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Abstract
In this manuscript, we construct three viscosity implicit iteration schemes based on generalized contractions for strictly

pseudo-contractive mappings. The first scheme is used to approximate a fixed point of a single strictly pseudo-contractive
mapping, the second scheme is used to approximate a common fixed point of a finite family of strictly pseudo-contractive
mappings, the third scheme is used to approximate a common fixed point of a countable family of strictly pseudo-contractive
mappings. Furthermore, three strong convergence theorems based on the purposed iterative schemes are established in the
framework of Banach spaces. Finally, three numerical examples are also given to show the efficiency and implementation of our
schemes. The main results of this paper modify and improve many important recent results in the literature. c©2017 All rights
reserved.
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1. Introduction

Throughout this paper, we assume that X is a real Banach space and X∗ is the dual space of X. Let C
be a subset of X. The duality mapping J : X→ 2X

?
is defined by

Jx = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X.

It is well-known that if X is a Hilbert space, then J is the identity mapping and if X is smooth, then J is
single-valued, which is denoted by j.

Let T be a self-mapping of C and F(T) be the set of fixed points of mapping T . That is,

F(T) = {x ∈ C : Tx = x}.

Recall that T : C→ C is said to be L-Lipschitzian if for all x,y ∈ C, there exists a constant L > 0 such that

‖Tx− Ty‖ 6 L‖x− y‖.

If 0 < L < 1, then T is a contraction and if L = 1, then T is a nonexpansive mapping.

∗Corresponding author
Email addresses: chengqingqing2006@126.com (Qingqing Cheng), suyongfu@tjpu.edu.cn (Yongfu Su)

doi:10.22436/jnsa.010.09.05

Received 2016-11-25

http://dx.doi.org/10.22436/jnsa.010.09.05


Q. Q. Cheng, Y. F. Su, J. Nonlinear Sci. Appl., 10 (2017), 4611–4627 4612

T : C → C is called to be µ-strictly pseudo-contraction, if there exists a fixed constant µ ∈ (0, 1) and
some j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 6 ‖x− y‖2 − µ‖(I− T)x− (I− T)y‖2, ∀x,y ∈ C,

or equivalently

〈(I− T)x− (I− T)y, j(x− y)〉 > µ‖(I− T)x− (I− T)y‖2, ∀x,y ∈ C.

It is well-known that every µ-strictly pseudocontractive mapping is 1+µ
µ -Lipschitzian.

Let (X,d) be a metric space. A mapping f : X → X is called a contraction, if there exists a constant
α ∈ [0, 1) such that

‖f(x) − f(y)‖ 6 α‖x− y‖, ∀x,y ∈ C.

Let N and R+ be the set of all positive integers and all positive real numbers, respectively. A mapping
ψ : R+ → R+ is said to be an L-function if ψ(0) = 0, ψ(t) > 0 for each t > 0 and for every s > 0, there
exists u > s such that ψ(t) 6 s for each t ∈ [s,u]. As a consequence, every L-function ψ satisfies ψ(t) < t
for each t > 0.

A mapping f : X → X is said to be a (ψ,L)-contraction if ψ : R+ → R+ is said to be an L-function and
d(f(x), f(y)) < ψ(d(x,y)), for all x,y ∈ X, x 6= y.

A mapping f : X→ X is said to be a Meir-Keeler type mapping if for each ε > 0 there exists δ = δ(ε) >
0 such that for each x,y ∈ X, with ε 6 d(x,y) < ε+ δ, we have d(f(x), f(y)) < ε.

Proposition 1.1 ([7]). Let (X,d) be a metric space and f : X → X be a mapping. The following assertions are
equivalent:

(i) f is a Meir-Keeler type mapping;
(ii) there exists an L-function ψ : R+ → R+ such that f is a (ψ,L)-contraction.

Proposition 1.2 ([15]). Let C be a convex subset of a Banach space X and f : C → C be a Meir-Keeler type
mapping. Then, for each ε > 0 there exists r ∈ (0, 1) such that

‖x− y‖ > ε implies ‖f(x) − f(y)‖ 6 r‖x− y‖.

In this paper, generalized contraction mappings refer to Meir-Keeler type mappings or (ψ,L)- contrac-
tions and we assume that the L-function from the definition of (ψ,L)-contraction is continuous, strictly
increasing and limt→∞ η(t) =∞, where η(t) = t−ψ(t) for all t ∈ R+.

Fixed point theory plays a very important role for solving all kinds of problems, such as variational
inequality problems in Hilbert spaces or Banach spaces, equilibrium problems, optimization problems
and so on. A well-known iteration method for approximating fixed points of a nonexpansive mapping
is the viscosity approximation method introduced by Moudafi [8] in 2000. Later, the explicit viscosity
method for nonexpansive mappings was proposed in the framework of Hilbert spaces by Xu [17] in 2004.
For arbitrary x1 ∈ H, let {xn} be a sequence in H defined by

xn+1 = αnf(xn) + (1 −αn)Txn, ∀ n ∈ N, (1.1)

where f and T are contractions and nonexpansive mappings from H onto itself, respectively. Under certain
assumptions imposed on the parameters, the sequence {xn} generated by (1.1) converges strongly to the
fixed point x∗ of T which also solves the following variational inequality:

〈(I− f)x∗, x− x∗〉 > 0, ∀x ∈ F(T). (1.2)

The implicit midpoint rule is a powerful method for solving ordinary differential equations; see [1, 2, 4,
6, 12, 18, 20] and the references therein. Recently, Xu et al. [18] considered the following viscosity implicit
midpoint rule:

xn+1 = αnf(xn) + (1 −αn)T(
xn + xn+1

2
), ∀ n ∈ N. (1.3)
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They proved that the iterative sequence defined by (1.3) converges strongly to a fixed point of T which
solves the variational inequality (1.2) in Hilbert spaces. In the same year, Ke et al. [6] generalized the
viscosity implicit midpoint rule of Xu et al. [18] to the following two viscosity implicit rules:

xn+1 = αnf(xn) + (1 −αn)T(βnxn + (1 −βn)xn+1), (1.4)

and
xn+1 = αnxn +βnf(xn) + γnT(δnxn + (1 − δn)xn+1), (1.5)

where f and T are still contractions and nonexpansive mappings from H onto itself, respectively. They
obtained that the sequence {xn} generated by (1.4) and (1.5) converges strongly to a fixed point of non-
expansive mapping T , which also solves variational inequality (1.2). In 2016, Yan et al. [19] extended
the main results of Ke et al. [6] from Hilbert spaces to uniformly smooth Banach spaces and replaced
strict contractions by generalized contractions. They proved that the sequence generated by (1.5) con-
verges strongly to a fixed point x∗ of nonexpansive mapping T , which is also the solution of the following
variational inequality in Banach spaces:

