Xu [17] in 2004.
For arbitrary x; € H, let {x,,} be a sequence in H defined by

Xni1 = Onf(xn) + (1 —on)Txn, YNEN, (1.1)

where f and T are contractions and nonexpansive mappings from H onto itself, respectively. Under certain
assumptions imposed on the parameters, the sequence {x,} generated by (1.1) converges strongly to the
fixed point x* of T which also solves the following variational inequality:

(I—f)x",x—x") >0, VxeFT). (1.2)

The implicit midpoint rule is a powerful method for solving ordinary differential equations; see [1, 2, 4,
6,12, 18, 20] and the references therein. Recently, Xu et al. [18] considered the following viscosity implicit
midpoint rule:

Xn +Xn+1

5 ) ¥neN (1.3)

Xn+1 = o f(xn) + (1 —oan)T(



Q. Q. Cheng, Y. F. Su, J. Nonlinear Sci. Appl., 10 (2017), 46114627 4613

They proved that the iterative sequence defined by (1.3) converges strongly to a fixed point of T which
solves the variational inequality (1.2) in Hilbert spaces. In the same year, Ke et al. [6] generalized the
viscosity implicit midpoint rule of Xu et al. [18] to the following two viscosity implicit rules:

Xn41 = Xnf(xn) + (1 — ) T(Brxn + (1 —Bn)Xnt1), (1.4)

and
Xni41l = GnXn + Brf(xn) +¥nT(Onxn +(1— 5n)xn+1)/ (1-5)

where f and T are still contractions and nonexpansive mappings from H onto itself, respectively. They
obtained that the sequence {x,,} generated by (1.4) and (1.5) converges strongly to a fixed point of non-
expansive mapping T, which also solves variational inequality (1.2). In 2016, Yan et al. [19] extended
the main results of Ke et al. [6] from Hilbert spaces to uniformly smooth Banach spaces and replaced
strict contractions by generalized contractions. They proved that the sequence generated by (1.5) con-
verges strongly to a fixed point x* of nonexpansive mapping T, which is also the solution of the following
variational inequality in Banach spaces:

(I—1)x",j(x—x%)) >0, V¥xeFT). (1.6)
Very recently, Fan et al. [5] proposed the viscosity approximation method:

Xn+4+1 = GnXn + an(xn) +Ynsnxn/ (17)

where Spx = (1 —=An)x +AnTx, T and f be a strictly pseudo-contractive map and contractions, respec-
tively. Under certain assumptions imposed on the parameters, they proved that the sequence {x.,} gener-
ated by (1.7) converges strongly to the fixed point x* of T which solves the variational inequality (1.6) in
uniformly smooth Banach spaces.

Then the following questions naturally arise in connection with above results:

(i) Can we extend the iterative process (1.7) to a general viscosity implicit approximation iterative
process?
(ii) Can we replace strict contractions by generalized contractions?
(iii) Can we construct an iterative process for approximating a common fixed point of a finite family of
strictly pseudo-contractive mappings?
(iv) Can we construct an iterative process for approximating a common fixed point of a countable family
of strictly pseudo-contractive mappings?

The purpose of this paper is to give an affirmative answer to these questions mentioned above. And the
structure of this paper is organized as follows: In Section 2, we give some basic definitions and lemmas
which will be used in proving our main results. In Section 3, we present three generalized viscosity
implicit iteration schemes based on generalized contractions for strictly pseudo-contractive mappings
and obtain strong convergence theorems based on the proposed iterative schemes in the framework of
Banach spaces. In Section 4, we give three numerical examples to show the efficiency and implementation
of our schemes.

2. Preliminaries

Let S(X) ={x € X : ||x|| = 1}. Let the function px : [0, c0] — [0, o] be the modulus of smoothness of X
defined by

x+y| +||x—
ox (1) = sup( YL el

A Banach space X is said to be uniformly smooth if pr(t) — 0ast — 0. A typical example of uniformly
smooth Banach spaces is LP, where p > 1. More precisely, LP is min{p, 2}-uniformly smooth for every

—1:xeS(X), [yl <tk
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p > 1. Let q be a fixed real number with 1 < q < 2. Then a Banach space X is said to be g-uniformly
smooth if there exists a constant ¢ > 0 such that x(t) < ct9 for all t > 0. In a smooth Banach space, | is
single-valued. In a uniformly smooth Banach space, | is uniformly continuous on bounded subsets.

To obtain the result of this paper, we also need the following lemmas and definition.

Lemma 2.1 ([9]). Let X be a real smooth Banach space. Suppose one of the followings holds:

(i) j is uniformly continuous on any bounded subset of X.

(i) (x=y,j(x) =jy)) < [x—yl? forallx,y € X.
(iii) For any bounded subset D of X, there is a c such that

(x—y,i(x) —jly)) <clllx—yl), VxyeD,

where c satisfies limy_, o+ @ =0.

