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Abstract

In this paper, we consider a class of stochastic age-dependent capital system with fractional Brownian motion, and inves-
tigate the convergence of numerical approximate solution. It is proved that the numerical approximation solutions converge
to the analytic solutions of the equations under given conditions. A numerical example is provided to illustrate the theoretical
results. (©2017 All rights reserved.
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1. Introduction

Stochastic partial differential equations have been widely used to model the phenomena arising
in many fields of science and industry such as finance, economics, biology and medicine, see e.g.,
[4, 6, 12, 13, 19, 21] and references therein. Recently, the numerical construction of stochastic age-
dependent (vintage) capital system with standard Brownian motion has captured many researchers’ at-
tention. For example, Zhang et al. [21, 22] discussed the exponential stability of numerical solutions for
the stochastic age-dependent capital system with Poisson jumps in the case of deterministic magnitude,
and further studied the convergence of numerical solutions for a class of stochastic age-dependent capital
system with random jump magnitudes. In their subsequent work [20], they constructed a split-step back-
ward Euler method for stochastic age-dependent capital system with Markovian switching and proved
that, under the one-sided local Lipschitz condition on the drift and local Lipschitz condition on the diffu-
sion, the split-step backward Euler method converges with strong order of one half to the true solution.
Du et al. [2] discussed the convergence of a semi-implicit Euler method for stochastic age-dependent
capital system with variable delays and random jump magnitudes. In these studies, uncertainties in the
financial market (i.e., randomness of the external environment) were considered in their models in the
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form of a standard Brownian motion. However, the randomness of the external environment is not al-
ways well modeled by the standard Brownian motion (e.g., because of the long-range dependence or long
memory of the processes under consideration). In the last few years, some articles have been published
choosing fractional Brownian motion (fBm) as an underlying diffusive process (e.g., Refs. [7-9, 14-17]
and references therein). For example, Jiang et al. [9] proposed a class of stochastic heat equations with
first order fractional noises and established the existence and uniqueness of the solution of the equation.
Wang et al. [15] studied the problem of continuous time option pricing with transaction costs by using
the homogeneous subdiffusive fBm as a model of asset prices. Xiao et al. [17] presented a pricing model
for equity warrants in a mixed fractional Brownian environment and proposed a hybrid intelligent algo-
rithm to solve the nonlinear optimization problem. Jariczak-Borkowska [8] investigated the existence and
uniqueness of generalized backward stochastic differential equation driven by fBm with Hurst parameter
H greater than 1/2, and shown the connection between this solution and the solution of parabolic partial
differential equation with Neumann boundary condition. Rostek and Schobel [14] gave a note on the
use of fBm for financial modeling and clarified that fBm is suited for economic modeling. In this paper,
motivated by [14], we consider a class of stochastic age-dependent capital system with fBm as following

OK(a,t) , 9K(a,t) dBl!

ot + da = _u(a/t)K(a/t)+f(t/K(alt))+g(t/K(a/t))T/ il’lQ,
N(t) = [ K(a, t)da, te[o,T], (11)
K(0,t) = d(t) = y(t)A(HF(L(t), N(t), telo,T],
K(alo) = Ko(a), acl0A]

where Q = (0,A) x (0,T), K(a,t) is the stock of capital goods of age a at time t, and N(t) is the total
sum of the capital. The investment ¢(t) in the new capital and f(t,K(a,t)) in the capital of age a are
the endogenous (unknown) variables. The maximum physical lifetime of capital A, the planning interval
of calendar time [0, T], the depreciation rate p(a,t) of capital, and the capital density Ko(a) (the initial
distribution of capital over age) are given. y(t) (€ (0,1)) and A(t) denote the accumulative rate and the
technical progress at the moment of t, respectively. F(L(t),N(t)) is the production function and L(t) is
the labor force. f(t,K(a,t)) + g(t,K(a,t)) a; F denotes effects of the external environment for the system,
such as innovations in techniques, introduction of new products, natural disasters and changes in laws
and government policies and so on. The effects of external environment include the deterministic and the
random parts which depend on t and K(a, t). Here B!! is standard fBm with Hurst parameter H € (3,1).