〈(I− f)x∗, j(x− x∗)〉 > 0, ∀x ∈ F(T). (1.6)

Very recently, Fan et al. [5] proposed the viscosity approximation method:

xn+1 = αnxn +βnf(xn) + γnSnxn, (1.7)

where Snx =: (1 − λn)x+ λnTx, T and f be a strictly pseudo-contractive map and contractions, respec-
tively. Under certain assumptions imposed on the parameters, they proved that the sequence {xn} gener-
ated by (1.7) converges strongly to the fixed point x∗ of T which solves the variational inequality (1.6) in
uniformly smooth Banach spaces.

Then the following questions naturally arise in connection with above results:

(i) Can we extend the iterative process (1.7) to a general viscosity implicit approximation iterative
process?

(ii) Can we replace strict contractions by generalized contractions?
(iii) Can we construct an iterative process for approximating a common fixed point of a finite family of

strictly pseudo-contractive mappings?
(iv) Can we construct an iterative process for approximating a common fixed point of a countable family

of strictly pseudo-contractive mappings?

The purpose of this paper is to give an affirmative answer to these questions mentioned above. And the
structure of this paper is organized as follows: In Section 2, we give some basic definitions and lemmas
which will be used in proving our main results. In Section 3, we present three generalized viscosity
implicit iteration schemes based on generalized contractions for strictly pseudo-contractive mappings
and obtain strong convergence theorems based on the proposed iterative schemes in the framework of
Banach spaces. In Section 4, we give three numerical examples to show the efficiency and implementation
of our schemes.

2. Preliminaries

Let S(X) = {x ∈ X : ‖x‖ = 1}. Let the function ρX : [0,∞] → [0,∞] be the modulus of smoothness of X
defined by

ρX(t) := sup{
‖x+ y‖+ ‖x− y‖

2
− 1 : x ∈ S(X), ‖y‖ 6 t}.

A Banach space X is said to be uniformly smooth if ρX(t)t → 0 as t → 0. A typical example of uniformly
smooth Banach spaces is Lp, where p > 1. More precisely, Lp is min{p, 2}-uniformly smooth for every



Q. Q. Cheng, Y. F. Su, J. Nonlinear Sci. Appl., 10 (2017), 4611–4627 4614

p > 1. Let q be a fixed real number with 1 < q 6 2. Then a Banach space X is said to be q-uniformly
smooth if there exists a constant c > 0 such that X(t) 6 ctq for all t > 0. In a smooth Banach space, J is
single-valued. In a uniformly smooth Banach space, J is uniformly continuous on bounded subsets.

To obtain the result of this paper, we also need the following lemmas and definition.

Lemma 2.1 ([9]). Let X be a real smooth Banach space. Suppose one of the followings holds:

(i) j is uniformly continuous on any bounded subset of X.
(ii) 〈x− y, j(x) − j(y)〉 6 ‖x− y‖2, for all x,y ∈ X.

(iii) For any bounded subset D of X, there is a c such that

〈x− y, j(x) − j(y)〉 6 c(‖x− y‖), ∀x,y ∈ D,

where c satisfies limt→0+
c(t)
t = 0.

Then, for any ε > 0 and any bounded subset C there is δ > 0 such that

‖tx+ (1 − t)y‖2 6 2t〈x, jy〉+ 2tε+ (1 − 2t)‖y‖2

for any x,y ∈ C and t ∈ [0, δ).

Definition 2.2 ([10]). Let C be a nonempty subset of a Banach space X and {Tn} be a sequence of mappings
from C into X with

⋂∞
n=1 F(Tn) 6= ∅. For any bounded subset B of C, we say that {Tn} satisfies the PU-

condition, if there exists a continuous and increasing function hB : R+ → R+, and for all k, l ∈ N such
that

hB(0) = 0, lim
k,l→∞ sup

ω∈B
hB(‖Tkω− Tlω‖) = 0. (2.1)

Lemma 2.3 ([10]). Let {Tn} be a sequence of mappings from C into X. Suppose that for any bounded subset B of C,
there exists a continuous and increasing function hB : R+ → R+ satisfying (2.1). Then the following hold:

(i) For each x ∈ C, {Tn} converges strongly to some point of C.
(ii) If the mapping T : C→ X be defined by Tx = limn→∞ Tnx, for all x ∈ C, then limn→∞ supω∈B hB(‖Tω−

Tnω‖) = 0. Moreover, the properties of hB imply that

lim
n→∞ sup

ω∈B
‖Tω− Tnω‖ = 0.

Lemma 2.4 ([14]). Let {xn} and {zn} be bounded sequences in a Banach space X and let {τn} be a sequence in [0, 1]
with 0 < lim infn→∞ τn 6 lim supn→∞ τn < 1. Suppose xn+1 = τnzn + (1 − τn)xn for all integers n > 0 and
lim supn→∞(‖zn+1 − zn‖− ‖xn+1 − xn‖) 6 0. Then, limn→∞ ‖zn − xn‖ = 0.

Lemma 2.5 ([17]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 6 (1 − bn)an + cn,

where bn is a sequence in (0, 1) and {cn} is a sequence such that

(i)
∑∞
n=1 bn =∞;

(ii) lim supn→∞ cn
bn

6 0 or
∑∞
n=1 |cn| <∞.

Then limn→∞ an = 0.