Then, for any € > 0 and any bounded subset C there is > 0 such that
1t + (1= )yl < 2t(x, jy) +2te + (1 - 20) [y
foranyx,y € Cand t € [0,9).

Definition 2.2 ([10]). Let C be a nonempty subset of a Banach space X and {T } be a sequence of mappings
from C into X with (_; F(Ta) # 0. For any bounded subset B of C, we say that {T,,} satisfies the PU-
condition, if there exists a continuous and increasing function hg : R* — RY, and for all k,1 € N such
that

hB(O) :0, lim sup hB(HTk(U—T[(UH) =0. (21)

=00 weB

Lemma 2.3 ([10]). Let {Tn} be a sequence of mappings from C into X. Suppose that for any bounded subset B of C,
there exists a continuous and increasing function hg : Rt — R satisfying (2.1). Then the following hold:

(i) For each x € C,{Tn} converges strongly to some point of C.
(ii) If the mapping T : C — X be defined by Tx = limy o Tnx, for all x € C, then limy, o sup ,, g hp(||[Tw —
Tawl|) = 0. Moreover, the properties of hg imply that

lim sup ||[Tw—Thwl| =0.
Tl—)OOweB

Lemma 2.4 ([14]). Let {xn} and {zn} be bounded sequences in a Banach space X and let {ty} be a sequence in [0, 1]
with 0 < liminf, o Tn <limsup, _,  Tn < 1. Suppose Xxn11 = Tnzn + (1 —Tn)xn for all integers n > 0 and
limsup, ., (l|znt1 —znll = [Xn+1 —Xn||) < 0. Then, lim, .o ||zn —xn|| = 0.

Lemma 2.5 ([17]). Assume that {an} is a sequence of nonnegative real numbers such that
An+1 < (1-bn)an+cn,

where by, is a sequence in (0,1) and {cn} is a sequence such that
(i) X n_1bn =00
(i) limsup,, g~ <0o0r 3> 3 ;lcnl < oo.

Then limp o0 an, = 0.

Let C and K be subsets of a Banach space X. A mapping P from C into K is called sunny [3] if
P(Px +t(x — Px)) = Px for x € C with Px+t(x —Px) € C and t > 0. The following is proved in [11]; see
also [16].
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Lemma 2.6 ([11]). Let E be a smooth Banach space and let | be the duality mapping from E into E*, that is,
x,J(x)) = |[x|> = IJX)||? for all x € E. Let C be a convex subset of E, let K be a subset of C and let P be a
retraction from C onto K. Then the following are equivalent:

(i) (x—Px,J(Px—y)) =>0forallx € Candy € K;
(ii) P is both sunny and nonexpansive.

Hence, there is at most one sunny nonexpansive retraction from C onto K. Note that if E is a Hilbert
space and K is closed and convex, then the metric projection and the sunny nonexpansive retraction from
C onto K coincide.

Lemma 2.7 ([15]). Let C be a closed convex subset of a smooth Banach space E. Let K be a subset of C and let P be
the unique sunny nonexpansive retraction from C onto K. Let ® be a mapping on C, and let z belong to K. Then
the following are equivalent:

(i) zis a fixed point of P o @;
(ii) z is a solution of a variational inequality (Pz—z,J(z—y)) > 0 forall y € K.

Lemma 2.8 ([13]). Let C be a nonempty closed and convex subset of a uniformly smooth Banach space X. Let
T : C — C be a nonexpansive mapping such that F(T) # (0 and f : C — C be a generalized contraction mapping.
Then {x+} defined by x¢ = tf(x¢) + (1 —t)Tx¢ for t € (0,1), converges strongly to & € F(T), which solves the
variational inequality:

(f(R) —%,j(z—R)) <0, VzeFT). (2.2)

From Lemma 2.7, we know that, let P be the unique sunny nonexpansive retraction from C onto F(T),
the variational inequality (2.2) is equivalent to P o f(z) = z, that is, z is a fixed point of P o f.

Lemma 2.9 ([13]). Let C be a nonempty closed and convex subset of a uniformly smooth Banach space X. Let
T : C — C be a nonexpansive mapping such that F(T) # ( and f : C — C be a generalized contraction mapping.
Assume that {x.} defined by x¢ = tf(x¢) + (1 —1t)Tx¢ for t € (0,1), converges strongly to X € F(T) as t — 0.
Suppose that {xn} is a bounded sequence such that x, — Txn, — 0as n — oo. Then

limsup(f(%) —%,j(xn —%)) <O0.

n—o0

3. Main results

Theorem 3.1. Let X be a real uniformly smooth Banach space and C be a nonempty bounded closed convex subset
of X. Let T: C — C be a p-strictly pseudo-contractive mapping such that F(T) # 0 and f : C — C a generalized
contraction mapping. Pick any xo € C. Let {xn} be a sequence generated by the following algorithm