Fractional Brownian motion has H-self-similarity, in addition it has long-range dependence when H > 3
and short-range dependence when H < 1. When H = 1, the corresponding fBm is a standard Brownian
motion and has independent increments. The standard Brownian motion is a semimartingales if and only
if H = 1, thus It6 stochastic integration theory for semimartingales cannot be applied if H # 3.

The system (1.1) describes the evolution of the composition of the productive capital as a function
of purchasing/selling new or used capital. When g = 0 (i.e., without stochastically perturbed), K(a,t)
denotes the riskless capital and the system becomes to a generalization of the deterministic age-dependent
capital system, which has been studied by many authors. For instance, Feichtinger et al. [4, 5] established
deterministic (vintage) capital dynamics and the necessary optimality conditions, and developed the
vintage capital stock model with technological progress while the model is solved. Goetz et al. [6]
studied the capital replacement decision of a firm as a distributed investment and disinvestment optimal
control problem.

Due to the nonlinear feature of stochastic system with fBm, and its dificullty to bring out explicit so-
lutions, constructing the efficient computational methods becomes extremely important. Thus numerical
approximation schemes are invaluable tools for exploring their properties. Numerical solution of stochas-
tic differential equations (SDEs) driven by Brownian motion has been studied by many researchers. For
instance, Kloeden et al. [10] have given some useful results in their monograph, which contains an al-
most complete survey of the theory of numerical solution of such SDEs with regular coefficients. Zhang
[18] discussed the existence and uniqueness for stochastic age-dependent population equation with dif-
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fusion. Ronghua et al. [13] studied the convergence of numerical solutions to stochastic age-dependent
population equations with diffusions and Markovian switching. Recently, Ma et al. [11] studied the
stochastic age-dependent population equations with fractional Brownian motion and developed a numer-
ical scheme and showed the convergence of the numerical approximation solution to the analytic solution.
Rathinasamy [12] constructed a class of split-step 6-methods for solving stochastic age-dependent popu-
lation equations with Markovian switching. The main aim of this paper is to investigate the convergence
of numerical approximation for a class of stochastic age-dependent capital system with fBm under the
given conditions.

The rest of this paper is organized as follows. In Section 2 some basic preliminaries results, which are
essential for our development, and the Euler approximation analysis are introduced. The main results are
shown in Section 3. In Section 4 a numerical example is provided to illustrate the theoretical results.

2. Preliminaries and approximation

Definition 2.1 (fractional Brownian motion (fBm)). Let B = B"(t),t € R be a stochastic process, and
0 < H < 1. B! is called a fBm with Hurst parameter H, if it is a centered Gaussian process, which starts
at zero (Bgl = 0), has expectation zero for all t, i.e,, E[B'ﬂ] =0, and has the covariance function

1
EBYBL = o (1t 415 —t—sPM), tser.

Let

v =H'(0,Al) = (olp € L*(0,A), 2% & 12((0, Al), where 0
Xi 0x4

are generalized partial derivatives}.

V is a Sobolev space. H = 12([0, A]) such that
VaH=H — V.

Then V' = H~1([0, A]) is the dual space of V. We denote by |-| and || - || the norms in V and V’, respectively,
by (-, -) the duality product between V, V’/, and by (-, -) the scalar product in H. m is a constant such that

X[ < mlx[], ¥x € V.

Throughout this paper, f(t,-) : V — V' is a family of nonlinear operators a.e.t for all t. g(t,-) : V —
L(K, H) is the family of all bounded linear operators from K into H . Let C = C([0, T]; H) be the space of all

continuous functions from [0, T] into IH with sup-norm |[\{||c = sup (s)|, U\’/ =LP([0,T}; V) and L}; =
0<s<T

LP ([0, TI;H). We assume that there exists a unique process K(a,t) € IP([0, T]; V) N L2 = LP(w, C([0, T|; H))
such that Eq. (1.1) holds.
The integral version of Eq. (1.1) is given as follows

{ K¢ = Ko — Saalif ds—fou ds—i—fg (s, K ds—l—fég(s,Ks)dBE, te[0,T], @.1)

K(0,t) = ¢(t) =v(t)A fo (a,t)da), tel0,T],
where Ky = K(aq,t).