Let C and K be subsets of a Banach space X. A mapping P from C into K is called sunny [3] if
P(Px+ t(x− Px)) = Px for x ∈ C with Px+ t(x− Px) ∈ C and t > 0. The following is proved in [11]; see
also [16].
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Lemma 2.6 ([11]). Let E be a smooth Banach space and let J be the duality mapping from E into E∗, that is,
〈x, J(x)〉 = ‖x‖2 = ‖J(x)‖2 for all x ∈ E. Let C be a convex subset of E, let K be a subset of C and let P be a
retraction from C onto K. Then the following are equivalent:

(i) 〈x− Px, J(Px− y)〉 > 0 for all x ∈ C and y ∈ K;
(ii) P is both sunny and nonexpansive.

Hence, there is at most one sunny nonexpansive retraction from C onto K. Note that if E is a Hilbert
space and K is closed and convex, then the metric projection and the sunny nonexpansive retraction from
C onto K coincide.

Lemma 2.7 ([15]). Let C be a closed convex subset of a smooth Banach space E. Let K be a subset of C and let P be
the unique sunny nonexpansive retraction from C onto K. Let Φ be a mapping on C, and let z belong to K. Then
the following are equivalent:

(i) z is a fixed point of P ◦Φ;
(ii) z is a solution of a variational inequality 〈Φz− z, J(z− y)〉 > 0 for all y ∈ K.

Lemma 2.8 ([13]). Let C be a nonempty closed and convex subset of a uniformly smooth Banach space X. Let
T : C → C be a nonexpansive mapping such that F(T) 6= ∅ and f : C → C be a generalized contraction mapping.
Then {xt} defined by xt = tf(xt) + (1 − t)Txt for t ∈ (0, 1), converges strongly to x̂ ∈ F(T), which solves the
variational inequality:

〈f(x̂) − x̂, j(z− x̂)〉 6 0, ∀z ∈ F(T). (2.2)

From Lemma 2.7, we know that, let P be the unique sunny nonexpansive retraction from C onto F(T),
the variational inequality (2.2) is equivalent to P ◦ f(z) = z, that is, z is a fixed point of P ◦ f.

Lemma 2.9 ([13]). Let C be a nonempty closed and convex subset of a uniformly smooth Banach space X. Let
T : C → C be a nonexpansive mapping such that F(T) 6= ∅ and f : C → C be a generalized contraction mapping.
Assume that {xt} defined by xt = tf(xt) + (1 − t)Txt for t ∈ (0, 1), converges strongly to x̂ ∈ F(T) as t → 0.
Suppose that {xn} is a bounded sequence such that xn − Txn → 0 as n→∞. Then

lim sup
n→∞ 〈f(x̂) − x̂, j(xn − x̂)〉 6 0.

3. Main results

Theorem 3.1. Let X be a real uniformly smooth Banach space and C be a nonempty bounded closed convex subset
of X. Let T : C → C be a µ-strictly pseudo-contractive mapping such that F(T) 6= ∅ and f : C → C a generalized
contraction mapping. Pick any x0 ∈ C. Let {xn} be a sequence generated by the following algorithm

xn+1 = αnxn +βnf(xn) + γnSn(δnxn + (1 − δn)xn+1), (3.1)

where Snx =: (1 − λn)x + λnTx and assume that {αn}, {βn}, {γn}, {δn} and {λn} are five sequences in [0, 1]
satisfying the following conditions:

(i) αn +βn + γn = 1;
(ii) limn→∞ |αn+1 −αn| = 0 and 0 < lim infn→∞ αn 6 lim supn→∞ αn < 1;

(iii)
∑∞
n=0 βn =∞, limn→∞ βn = 0;

(iv) 0 < δn 6 δn+1 < 1;
(v) limn→∞ |λn+1 − λn| = 0.

Then sequence {xn} converges strongly to a fixed point x̂ of T , which is also the solution of the variational inequality

〈(I− f)x̂, j(x− x̂)〉 > 0, ∀x ∈ F(T). (3.2)

Moreover, assume that P is the unique sunny nonexpansive retraction from C onto F(T), the variational inequality
(3.2) is equivalent to P ◦ f(x̂) = x̂.
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Proof. First, we show that Sn is nonexpansive, for all n > 0. Indeed, for all x,y ∈ C, taking

0 < ε 6 µ‖Tx− Ty− (x− y)‖2,

by Lemma 2.1, we have

‖Snx− Sny‖2 = ‖(1 − λn)x+ λnTx− (1 − λn)y− λnTy‖2

= ‖(1 − λn)(x− y) + λn(Tx− Ty)‖2

6 2λn〈Tx− Ty, j(x− y)〉+ 2ελn + (1 − 2λn)‖x− y‖2

6 2λn(‖x− y‖2 − µ‖Tx− Ty− (x− y)‖2)

+ (1 − 2λn)‖x− y‖2 + 2ελn
6 ‖x− y‖2 − 2λnµ‖Tx− Ty− (x− y)‖2 + 2ελn
6 ‖x− y‖2.

It is obvious that for each n ∈ N, x ∈ F(Sn)⇔ x ∈ F(T). So, F(Sn) = F(T) 6= ∅.
Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Set zn = xn+1−αnxn

1−αn
, yn = δnxn + (1 − δn)xn+1. We

obtain that

‖zn+1 − zn‖ = ‖
xn+2 −αn+1xn+1

1 −αn+1
−
xn+1 −αnxn

1 −αn
‖

= ‖βn+1f(xn+1) + γn+1Sn+1yn+1

1 −αn+1
−
βnf(xn) + γnSnyn

1 −αn
‖

= ‖ βn+1

1 −αn+1
(f(xn+1) − f(xn)) +

γn+1

1 −αn+1
(Sn+1yn+1 − Snyn)

+ (
βn+1

1 −αn+1
−

βn

1 −αn
)f(xn) + (

γn+1

1 −αn+1
−

γn

1 −αn
)Snyn‖

= ‖ βn+1

1 −αn+1
(f(xn+1) − f(xn)) +

γn+1

1 −αn+1
(Sn+1yn+1 − Snyn)

+ (
βn+1

1 −αn+1
−

βn

1 −αn
)[f(xn) − Snyn]‖

6
βn+1

1 −αn+1
ψ(‖xn+1 − xn‖) +

γn+1

1 −αn+1
‖Sn+1yn+1 − Snyn‖

+ |
βn+1

1 −αn+1
−

βn

1 −αn
|‖f(xn) − Snyn‖.