Xnt1 = &nXn + Bnf(xn) + ¥nSn(dnxn + (1 —0n)xn41), 3.1)
where Spyx =: (1 —An)x + AnTx and assume that {on}, {Bn), {yn), {On} and {An} are five sequences in [0,1]
satisfying the following conditions:
i) on+Pnt+yn=1
(i) limn oo otni1 —an| =0and 0 <liminf, .o ot <limsup, | on <1,
(iii) Z?lo:() Bn =00, limp 00 Bn=0;
(iv) 0 <dn <On1 <1,
(V) limy, 00 |}\n+1 —Anl =0.
Then sequence {xn } converges strongly to a fixed point X of T, which is also the solution of the variational inequality
(I-1)%,j(x—=%)) >0, VvxeFT). (3.2)

Moreover, assume that P is the unique sunny nonexpansive retraction from C onto F(T), the variational inequality
(3.2) is equivalent to P o f(%) = X.
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Proof. First, we show that Sy, is nonexpansive, for all n > 0. Indeed, for all x,y € C, taking
0<e<pTx—Ty—(x—y)l
by Lemma 2.1, we have

ISnx = Snyl? = (1 =An)x +AnTx = (1 =An)y = AnTy|?
= [[(1=An) (x —y) +An(Tx = Ty)|?
<20 (Tx =Ty, i(x —y)) +2eAn + (1 —2A0) ||x —y]?
< 2 (|lx =yl = | Tx =Ty — (x—y)|*)
+(1—=220)Ix —yI* +2eAn
< x=yl? = 2np Tx = Ty — (x = y)|* + 2eAn
< |x =yl
It is obvious that for eachn € N, x € F(S,,) & x € F(T). So, F(Sn) = F(T) # 0.

Next, we show that limy, e [|[Xni1 —Xn| = 0. Set z,, = W, Yn = Onxn + (1 —0n)Xni1. We
obtain that

Xn+4+2 — Xn+1Xn+1 X 1 — XnX

1—ony1 1—oan
_ H Bn+lf(xn+l) +'Yn+1sn+1yn+1 B Bnf(xn) +Ynsnyn ||
1—onqg1 1—on
N Brt1 Yn+1 S S
= Hm(f(xnﬂ) —flxn)) + m( n+1Yn+1— Snyn)
n n
1—any1 1—an 1—ans1 1—an (33)
= ||1f*;“+1(f(xn+1) = o))+ 1 Sty — Snyn)
n n
b P P i) - Syl
1—ony1 T—an
< Brni1 Yn+1 S S
S 1= (anrllb(HXn"‘l 7X“||) + 1— otnaq ” n+1Yn+1 — nUnH
PPt P ) sl

1_(xn+1 1_(XTL

Since C is a nonempty bounded closed convex subset of X, then {xn}, {yn} and {Ty,} are bounded. Hence
there exists M = sup, - o{l|Tyn — yn|/}. Again from (3.1) and the property of S, we have

“Sn+lyn+1 - SnynH - HSnJrlynJrl - Sn+1yn + Sn+1yn - Snyn”
< Yn+1 = Ynll + [T =Ans1)Yn +Ani1Tyn
— (1 =2M)yn —AnTyn|| (3.4)

= Hyn—!—l _ynH + |}\n+1 - )\n|HTUn _UnH
< ”yn+1 _ynH + M|)\n+1 _}\n|-
Also,
HUnJrl _ynH = H6n+1Xn+l + (1 - 6T1+1)XTL+2 —dnxn — (1 - 5n)xn+1H
= [(1 = 8n+1)(Xn+2 —Xn11) + On(Xns1 —xn )|l (3.5)

< (1T —=0nt1)|IXnt2 = Xnt1l] + 0nl[Xnt1 — xnl,



Q. Q. Cheng, Y. F. Su, J. Nonlinear Sci. Appl., 10 (2017), 46114627 4617

and
IXn+2 = Xni1l| = [[otns1Xns1 + Brt1f(Xns1) + Yn+1Sn+1Yns1

— otnXn — Bnf(xn) = ¥nSnynl|

= H‘XnJrl (XnJrl —Xn) + Brt1 [f(xn+1) — f(xn)]
+VYn+1(Snt1Yn+1 — Snyn) + (i1 — o )xn
+ (Brs1 —Bn)f(xn) + (Yne1 —¥n)Snynll

= Ho‘n—l-l (Xn—i—l —Xn) + Brt1 [f(xn—H) —f(xn)] (3.6)
+¥Yn+1(Sn+1Ynt1 — Snyn) + (dnt1— otn) (Xn — Snyn)
+ (Br+1— Bn) (f(xn) — Snyn)|l