For system (1.1) the discrete Euler approximate solution on t = 0, h,2h,---,Nh is defined by the
following iterative scheme

aQt

= QF — S h—p(a, ti) QFh + fti, Q€ R + g(ti, QF)ABH, 2.2)
with initial value QY = K(a,0),Q*(0,t) = y(t)A(t IO QF¥da). Where Q¥ is an approximation to

K(a,ty) for t, = kh, h At = T/N « 1 is the time 1ncrement and AB!! = BP+ A — B is fBm increment.
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For convenience, we shall extend the discrete numerical solution (2.2) to continuous time,

t t

fls,Z,)ds + | gls, Z2)aBl, 23)
0

tazs t
Qt:KQ—J 3 ds—J u(a,s)sts+J
0 da 0 0

where we have defined the piecewise constant function

N—1
Zi =Z(a,t) = Z Q¥ jkn, (ke 1)m) (1)
k=0

and Ig is the indicator function for the set G. It is straightforward to check that Z(a, ti) = Q¥ = Q(a, ti).
For convenience, the expression (2.3) may also be expressed in the stochastic differential form

0z
dQy = —a—atdt —u(a,t)Zedt + f(t, Z¢)dt + g(t, Z¢)dBH. (2.4)

Let G be an open subset of V, and D C G be any compact set. We denote the unique solution of Eq.
(1.1) for all t € [0, T] by K(a, t) € G with initial condition Ky € G, and the Euler approximation solution to
Eq. (1.1) by QF.

As the standing hypotheses we always assume that the following conditions are satisfied:

(@) p(a,t)is non-negative measurable in Q, and y(t) and A(t) are nonnegative continuous in [0, T] such
that
0< o <ulat) <Ap<oo, (a,t) €Q,
{ Y(t)A(t) <1, 1 is a non-negative constant, in [0, T],

where fg\ u(a,t)da = +oo. F(L, N) is satisfied with

F(L,N) > 0(F(L,0) =0), §f >0,
0< % < Fy,where Fy is a positive constant.

(b) (Lipschitz condition). There exists a positive constant m;(D) for all K, K, € D such that
[£(t, Kz) — F(t, K1)V [l g(t, Ka) — g(t, Kp)[[5 < my (D)Ko — Ky .

(c) There exists a Cl'z—positive function V(t,-) : G = R4, such that K € G : V(t,K) < ris compact for any
r>0.

(d) Letyq(t), Pa(t) be two continuous non-negative functions, and there exists a positive constant m, (D).
Assume that for all K € G,

LV(t, K) < ma(D) + 1 (t) +2(t) V(t, K),

where

T T oK
J LV(t,K)dt = J (Vt(t,K) + <VK(’£, K), —— —u(a, t)K + f(t, K)>> dt
0 0 oa

1. (" o,
+ 2HL 2H1V (4, K) [t K)|Bdt.

(e) There exists a positive constant m3(D) such that for all K;, K, € D

[V(t, K1) = V(t, K[V Ve (t, Ky ) = Ve (8, Ko) [V [V (8, Ky ) — Vit K2) TV [V (1, K ) — Vi (t, K2
< mz(D)[K; —Kal.

Remark 2.2. When H = %, the fBm is a standard Brownian motion.
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If condition (b) holds, there exists a positive constant m4 (D) such that
I7(t, K2V [lg(t, K[ < my(D) (25)
for all K € D. Since K(a) is bounded, there exists a positive constant ms(D) such that
K(a, t)> < ms(D). (2.6)

Since K(a,t) € V =H!([0, A)), % V= Visa family of linear operators, then there also exists a positive

constant mg(D) such that
2

" < me(D) 2.7)

da

for K € D.

3. Main results

In this section, we will give and prove the following main results that the numerical solutions converge
to the true ones of the stochastic age-dependent capital equations with respect to fBm under the given
conditions.