(3.3)

Since C is a nonempty bounded closed convex subset of X, then {xn}, {yn} and {Tyn} are bounded. Hence
there exists M = supn>0{‖Tyn − yn‖}. Again from (3.1) and the property of Sn, we have

‖Sn+1yn+1 − Snyn‖ = ‖Sn+1yn+1 − Sn+1yn + Sn+1yn − Snyn‖
6 ‖yn+1 − yn‖+ ‖(1 − λn+1)yn + λn+1Tyn

− (1 − λn)yn − λnTyn‖
= ‖yn+1 − yn‖+ |λn+1 − λn|‖Tyn − yn‖
6 ‖yn+1 − yn‖+M|λn+1 − λn|.

(3.4)

Also,
‖yn+1 − yn‖ = ‖δn+1xn+1 + (1 − δn+1)xn+2 − δnxn − (1 − δn)xn+1‖

= ‖(1 − δn+1)(xn+2 − xn+1) + δn(xn+1 − xn)‖
6 (1 − δn+1)‖xn+2 − xn+1‖+ δn‖xn+1 − xn‖,

(3.5)
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and
‖xn+2 − xn+1‖ = ‖αn+1xn+1 +βn+1f(xn+1) + γn+1Sn+1yn+1

−αnxn −βnf(xn) − γnSnyn‖
= ‖αn+1(xn+1 − xn) +βn+1[f(xn+1) − f(xn)]

+ γn+1(Sn+1yn+1 − Snyn) + (αn+1 −αn)xn

+ (βn+1 −βn)f(xn) + (γn+1 − γn)Snyn‖
= ‖αn+1(xn+1 − xn) +βn+1[f(xn+1) − f(xn)]

+ γn+1(Sn+1yn+1 − Snyn) + (αn+1 −αn)(xn − Snyn)

+ (βn+1 −βn)(f(xn) − Snyn)‖
6 αn+1‖xn+1 − xn‖+βn+1ψ(‖xn+1 − xn‖)
+ |αn+1 −αn|‖xn − Snyn‖+ |βn+1 −βn|‖f(xn) − Snyn‖
+ γn+1‖Sn+1yn+1 − Snyn‖.

(3.6)

Substituting (3.4) and (3.5) into (3.6), we obtain that

‖xn+2 − xn+1‖ 6
αn+1 + γn+1δn +βn+1ψ

1 − γn+1(1 − δn+1)
‖xn+1 − xn‖+

|αn+1 −αn|

1 − γn+1(1 − δn+1)
‖xn − Snyn‖

+
|βn+1 −βn|

1 − γn+1(1 − δn+1)
‖f(xn) − Snyn‖+

γn+1M

1 − γn+1(1 − δn+1)
‖λn+1 − λn‖.

(3.7)

Substituting (3.7), (3.5) and (3.4) into (3.3), we obtain that

‖zn+1 − zn‖ 6 [
βn+1ψ

1 −αn+1
+
γn+1(1 − δn+1)

1 −αn+1
× αn+1 + γn+1δn +βn+1ψ

1 − γn+1(1 − δn+1)
+
γn+1δn

1 −αn+1
]‖xn+1 − xn‖

+
γn+1(1 − δn+1)

1 −αn+1
× |αn+1 −αn|

1 − γn+1(1 − δn+1)
‖xn − Snyn‖

+ [
γn+1(1 − δn+1)

1 −αn+1
× |βn+1 −βn|

1 − γn+1(1 − δn+1)
+ |

βn+1

1 −αn+1
−

βn

1 −αn
|]‖f(xn) − Snyn‖

+ [
γn+1(1 − δn+1)

1 −αn+1
× γn+1M

1 − γn+1(1 − δn+1)
+
γn+1M

1 −αn+1
]‖λn+1 − λn‖

6
γn+1δn +βn+1ψ+ γn+1(1 − δn+1)αn+1

[1 − γn+1(1 − δn+1)](1 −αn+1)
‖xn+1 − xn‖

+
|αn+1 −αn|

1 − γn+1(1 − δn+1)
‖xn − Snyn‖+ [

|βn+1 −βn|

1 − γn+1(1 − δn+1)
+ |

βn+1

1 −αn+1
−

βn

1 −αn
|]

‖f(xn) − Snyn‖+ [
γn+1M

1 − γn+1(1 − δn+1)
+
γn+1M

1 −αn+1
]‖λn+1 − λn‖

= (1 −
βn+1η+ γn+1(δn+1 − δn)

[1 − γn+1(1 − δn+1)](1 −αn+1)
)‖xn+1 − xn‖

+
|αn+1 −αn|

1 − γn+1(1 − δn+1)
‖xn − Snyn‖+ [

|βn+1 −βn|

1 − γn+1(1 − δn+1)
+ |

βn+1

1 −αn+1
−

βn

1 −αn
|]

‖f(xn) − Snyn‖+ [
γn+1M

1 − γn+1(1 − δn+1)
+
γn+1M

1 −αn+1
]‖λn+1 − λn‖

6 (1 −
βn+1η

1 −αn+1
)‖xn+1 − xn‖+

|αn+1 −αn|

1 − γn+1(1 − δn+1)
‖xn − Snyn‖

+ [
|βn+1 −βn|

1 − γn+1(1 − δn+1)
+ |

βn+1

1 −αn+1
−

βn

1 −αn
|]‖f(xn) − Snyn‖

+ [
γn+1M

1 − γn+1(1 − δn+1)
+
γn+1M

1 −αn+1
]‖λn+1 − λn‖.
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Since C is a nonempty bounded closed convex subset of X, then {xn}, {yn}, {f(xn)} and {Snyn} are
bounded. Hence ‖xn − Snyn‖ and ‖f(xn) − Snyn‖ are bounded. Again from conditions (ii), (iii) and
(v), we have

lim sup
n→∞ (‖zn+1 − zn‖− ‖xn+1 − xn‖) 6 0.