< o1 X1 — xn | + B (xn+1 —xall)
+ o1 — onlllXn = Snynll + 1Bnt1 — Bull[f(xn) — Snyn |l
+Vn+1lISn+1Yn+1 — Snynll-

Substituting (3.4) and (3.5) into (3.6), we obtain that

On+1+ on + VP |01 — n
e et i vt L RITY
Yntil( n+1) T—vYnt1(1—0n41) (37)
Brs1— Bl M '
+ —1Pnat = P FE00m) = Snynl| + 7= 1Ans1 = Anl

1—vns1(1—=0n41 1—vni1(1—=0n41

Substituting (3.7), (3.5) and (3.4) into (3.3), we obtain that

B + Yrnt1(1—=0n41) % 41+ VYnt10n + Prnrid Yn+10n

Znt1 —zn| < Hxn41 —x
lzn+1 nl 1—oani 1—oani1 1—vns1(1—=0n41) 1—oani1 e nl
Yrn+1(l—0n41) |0(n+1 — Op|
+ X Xn—3S
It T yYnaa(l— ) 1 Sntnl
Yn+1(1 - 6n+1) |Bn+1 — Bn| Bn+1 Bn
+ 1 X + | - N[f(xn) —S
Tmr1 T vmnt(—8ut) T angs 1o 110n) = Snyn]
Yn+1 (1 — 6n+1) 'Yn—b—lM Yn+1M
+1 X + HAns1 —A
[T PN ([ A R e
Ynt+10n + Bt + 'Yn—b—l(l - 6TL+1)(XTL+1
< [Xn41—Xn|
1 —vnt1(1=0n1)](1— any1)
|0(n+1 - (xn| ”511—0—1 - Bn| Bn+1 Bn
+ Xn — S + +] - I
1_Vn+1(1_6n+1)” " nUnH 1_'\/n+1(1_6n+1) 1_o‘n+1 1—on
M M
£(xn) — Snynl| + [— ! + At — A

1=vni1(1=0n41) 1—oni1
Brt1M+VYnt1(dni1—0n)

IR ey [ e Ll
i e e e R e
I£00) = Syl + [ YTy
< 1= P g 4 e, 5y
T T T 0 S
1 Yn+1tM n Yn+1M ]H7\n+1 —7\nH-

1 _Yn+1(1 - 6n+1) 1— Kn+1
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Since C is a nonempty bounded closed convex subset of X, then {xn}, {yn}, {f(xn)} and {Snyn} are
bounded. Hence |xn —Snyn|| and ||f(xn) — Snyn|| are bounded. Again from conditions (ii), (iii) and
(v), we have

limsup(|[zn1—2nl = [Xnt1 —xnll) <O
n—oo

By using Lemma 2.4, we have
lim ||z —xn| =0.
n—,oo

Therefore,

lim |[xn41—Xnl| = lm (1 —on)|lzn —xn| =0.
n—oo n—oo

Next, we prove that limn_, ||[Xxn — Snxn|| = 0. Since

[Xn —Snxnll < [[xn —Xni1ll + [Xnt1 — Snxall, (3.8)
also,
HXnJrl - SanH = H(ann + an(xn) +Ynsn(5nxn + (1 - STL)XTLJrl) - SanH
= ”(Xn(xn - Snxn) + Bn(f(xn) - Snxn)
+Yn [Sn(énxn +(1— én)xn—o—l) — SnXn] || (39)

< O(n”xn - Snxn” + Bn”f(xn) - SanH
+¥Yn(1—=8n)[[Xn1 —xnl-
Substituting (3.9) into (3.8), we obtain that

1+ 1-5
Br 1) — Sy | 4 S =8n)y

1—on 1—

[Xn —Snxnll <

From conditions (ii), (iii) and limy_,« ||Xn+1 — Xn || = 0, we have
lim ||xn —Snxn|| =0.
— 00

Let {x(} be a sequence defined by x{ = tf(x¢) + (1 —t)Snx¢ for t € (0,1), from Lemma 2.8, {x} converges
strongly to X € F(S,,) = F(T), which solves the variational inequality:

(f(]) —%,j(x —%)) <0, VxeFT),

that is,
(I—"F)%,j(x—%)) >0, VxeFT).