Theorem 3.1. If T is the first exit time of the solution K(a,t) or the Euler approximate solution Q in a bounded
region D, and for all a € (0,A), sup % exists, and f(t,K) and g(t,K) satisfy condition (b), then for

teD
AtT <1

E[ sup Q¢ —K(a, t)| < C1(D)e“PITAL = C(D)AL,

0<t<TAT

where
Ci(D) = 8{ [AE2M(D) + o + my (D) (1 + 2HTPH1)] 5 [me (D) + 13ms (D) + my(D) + my(D)TAH]
£} (D)mi (D)LY}
C2(D) = 2AFN*M(D) + 3o + 1 + 2my (D)(1 + 2HTZH),

Thus, the Euler approximation solution Q converges to the unique exact solution K(a,t) when At — 0 as long as
Q¢ and K(a, t) remain within the domain D.

Proof. We consider one and only trajectories K(a,t) and Q¢ which remain within a bounded domain D.
Firstly, we introduce the stopping time T = p /A © where

p=inf{t >0:Q¢€D}and 6 =inf{t > 0: K(a,t)€D}

are the first exit time that Q. and K(a, t) leave from the domain D, respectively.
The bounded domain D is defined as

D=D(r)={Ke G suchthat V(t,K) <}

Applying It6 formula to |Q — K(a, t)[? yields

t _0Zs N 0K(a,s)
da da

Q¢ — K(a,t)l2 = ZJO —u(a,s)(Zs —K(a,s)), Qs — K(a,s)> ds
+2Jt(f(s,Zs) —f(s,K(a,s)),Qs —K(a,s))ds +2H Jt s?H1)g(s, Zs) — g(s,K(a,s))|5ds
0 0
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rt
+2| (Qs—Kl(a,s),9(s,Zs) —g(s,K(a,s)))dB!!

JO
<2 A <a(zs_K(a’s)),Qs —K(a,8)> ds —2pg Jt(Zs —K(a,s), Qs —K(a,s))ds
Jo da 0
+2 pt(f(sr ZS) —f(s,K(a,t)), QS - K(a,s))ds +2H Jt SZHil”g(S/ Zs) - g(s,K(a,s))H%dS
JO 0

rt

+2| (Qs—K(a,s),g(s,Zs) —gls,K(a,s)))dBH.
JO

Since

a /Qt_K(a/t)>

A o
= '()(Ztaz(a't))((gt —K(a,t))da

3(Z¢ —K(a, 1))
_<a

(M a(Z¢—K(a,t) Q¢ —K(a,t)
= —UO a—a(Zt —K(a,t))mda
[ Qe —K(a,t)9(Z¢ —K(a, 1))
_—“O Zt—K(a,t) da da(zt_K(art))
2
L 5 va2 A Q¢ —K(a,t)
< EY (s)A“(s) F(L(s),J0 Zt—K(a,t)da)—F(L(s),O)] fgg Zt—K(a,t)‘ da
2 A
< %M(D)T}Z (aF(aIKIN) ‘y) <JO Z —K(a,t)da)
< SARIM(D)IZ, —K(a, 1),

where M (D) = flelg ’%%((23 for all a, therefore, we get that
Q¢ — K(a, ) < AF?M(D)|Z¢ —K(a, t)?

t
+2ugj
0

t

1Zs —K(a, s)[[Qs — K(a, s)ds +2J Qs —Kla, s)lIf(s, Zs) — f(s, K(a, t))|ds
0

+ij sZH—lug(s,zs)—g(s,K(a,s))H%dej (Qs —K(a,s),9(s, Zs) —g(s,K(a,s)))dBH
0 0

t t
< APP2M(D)|Z¢ — K(a, ) + uoj 1Zy —K(a,s)+ 1o L Qs —K(a, s)2ds
0

+ Jt Qs — K(a,s)]> + Jt If(s, Zs) — (s, K(a,t))[>ds + 2H Jt SZH_ng(S,ZS)
0 0 0

t

—g(s,K(a,s))|5ds +2L (Qs —K(a,s),g(s,Zs) — g(s,K(a,s)))dBL.