By using Lemma 2.4, we have
lim
n→∞ ‖zn − xn‖ = 0.

Therefore,

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1 −αn)‖zn − xn‖ = 0.

Next, we prove that limn→∞ ‖xn − Snxn‖ = 0. Since

‖xn − Snxn‖ 6 ‖xn − xn+1‖+ ‖xn+1 − Snxn‖, (3.8)

also,
‖xn+1 − Snxn‖ = ‖αnxn +βnf(xn) + γnSn(δnxn + (1 − δn)xn+1) − Snxn‖

= ‖αn(xn − Snxn) +βn(f(xn) − Snxn)

+ γn[Sn(δnxn + (1 − δn)xn+1) − Snxn]‖
6 αn‖xn − Snxn‖+βn‖f(xn) − Snxn‖
+ γn(1 − δn)‖xn+1 − xn‖.

(3.9)

Substituting (3.9) into (3.8), we obtain that

‖xn − Snxn‖ 6
βn

1 −αn
‖f(xn) − Snxn‖+

1 + γn(1 − δn)

1 −αn
‖xn+1 − xn‖.

From conditions (ii), (iii) and limn→∞ ‖xn+1 − xn‖ = 0, we have

lim
n→∞ ‖xn − Snxn‖ = 0.

Let {xt} be a sequence defined by xt = tf(xt) + (1 − t)Snxt for t ∈ (0, 1), from Lemma 2.8, {xt} converges
strongly to x̂ ∈ F(Sn) = F(T), which solves the variational inequality:

〈f(x̂) − x̂, j(x− x̂)〉 6 0, ∀x ∈ F(T),

that is,
〈(I− f)x̂, j(x− x̂)〉 > 0, ∀x ∈ F(T).

Moreover, from Lemma 2.7, we have P ◦ f(x̂) = x̂, where P is the unique sunny nonexpansive retraction
from C onto F(T). Again since {xn} is bounded and limn→∞ ‖xn − Snxn‖ = 0, by Lemma 2.9, we have

lim sup
n→∞ 〈f(x̂) − x̂, j(xn − x̂)〉 6 0. (3.10)

Finally, we show that xn → x̂ as n→∞.
Assume that the sequence {xn} does not converge strongly to x̂ ∈ F(T). Then there exist ε > 0 and

a subsequence {xni} of {xn} such that ‖xni − x̂‖ > ε, for all i > 0. From Proposition 1.2, for this ε there
exists r ∈ (0, 1) such that

‖f(xni) − f(x̂)‖ 6 r‖xni − x̂‖.
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Then we have

‖xni+1 − x̂‖2 = 〈αnixni +βnif(xni) + γniSni(yni) − x̂, j(xni+1 − x̂)〉
= αni〈xni − x̂, j(xni+1 − x̂)〉+βni〈f(xni) − x̂, j(xni+1 − x̂)〉
+ γni〈Sni(yni) − x̂, j(xni+1 − x̂)〉

= αni〈xni − x̂, j(xni+1 − x̂)〉+βni〈f(xni) − f(x̂), j(xni+1 − x̂)〉
+βni〈f(x̂) − x̂, j(xni+1 − x̂)〉+ γni〈Sni(yni) − x̂, j(xni+1 − x̂)〉

6 αni‖xni − x̂‖‖xni+1 − x̂‖+βnir‖xni − x̂‖‖xni+1 − x̂‖
+ γni‖Sni(yni) − x̂‖‖xni+1 − x̂‖+βni〈f(x̂) − x̂, j(xni+1 − x̂)〉.

(3.11)

Since
‖Sni(yni) − x̂‖ = ‖Sni(yni) − Sni x̂‖

6 ‖yni − x̂‖
= ‖δnixni + (1 − δni)xni+1 − x̂‖
6 δni‖xni − x̂‖+ ‖(1 − δni)xni+1 − x̂‖.

(3.12)

Substituting (3.12) into (3.11), we obtain that

‖xni+1 − x̂‖2 6 (αni +βnir+ γniδni)‖xni − x̂‖‖xni+1 − x̂‖
+ γni(1 − δni)‖xni+1 − x̂‖2 +βni〈f(x̂) − x̂, j(xni+1 − x̂)〉

6
αni +βnir+ γniδni

2
‖xni − x̂‖

2 +
αni +βnir+ γniδni

2
‖xni+1 − x̂‖2

+ γni(1 − δni)‖xni+1 − x̂‖2 +βni〈f(x̂) − x̂, j(xni+1 − x̂)〉.

Hence,

‖xni+1 − x̂‖2 6
αni +βnir+ γniδni

2 −αni −βnir+ γniδni − 2γni
‖xni − x̂‖

2

+
2βni

2 −αni −βnir+ γniδni − 2γni
〈f(x̂) − x̂, j(xni+1 − x̂)〉

= (1 −
2 − 2αni − 2βnir− 2γniδni

2 −αni −βnir+ γniδni − 2γni
)‖xni − x̂‖

2

+
2 − 2αni − 2βnir− 2γniδni

2 −αni −βnir+ γniδni − 2γni
× 2βni

2 − 2αni − 2βnir− 2γniδni
× 〈f(x̂) − x̂, j(xni+1 − x̂)〉.

(3.13)

Set bni =
2−2αni−2βnir−2γniδni

2−αni−βnir+γniδni−2γni
,

cni =
2 − 2αni − 2βnir− 2γniδni

2 −αni −βnir+ γniδni − 2γni
× 2βni

2 − 2αni − 2βnir− 2γniδni
.