Moreover, from Lemma 2.7, we have P o f(X) = X, where P is the unique sunny nonexpansive retraction
from C onto F(T). Again since {x,,} is bounded and limn_, ||[Xn — Snxn|| = 0, by Lemma 2.9, we have

limsup(f(R) — %,j(xn —&)) < 0. (3.10)
n—oo
Finally, we show that x,, — % as n — oo.
Assume that the sequence {x,} does not converge strongly to X € F(T). Then there exist € > 0 and
a subsequence {xn,} of {xn} such that ||xn, —%|| > €, for all i > 0. From Proposition 1.2, for this € there
exists r € (0,1) such that
[T0xn;) = FR)| < vllxn — %]
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Then we have
||Xni+1 - 7A<||2 = <°‘nixni + B f(xng) + Y Sn (Yn,) — ’A(/J.(Xniﬂ —R))
= Kny <Xni - 7A‘/j(xni—i—l _72» + Bni <f(xni) _ﬁ/j(xni+1 _72)>
+Yn, <Sni (yni) _irj(xnﬁ—l _72)>
= On; <Xni - ﬁlj(xni+1 - 72)> + BTH <f(xﬂ~i) - f(*)/j(xni—b—l _7%)> (3.11)
+ Bn (F(R) =%, j(xni+1 = &)) +Vni (Sni (Yn ) =%, (xn 41 — %))
< otn [[xng = R lIxng1 =R+ B rlixn, = Kl[xn 1 = %]
+VnilISni (Yn) = Rl X1 = &I+ Br (FR) — R, j(xn 41 — %))
Since
[Sni(Yni) = %[ = [ISn (yn) — SniX||
< [[yn, — %]l

A (3.12)
- Hénixm +(1— 5ni)Xm+1 - XH
< 6TL'LHXTH _72H + ”(1 - Sni)xni+1 _)A(H
Substituting (3.12) into (3.11), we obtain that
Xt = RI2 < (otng + By T+ Yo ) — Rl %1 — Rl]
+¥n (1= 8n ) [xXngr1 =R+ Bny (FR) = &, j(xn 1 — 1))
On: + BT+ VYn: On, N On; + Pn,T+ VYn,On, A
< 1%} Bnlz an i HXnL - X||2 + 1%} Bnlz ‘YTll mng ”an+1 —XHZ

+ Y (1= 8n) [Xn, 1 = &I+ B (FR) = &, j (X 1 — %))

Hence,
A2 (Xni + Bnir +‘YT‘L‘6TL‘ A2
Xn. 41— X||© < t X, — X
H ni+1 H 2 _ (x«ni - Bnir"i_‘}/niéni _Z,Ynl H ny ||
2B, .
+ - f(%) —%,j(xn.01—%
2_ani_BniT+Yn16ni_2’Yni< ( ) J( TL1+1 )>
2—20n. — 2B T —2Vn. On.
2— Kn; — Bnir +'Yn16ni - 2'Yni
2_20(‘1’11; _Zﬁnir_2Yn15ni % 2BTL1
2 - (X'Tli - Bnir + ’YTl.iéTli - zYnl 2 - 20"“1 - zﬁnir - ZYTLiéTLi
X <f(§z) _)A(/j(xniﬂ-l _)A()>
2—20cni—2[5ni1”—2yni<5n.1

Set bni - 2_0‘ni_ﬁnir+yn16ni_zyni’

2—20tn; —2Bn,T—2YnOn, o 2Bn;

Cn: = .
" 2— &n; — Bnir+'}/n16ni _2'Yni 2_2“71-1 _zﬁniT_Z’Yniéni

1

Then, (3.13) reduces to formula
Pne1 = RI2 < (1=Dbn)lPxn, =& +cny,
and
2[3711(1 —71)
2—0otn, — BT+ VYnOn; —2¥n;
B 2[3111(1 —7)
1+ Bni(l —7) +Yni(6ni —1)
zﬁni(l —7)
14+ Bn, (1—7)
> B (1—1).

bn, =

i

c (0,1)
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From condition } 7, Bn = 0o, then } 2 by, = oo. Since

Cni — 2BT11
bn, 2—20n, —2Bn,T—2Yn,0n,

<f(£) - 72/ ) (XTL'Hrl - 72)>/
from limy, .o, pn = 0 and (3.10), we have
lim sup ny <0.
n—oo ng
From Lemma 2.5, we obtain that x,, — % as i — oo. The contradiction permits us to conclude that {x,,}

converges strongly to X € F(T). O

Theorem 3.2. Let X be a real uniformly smooth Banach space and C be a nonempty bounded closed convex subset
of X. Let N > 1 be an integer and for each 0 <1 < N —1, Ty : C — C be a ui-strictly pseudo-contractive mapping
such that ﬂN YF(Ty) # 0. Let f: C — C a generalized contraction mapping. Pick any xo € C. Let {xn} be a
sequence generated by the following algorithm:

Xn+1 = OnXn + Bnf(xn) +¥nSn(dnxn + (1 —8n)Xnt1), (3.14)
where Spx =1 (1 = An)x +AnTiyx, and Ty = T with i = n(modN), 0 <1 < N —1. Assume that {an}, {Bn},
{vyn), {0n} and {An} are five sequences in [0, 1] satisfying the following conditions:

i an+Pnt+yn=1
(i) limn oo lotni1 —an| =0and 0 <liminf, o ot <limsup, | on <1,
(iii) Z;O:O Brn =00, limy 00 B =0;
(iv) 0<dn <onp1<1;
(v) imp 00 A1 —Anl =0.

Then sequence {xn} converges strongly to a point & € ﬂ‘i\';ol F(Ty), which is also the solution of the variational
inequality
N-—1

(I-H)%j(x—%) >0, Vxe []FT)

i=0

Moreover, assume that P is the unique sunny nonexpansive retraction from C onto ﬂN o} F(Ty), the above variational
inequality is equivalent to P o (%) = X.

Proof. First, we show that Sy, is nonexpansive, for all n > 0. Indeed, for all x,y € C, taking

0<e< HtHTX le_(x_y)”Z

for any 0 < i< N —1, by Lemma 2.1, we have

[Snx — SnUHZ = (T =A)x + AnTyx — (1 —An )U_}‘nT[n]UHZ

= [1(1 = An) (x = y) + An (Topx = Tgy) 12

22 (TrgX — Ty, j (x — y)) +2eAn + (1 — 220 )|[x —y|?
22 ([ = Yl? = B | T = Ty — (x =) %)
+ (1 =22 Ix —y||* 4+ 2eAn
I = ylI* = 2An b [Ty = Tigy — (x = y) > +2eAn
I —ylf.

It is obvious that for eachn € N, x € F(Sn) < x € F(Tpy)). So, F(Sn) = F(Tp)) # 0. The following proof
is the same as that of Theorem 3.1, we can obtain x,, — % € F(T};,)), by the uniqueness of convergence of

<
<

<
<

iterative sequence {x,, }, we have that x, — % € ﬂiNzgl F(Ty). O
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Theorem 3.3. Let X be a real uniformly smooth Banach space and C be a nonempty bounded closed convex subset
of X. Let {Th}%_, : C — C be a countable family of p-strictly pseudo-contractive mapping and f : C — Ca
generalized contraction mapping. Suppose that {Ty } satisfies the PU-condition. Let T : C — C be a mapping defined
by Tx = limn_,00 Tnx for all x € C and suppose that F(T) = (_yF(Tn) # 0. Pick any xo € C. Let {xn} be a
sequence generated by the following algorithm:

Xn+1 = &nXn + Bnf(xn) +¥YnSn(Onxn + (1 = 0n)Xn41), (3.15)

where Spyx =t (1 —=A)x +ATnx, A € [0,1] and assume that {xn}, {Bn}, {Yn}, and {6n} are four sequences in [0, 1]
satisfying the following conditions:

() an+tPnt+tyn=1
(i) limn oo lotni1 —an| =0and 0 <liminf, o ot <limsup, | on <1,
(iii) Y 5 Bn =00, limn 00 fn =0;
(iv) 0 <dn <Onp1 <1
Then sequence {xn } converges strongly to a fixed point % of T, which is also the solution of the variational inequality
(I-1)%,jly—2%)) >0, vyeFT).

Moreover, assume that P is the unique sunny nonexpansive retraction from C onto F(T) = (o_ F(Tn), then above
variational inequality is equivalent to P o f(X) = %.

Proof. First, we show that S,, is nonexpansive, for all n > 0. Indeed, for all x,y € C, taking
0<e<puTax—Tay—(x—y)|?
for alln > 1, by Lemma 2.1, we have

1Snx — Snyll* = [|(1 = A)x + ATox — (1 = A)y — ATpy|)?
= [(1 =N (x—y) + AMTnx — Tny)|?
<2NTx — Tny, j(x —y)) + 2eA + (1 —2A) [x —y|?
< 2A([x —ylI* = ulTax =Ty — (x—y)[*)

+ (1 —2A)||x —y]|> +2eA

I = ylI> = 22| Tox = Tay — (x —y)||* + 2€A

<
< lx =yl

It is obvious that for eachn € N, x € F(Sn) < x € F(Tn). So, F(S,) = F(Tn).
Next, we show that {S,,} satisfies the PU-condition. From the definition of S;, and for all k,1 € N, for
any subset B of C, there exists a continuous and increasing function hg : Rt — R", we note that

sup hg([|Skw — Stw||) = sup hg(A||Tew — TLw]|)
weB weB

< sup hg(||Trw — Tyw]|).
weB

By our assumption, that {T,, } satisfies the PU-condition, by Definition 2.2, we obtain that

lim sup hg(||Sxw —Siw]]) =0.

k,l1—o0 weB
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So, {Sn} satisfies the PU-condition. By Lemma 2.3, we can set Sx = limn_,o Snx, for all x € C. It is

obvious that S is nonexpansive, and

Sx = lim Sy x

n—oo

= lim [(1 —A)x+ATux]
n—oo

= (1—A)x+ATx.