Then, (3.13) reduces to formula

‖xni+1 − x̂‖2 6 (1 − bni)‖xni − x̂‖
2 + cni ,

and

bni =
2βni(1 − r)

2 −αni −βnir+ γniδni − 2γni

=
2βni(1 − r)

1 +βni(1 − r) + γni(δni − 1)
⊂ (0, 1)

>
2βni(1 − r)

1 +βni(1 − r)

> βni(1 − r).
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From condition
∑∞
n=0 βn =∞, then

∑∞
i=0 bni =∞. Since

cni
bni

=
2βni

2 − 2αni − 2βnir− 2γniδni
〈f(x̂) − x̂, j(xni+1 − x̂)〉,

from limn→∞ βn = 0 and (3.10), we have

lim sup
n→∞

cni
bni

6 0.

From Lemma 2.5, we obtain that xni → x̂ as i → ∞. The contradiction permits us to conclude that {xn}
converges strongly to x̂ ∈ F(T).

Theorem 3.2. Let X be a real uniformly smooth Banach space and C be a nonempty bounded closed convex subset
of X. Let N > 1 be an integer and for each 0 6 i 6 N− 1, Ti : C→ C be a µi-strictly pseudo-contractive mapping
such that

⋂N−1
i=0 F(Ti) 6= ∅. Let f : C → C a generalized contraction mapping. Pick any x0 ∈ C. Let {xn} be a

sequence generated by the following algorithm:

xn+1 = αnxn +βnf(xn) + γnSn(δnxn + (1 − δn)xn+1), (3.14)

where Snx =: (1 − λn)x+ λnT[n]x, and T[n] = Ti with i = n(modN), 0 6 i 6 N− 1. Assume that {αn}, {βn},
{γn}, {δn} and {λn} are five sequences in [0, 1] satisfying the following conditions:

(i) αn +βn + γn = 1;
(ii) limn→∞ |αn+1 −αn| = 0 and 0 < lim infn→∞ αn 6 lim supn→∞ αn < 1;

(iii)
∑∞
n=0 βn =∞, limn→∞ βn = 0;

(iv) 0 < δn 6 δn+1 < 1;
(v) limn→∞ |λn+1 − λn| = 0.

Then sequence {xn} converges strongly to a point x̂ ∈
⋂N−1
i=0 F(Ti), which is also the solution of the variational

inequality

〈(I− f)x̂, j(x− x̂)〉 > 0, ∀x ∈
N−1⋂
i=0

F(Ti).

Moreover, assume that P is the unique sunny nonexpansive retraction from C onto
⋂N−1
i=0 F(Ti), the above variational

inequality is equivalent to P ◦ f(x̂) = x̂.

Proof. First, we show that Sn is nonexpansive, for all n > 0. Indeed, for all x,y ∈ C, taking

0 < ε 6 µi‖Tix− Tiy− (x− y)‖2

for any 0 6 i 6 N− 1, by Lemma 2.1, we have

‖Snx− Sny‖2 = ‖(1 − λn)x+ λnT[n]x− (1 − λn)y− λnT[n]y‖2

= ‖(1 − λn)(x− y) + λn(T[n]x− T[n]y)‖2

6 2λn〈T[n]x− T[n]y, j(x− y)〉+ 2ελn + (1 − 2λn)‖x− y‖2

6 2λn(‖x− y‖2 − µ[n]‖T[n]x− T[n]y− (x− y)‖2)

+ (1 − 2λn)‖x− y‖2 + 2ελn
6 ‖x− y‖2 − 2λnµ[n]‖T[n]x− T[n]y− (x− y)‖2 + 2ελn
6 ‖x− y‖2.

It is obvious that for each n ∈ N, x ∈ F(Sn) ⇔ x ∈ F(T[n]). So, F(Sn) = F(T[n]) 6= ∅. The following proof
is the same as that of Theorem 3.1, we can obtain xn → x̂ ∈ F(T[n]), by the uniqueness of convergence of
iterative sequence {xn}, we have that xn → x̂ ∈

⋂N−1
i=0 F(Ti).
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Theorem 3.3. Let X be a real uniformly smooth Banach space and C be a nonempty bounded closed convex subset
of X. Let {Tn}

∞
n=0 : C → C be a countable family of µ-strictly pseudo-contractive mapping and f : C → C a

generalized contraction mapping. Suppose that {Tn} satisfies the PU-condition. Let T : C→ C be a mapping defined
by Tx = limn→∞ Tnx for all x ∈ C and suppose that F(T) =

⋂∞
n=0 F(Tn) 6= ∅. Pick any x0 ∈ C. Let {xn} be a

sequence generated by the following algorithm:

xn+1 = αnxn +βnf(xn) + γnSn(δnxn + (1 − δn)xn+1), (3.15)

where Snx =: (1 − λ)x+ λTnx, λ ∈ [0, 1] and assume that {αn}, {βn}, {γn}, and {δn} are four sequences in [0, 1]
satisfying the following conditions:

(i) αn +βn + γn = 1;

(ii) limn→∞ |αn+1 −αn| = 0 and 0 < lim infn→∞ αn 6 lim supn→∞ αn < 1;

(iii)
∑∞
n=0 βn =∞, limn→∞ βn = 0;

(iv) 0 < δn 6 δn+1 < 1.

Then sequence {xn} converges strongly to a fixed point x̂ of T , which is also the solution of the variational inequality

〈(I− f)x̂, j(y− x̂)〉 > 0, ∀y ∈ F(T).

Moreover, assume that P is the unique sunny nonexpansive retraction from C onto F(T) =
⋂∞
n=0 F(Tn), then above

variational inequality is equivalent to P ◦ f(x̂) = x̂.

Proof. First, we show that Sn is nonexpansive, for all n > 0. Indeed, for all x,y ∈ C, taking

0 < ε 6 µ‖Tnx− Tny− (x− y)‖2

for all n > 1, by Lemma 2.1, we have

‖Snx− Sny‖2 = ‖(1 − λ)x+ λTnx− (1 − λ)y− λTny‖2

= ‖(1 − λ)(x− y) + λ(Tnx− Tny)‖2

6 2λ〈Tnx− Tny, j(x− y)〉+ 2ελ+ (1 − 2λ)‖x− y‖2

6 2λ(‖x− y‖2 − µ‖Tnx− Tny− (x− y)‖2)

+ (1 − 2λ)‖x− y‖2 + 2ελ

6 ‖x− y‖2 − 2λµ‖Tnx− Tny− (x− y)‖2 + 2ελ

6 ‖x− y‖2.

It is obvious that for each n ∈ N, x ∈ F(Sn)⇔ x ∈ F(Tn). So, F(Sn) = F(Tn).
Next, we show that {Sn} satisfies the PU-condition. From the definition of Sn and for all k, l ∈ N, for

any subset B of C, there exists a continuous and increasing function hB : R+ → R+, we note that

sup
ω∈B

hB(‖Skω− Slω‖) = sup
ω∈B

hB(λ‖Tkω− Tlω‖)

6 sup
ω∈B

hB(‖Tkω− Tlω‖).

By our assumption, that {Tn} satisfies the PU-condition, by Definition 2.2, we obtain that

lim
k,l→∞ sup

ω∈B
hB(‖Skω− Slω‖) = 0.
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So, {Sn} satisfies the PU-condition. By Lemma 2.3, we can set Sx = limn→∞ Snx, for all x ∈ C. It is
obvious that S is nonexpansive, and

Sx = lim
n→∞Snx

= lim
n→∞[(1 − λ)x+ λTnx]

= (1 − λ)x+ λTx.

We can observe that x ∈ F(S)⇔ x ∈ F(T). That is,

F(S) = F(T) =

∞⋂
n=1

F(Tn) =

∞⋂
n=1

F(Sn) 6= ∅.

Next, we show that limn→∞ ‖xn+1 − xn‖ = 0.
Set zn = xn+1−αnxn

1−αn
, yn = δnxn + (1 − δn)xn+1. We have that

‖zn+1 − zn‖ 6
βn+1

1 −αn+1
ψ(‖xn+1 − xn‖) +

γn+1

1 −αn+1
‖Sn+1yn+1 − Snyn‖

+ |
βn+1

1 −αn+1
−

βn

1 −αn
|‖f(xn) − Snyn‖.

(3.16)

Since
‖Sn+1yn+1 − Snyn‖ = ‖Sn+1yn+1 − Sn+1yn + Sn+1yn − Snyn‖

6 ‖yn+1 − yn‖+ ‖Sn+1yn − Snyn‖
6 (1 − δn+1)‖xn+2 − xn+1‖+ δn‖xn+1 − xn‖
+ ‖Sn+1yn − Snyn‖,

(3.17)

and
‖xn+2 − xn+1‖ 6 αn+1‖xn+1 − xn‖+βn+1ψ(‖xn+1 − xn‖)

+ |αn+1 −αn|‖xn − Snyn‖+ |βn+1 −βn|‖f(xn) − Snyn‖
+ γn+1‖Sn+1yn+1 − Snyn‖,

(3.18)

substituting (3.17) into (3.18), we obtain that

‖xn+2 − xn+1‖ 6
αn+1 + γn+1δn +βn+1ψ

1 − γn+1(1 − δn+1)
‖xn+1 − xn‖

+
|αn+1 −αn|

1 − γn+1(1 − δn+1)
‖xn − Snyn‖

+
|βn+1 −βn|

1 − γn+1(1 − δn+1)
‖f(xn) − Snyn‖

+
γn+1

1 − γn+1(1 − δn+1)
‖Sn+1yn − Snyn‖.

(3.19)

Substituting (3.19) and (3.17) into (3.16), we obtain that

‖zn+1 − zn‖ 6 (1 −
βn+1η

1 −αn+1
)‖xn+1 − xn‖+

|αn+1 −αn|

1 − γn+1(1 − δn+1)
‖xn − Snyn‖

+ [
|βn+1 −βn|

1 − γn+1(1 − δn+1)
+ |

βn+1

1 −αn+1
−

βn

1 −αn
|]‖f(xn) − Snyn‖

+ [
γn+1

1 − γn+1(1 − δn+1)
+

γn+1

1 −αn+1
]‖Sn+1yn − Snyn‖.
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We know that
1
2
‖Sn+1yn − Snyn‖ 6

1
2
‖Sn+1yn − Syn‖+

1
2
‖Syn − Snyn‖.

From {xn}, {yn} ⊂ C, assume that there exists a subset B of C which contains {xn}, {yn}. Since hB : R+ →
R+ is a continuous, increasing and convex function, then we have

hB(
1
2
‖Sn+1yn − Snyn‖) 6

1
2
hB(‖Sn+1yn − Syn‖) +

1
2
hB(‖Syn − Snyn‖)

6
1
2

sup
ω∈B

hB(‖Sn+1ω− Sω‖)

+
1
2

sup
ω∈B

hB(‖Sω− Snω‖).

By Lemma 2.3 and the continuity of hB, we obtain that limn→∞ hB( 1
2‖Sn+1yn− Snyn‖) = 0. This implies

that
lim
n→∞ ‖Sn+1yn − Snyn‖ = 0.

Since C is a nonempty bounded closed convex subset of X, then {xn}, {yn}, {f(xn)} and {Snyn} are
bounded. Hence ‖xn − Snyn‖ and ‖f(xn) − Snyn‖ are bounded. Again from conditions (ii) and (iii),
we have

lim sup
n→∞ (‖zn+1 − zn‖− ‖xn+1 − xn‖) 6 0.

By using Lemma 2.4, we have
lim
n→∞ ‖zn − xn‖ = 0.

Since
lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1 −αn)‖zn − xn‖ = 0.

Next, we prove that limn→∞ ‖xn − Sxn‖ = 0.
We observe that

1
2
‖xn − Sxn‖ 6

1
2
‖xn − Snxn‖+

1
2
‖Snxn − Sxn‖

6
1
2
‖xn − Snxn‖+

1
2

sup
ω∈B

‖Snω− Sω‖.

On the other hand, we have that
lim
n→∞ ‖xn − Snxn‖ = 0.

This proof is the same as that of Theorem 3.1.
Since hB : R+ → R+ is continuous, increasing and convex, then we have

hB(
1
2
‖xn − Sxn‖) 6

1
2
hB(‖xn − Snxn‖) +

1
2
hB(‖Snxn − Sxn‖)

6
1
2
hB(‖xn − Snxn‖) +

1
2

sup
ω∈B

hB(‖Snω− Sω‖).