We can observe that x € F(S) & x € F(T). That is,

Next, we show that limy,_,« ||Xn+1 —Xn || = 0.
Set z,, = ntlomXn 0 — §, . %Xn + (1 — 81 )Xn+1. We have that

1—on
Bn+1 Yn+1
_ < _ _fn+l
|Zn+1 — zn| 1— (xn+11|)(”xn+l Xnll) + 1— s
Bn+l Bn
— f -S .
e )~ Sy
Since
||Sn+1yn+1 - SnUnH = Hsn+19n+1 - Sn+1yn + Sn+lyn - SnynH
< Ynt1 = Ynll + ISns1Yn — Snynl|
< (1= 0n41)|[Xnt2 = Xna1ll + 0nl[Xnt1 — xn|
+ ISn1Yn — Snynll,
and

IXne2 = Xnt1]| < xns1l[Xns1 —Xn || + Brnr1W([Xnr1 —xnl|)
+ |(Xn+1 - (xn|”xn - SnynH + |[?’n+1 - Bn|||f(xn) - Snyn”

+ Yn+1 ||Sn+1yn+1 - SnynH/
substituting (3.17) into (3.18), we obtain that

1+ VYnt10n + B

) ISn+1Ynt1— Snynll

[Xn = Snynll

— g n i
[Xn+2 = Xny1ll T—vmia(l—8ns1) IXn+1 —Xn||
|01 — o]
+ Xn —S
1_Vn+1(1_5n+1)” " nynH
|[3n+1 — Bn|
+ f(xn) —S
1_Vn+1(1_5n+1)” en) nynH
Yn+1
+ S —S .
TVt (1) o Yn — Snml
Substituting (3.19) and (3.17) into (3.16), we obtain that
ﬁn+1n ‘(Xn+1 — (Xﬂ_|
Znt1 —Zn|| < (1 — ———)||xnt1 — xn || +
lzner=znl < 1—(Xn+1)H i n I —vn1(1—0n41)
+ |Bn+l — Bn| +| BnJrl - Bn
1—vYni1(1—=0n41) 1—ony1 T—an
e+ RIS yn — Sl

1—=vni1(1=0ns1) 1T—oni1

I (xn) = Snynll

(3.16)

(3.17)

(3.18)

(3.19)
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We know that , , .
EHSTI+1yn —Snyn|| < E”Srwlyn — Syn|| + EHSUn —Snynll-
From {xn}, {yn} C C, assume that there exists a subset B of C which contains {x,,}, {yn}. Since hg : R —

R* is a continuous, increasing and convex function, then we have

1 1
hB(EHSn+1Un - SnynH) < hB(”Sn+1yn - SUTLH) + EhB(”SUn - SnynH)

NI~ DN

< =z sup hg(||Sn+1w — Sw]|)

weB

1
+ > sup hg(||Sw —Snwl]).
weB

By Lemma 2.3 and the continuity of hg, we obtain that limy o0 W (3[|Sns1Yn — Snyn||) = 0. This implies
that

lim [|Sn+1yn — Snynl| =0.

n—oo

Since C is a nonempty bounded closed convex subset of X, then {xn}, {yn}, {f(xn)} and {Snyn} are
bounded. Hence ||xn —Snyn|| and ||f(xn) — Snyn| are bounded. Again from conditions (ii) and (iii),
we have

limsup(||zni1 —znll — [[Xn+1 —xn||) <O0.
n—oo

By using Lemma 2.4, we have

lim ||zn —xn| =0.
n—oo

Since
lim [[xp41—xn| = lim (1—an)|zn —xn|| =0.
— 00 n—oo

Next, we prove that lim, _, ||[xn — Sxn || = 0.
We observe that

1 1
EHXH —Sxnll < EHXn — Snxnl + EHSan — Sxn|
1 1
< EHX“ —Snxnll+ 5 sup |ISnw — Sw]|.
weEB
On the other hand, we have that

lim ||xn —Snxn|| =0.
n—oo

This proof is the same as that of Theorem 3.1.
Since hg : R™ — R™ is continuous, increasing and convex, then we have

1 1 1
hB(EHXn - SXnH) < EhB(”Xn - San”) + EhB(HSan — SXnH)
1 1
< s (lien = Snxal) + 5 sup My ([Snw - Sw]).
weB
From Lemma 2.3 and the continuity of hg, we obtain that lim; hB(%Hxn — Sxn||) = 0. This implies

that
lim |[xn, —Sxn| =0.
n—oo

This remaining proof is the same as that of Theorem 3.1, we omit it. Therefore, we conclude that {x.}
converges strongly to & € (o_; F(Tn). O
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4. Numerical experiments

In this section, respectively, we give the corresponding numerical examples of Theorem 3.1, Theorem
3.2 and Theorem 3.3 to illustrate the effectiveness of the three algorithms constructed in Section 3. All
codes were written in Matlab 2010b and run on Dell i - 5 Dual-Core laptop.