From Lemma 2.3 and the continuity of hB, we obtain that limn→∞ hB( 1
2‖xn − Sxn‖) = 0. This implies

that
lim
n→∞ ‖xn − Sxn‖ = 0.

This remaining proof is the same as that of Theorem 3.1, we omit it. Therefore, we conclude that {xn}

converges strongly to x̂ ∈
⋂∞
n=1 F(Tn).
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4. Numerical experiments

In this section, respectively, we give the corresponding numerical examples of Theorem 3.1, Theorem
3.2 and Theorem 3.3 to illustrate the effectiveness of the three algorithms constructed in Section 3. All
codes were written in Matlab 2010b and run on Dell i - 5 Dual-Core laptop.

Example 4.1. Let X := R and C := [0, 1] ⊂ R. Let T : C→ C, f : C→ C be defined by

T(x) =
1
4
x, f(x) =

1
2
x.

It is clear that F(T) = {0}.
Let us choose

αn =
1
2
−

1
4n

, βn =
1

4n
, γn =

1
2

, δn =
n

2(n+ 1)
, λn =

1
3
−

1
4n

.

Obviously, X, C, T , f, αn, βn, γn, δn, λn satisfy all the conditions of Theorem 3.1.
Below we take different initial values to observe the convergence of the algorithm (3.1). Taking x0 =

0.1, x0 = 0.5, x0 = 1, respectively, we have the following numerical results:

Table 1: numerical examples of Theorem 3.1.

Iter. n 0 5 10 15 20 25 30 ...

x0 = 0.1000 xn 0.1000 0.0342 0.0139 0.0058 0.0025 0.0010 4.4419× 10−4 ...

x0 = 0.5000 xn 0.5000 0.1711 0.0697 0.0291 0.0123 0.0052 0.0022 ...

x0 = 1.0000 xn 1.0000 0.3422 0.1393 0.0582 0.0245 0.0104 0.0044 ...

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

x0=0.1

x0=0.5
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Figure 1: numerical examples of Theorem 3.1.

Example 4.2. Let X, C, f,αn, βn, γn, δn, λn is the same to that of Example 4.1 and Ti : C → C be
defined as follows:

Ti(x) =

{
1
Nx, i = 0,
1
ix, 1 6 i 6 N− 1.

Obviously,
⋂N−1
i=0 F(Ti) = {0} and X,C, Ti, f,αn,βn,γn, δn, λn satisfy all the conditions of Theorem 3.2.

Below we consider two situations to observe the convergence of the algorithm (3.14).
Case 1. Taking N = 10, x0 = 0.1, x0 = 0.5, x0 = 1, respectively, we have the following numerical results:
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Table 2: numerical examples of Theorem 3.2 for N = 10.

Iter. n 0 5 10 15 20 25 30 ...

x0 = 0.1000 xn 0.1000 0.0377 0.0135 0.0070 0.0026 0.0014 5.1472× 10−4 ...

x0 = 0.5000 xn 0.5000 0.1886 0.0676 0.0352 0.0130 0.0069 0.0026 ...

x0 = 1.0000 xn 1.0000 0.3771 0.1353 0.0704 0.0261 0.0139 0.0052 ...
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Figure 2: numerical examples of Theorem 3.2 for N = 10.

Case 2. Taking x0 = 1, N = 5, N = 10, N = 20, respectively, we have the following numerical results:

Table 3: numerical examples of Theorem 3.2 for x0 = 1.

Iter. n 0 5 10 15 20 25 30 ...

N = 5 xn 1.0000 0.3771 0.1899 0.0989 0.0522 0.0278 0.0148 ...

N = 10 xn 1.0000 0.3771 0.1353 0.0704 0.0261 0.0139 0.0052 ...

N = 20 xn 1.0000 0.3771 0.1353 0.0469 0.0160 0.0085 0.0032 ...
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Figure 3: numerical examples of Theorem 3.2 for x0 = 1.

Example 4.3. Let X, C, f,αn, βn, γn, δn is the same to that of Example 4.1 and Tn : C → C be defined
by Tn(x) = 1

nx. Obviously,
⋂∞
n=1 F(Tn) = {0} and X,C, T , f,αn,βn,γn, δn satisfy all the conditions of
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Theorem 3.3.
Below we also consider two situations to observe the convergence of the algorithm (3.15).
Case 1. Taking λ = 2

3 , x0 = 0.1, x0 = 0.5, x0 = 1, respectively, we have the following numerical results:

Table 4: numerical examples of Theorem 3.3 for λ = 2
3 .

Iter. n 0 5 10 15 20 25 30 ...
x0 = 0.1000 xn 0.1000 0.0170 0.0020 2.2809× 10−4 2.5175× 10−5 2.7449× 10−6 4.6350× 10−7 ...
x0 = 0.5000 xn 0.5000 0.0851 0.0101 0.0011 1.2588× 10−4 1.3724× 10−5 1.4847× 10−6 ...
x0 = 1.0000 xn 1.0000 0.1702 0.0202 0.0023 2.5175× 10−4 2.7449× 10−5 2.9693× 10−6 ...
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Figure 4: numerical examples of Theorem 3.3 for λ = 2
3 .

Case 2. Taking x0 = 1, λ = 1
2 , λ = 1

4 , λ = 2
3 , respectively, we have the following numerical results:

Table 5: numerical examples of Theorem 3.3 for x0 = 1.

Iter. n 0 5 10 15 20 25 30 ...

λ = 1
2 xn 1.0000 0.2350 0.0463 0.0089 0.0017 3.2123× 10−4 6.0659× 10−5 ...

λ = 1
4 xn 1.0000 0.3825 0.1601 0.0680 0.0290 0.0124 0.0053 ...

λ = 2
3 xn 1.0000 0.1702 0.0202 0.0023 2.5175× 10−4 2.7449× 10−5 2.9693× 10−6 ...
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Figure 5: numerical examples of Theorem 3.3 for x0 = 1.
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