Example 4.1. Let X:=Rand C:=[0,1] CR. Let T: C — C, f: C — C be defined by

It is clear that F(T) = {0}.
Let us choose

1 1 5 1 1 5 n 1 1
X = =, = -—, = -, = = .
"I T P T T T omr1)y M T3 m

Obviously, X, C, T, f, &n, Pn, Yn, dn, An satisfy all the conditions of Theorem 3.1.
Below we take different initial values to observe the convergence of the algorithm (3.1). Taking xo =
0.1, xo = 0.5, xg = 1, respectively, we have the following numerical results:

Table 1: numerical examples of Theorem 3.1.

Iter. n 0 5 10 15 20 25 30

xo =0.1000 x, 0.1000 0.0342 0.0139 0.0058 0.0025 0.0010 4.4419 x 10—*
xo = 0.5000 x, 0.5000 0.1711 0.0697 0.0291 0.0123 0.0052 0.0022

xo = 1.0000 x, 1.0000 0.3422 0.1393 0.0582 0.0245 0.0104 0.0044

x0=0.1
x0=0.5 |
x0=1

40 60 80 100
Figure 1: numerical examples of Theorem 3.1.

Example 4.2. Let X, C, f,tn, Bn, Yn, On, An is the same to that of Example 4.1 and T; : C — C be
defined as follows:

Obviously, ﬂiN:?)l F(Ti) ={0} and X, C, Ty, f, tn, B, Yn, On, An satisfy all the conditions of Theorem 3.2.
Below we consider two situations to observe the convergence of the algorithm (3.14).
Case 1. Taking N =10, xg = 0.1, xg = 0.5, xg = 1, respectively, we have the following numerical results:
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Table 2: numerical examples of Theorem 3.2 for N = 10.

Iter. n 0 5 10 15 20 25 30
xo = 0.1000 x, 0.1000 0.0377 0.0135 0.0070 0.0026 0.0014 5.1472 x 10~*
xg = 0.5000 x, 0.5000 0.1886 0.0676 0.0352 0.0130 0.0069 0.0026

xo =1.0000 xn, 1.0000 0.3771 0.1353 0.0704 0.0261 0.0139 0.0052

x0=0.1
x0=0.5 |4
x0=1

4‘0 Gb 8‘0 100
Figure 2: numerical examples of Theorem 3.2 for N = 10.
Case 2. Taking xg =1, N =5, N =10, N = 20, respectively, we have the following numerical results:

Table 3: numerical examples of Theorem 3.2 for xg = 1.

Iter. n 0 5 10 15 20 25 30

N=5 x, 10000 03771 0.1899 0.0989 0.0522 0.0278 0.0148
N=10 xn, 10000 03771 0.1353 0.0704 0.0261 0.0139 0.0052
N=20 xn 1.0000 0.3771 0.1353 0.0469 0.0160 0.0085 0.0032

—N=5
——N=10|4
N=20

40 66 éO 100
Figure 3: numerical examples of Theorem 3.2 for xg = 1.

Example 4.3. Let X, C, f,&n, Bn, Yn, On is the same to that of Example 4.1 and T,, : C — C be defined
by Tn(x) = %x. Obviously, (n_; F(Tn) = {0} and X, C, T,f, &n, Bn, Yn, dn satisfy all the conditions of
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Theorem 3.3.

Below we also consider two situations to observe the convergence of the algorithm (3.15).
Case 1. Taking A = %, xo = 0.1, xp = 0.5, xg = 1, respectively, we have the following numerical results:

Table 4: numerical examples of Theorem 3.3 for A = %

Iter. n 0 5 10 15 20 25 30

xo = 0.1000 x, 0.1000 0.0170 0.0020 2.2809 x 10~% 2.5175x 107> 2.7449 x 10~® 4.6350 x 10~7
xo = 0.5000 x, 05000 0.0851 0.0101 0.0011 1.2588 x 1074 1.3724 x 10>  1.4847 x 10°
xo = 1.0000 x, 1.0000 0.1702 0.0202 0.0023 25175 x 1074 2.7449 x 107° 2.9693 x 10~ °

x0=0.1
x0=0.5 |4
x0=1

4‘0 G‘O éO 100
Figure 4: numerical examples of Theorem 3.3 for A = %

Case 2. Taking xo =1, A = %, A= %, A= %, respectively, we have the following numerical results:

Table 5: numerical examples of Theorem 3.3 for xy = 1.

Iter. n 0 5 10 15 20 25 30
A=3 xn 10000 0.2350 0.0463 0.0089 0.0017 32123 x 107%  6.0659 x 107>
A=1 xn 10000 03825 0.1601 0.0680 0.0290 0.0124 0.0053
A=2 xn 10000 0.1702 0.202 0.0023 25175x107* 27449 x107° 2.9693 x 10~°

—— =12
—— A=1/4[y
—— A=23

40 60 80 100

Figure 5: numerical examples of Theorem 3.3 for xg = 1.
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