Since the coefficients of Eq. (1.1) are Lipschitz continuous and K(a,s) and Qs are bounded, we get that
|f(sl ZS) - f(S, K(ar S)|2 \/ ||g(sl ZS) - g(sl K(Cl, S) ||% < ml(D)|ZS - K(a/ S)‘Z

for s € [0,TATy]. Let Ty € [0, T] be an arbitrary time. For any t € [0, T /A T;], we have
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T/\T] T/\Tl
J SZH_ng(S,ZS)—g(S,K(a/S))HZdS < ml(D)J SZH_1|ZS—K(C1,S)|2dS
0 0

T/\Tl
<my (D)  sup sZH_lj |Zs —K(a,s)*ds
0<s<TAT, 0

T/\Tl
< my(D)T2H L Zy —K(a, s)Pds.

Therefore,

T/\Tl
E sup Q¢ —K(a,t)? ] < [AF%nZM(®)+uo+ml(1+2HTfH1)]J E|lZs —K(a,s)?ds
0<t<tAT 0

T/\Tl

+(u0+1)L E1Qs —K(a,s)]* ds (3.1)

t
+2E  sup J (Qs—K(a,s),g(s,Zs)—g(s,K(a,s)))dB';.
0<t<TAT, JO

By the basic inequality a® + b? > 2ab and an It6 formula for a finite dimensional fractional Brownian

motion applied to (K(t,a),t € [0, T]) (e.g., [3]), we can get

t
E sup J(Qs—K(a,s),g(s,zs)—g(s,K(a,s)))dB‘:
0<t<TAT; JO

T/\Tl
<EJO Qs —K(a,s)llg(s, Zs) — g5, K(a, ) |.dBH

1 (3.2)
1 T/\T] 2|2
<2mi (D)L |E Jo Hg(s,Zs)—g(s,K(a,s))szB'S1
1 1
<4mZ (D)mZ (D)L At
where L; and L, are two positive constants. Thus, it follows from (3.1) and (3.2)
E( sup 1Q¢—K(at)P
0<t<STAT,
T/\T]
< [AFEMUD) 4o+ m (D)(1+ 2HTZ 1] | EIZe — Qo+ Qu —Klas)Pds
0
T/\T] 1 1
—i—(wﬁ—l)J EIQS—K(a,s)lzds+8mj(®)m§(D)L1L2HAt 33)
0 .

T
< [2AFN*M(D) +3uo+1+2m1(D)(1+2HT12H—1)}J E ( sup IQr—K(a,r)I2> dr
0 0<tSTATy

TATl
+2 [ARM(D) + po + my (D) (1 + 2HTZH )] J EIZs — QsPds
0
1 1
+8m2 (D)mZ (D)L L5 At

forall t € [0, T].
Applying Gronwall’s inequality, Eq. (2.3) and expression Zs; = Z(a,s) = Q (a, [ 2] At) (where [ ] is
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the integer part of £;), we obtain a bound of the form

Zo- QP =] (o [ 2] at) ~Qf
B ‘_J[&]At 0Z., JS 07 [Ae]at

S
—du+ udu—poJ Z,du+ u{)J Z,du
0 Ja 0 Ja 0 0

[51At 2

[fﬁAt s s
+J f(u,Zu)du—J f(u,Zu)du—i—J g(u,Zu)dBE—J g(u,Z,)dB
0

0 0 (3.4)

2

du

4 J 2Q(a, [51AY)

[£)At da

IR ICIFA SR

_S_
At

+4

J[gtmt HoQ (a' [Ait} At) au
2
J[ s At 9 <u, Q (a' [Ait} At)) dBy;

+4
At
Applying the definition of fBm on the last term of (3.4) again, we have

Ej[s;t]m g (u, Q (a, [Ait} At)) dBH

Thus, by conditions (2.6) and (2.7) and inequality (3.4), for TAt < 1,

2
+4

2
< my(D)THH AL,

E LTATl 1Zs — QslPds < 4Ty [mg(D) + ugms(D) + my(D)] At + 4my (D) T7HAL 35)
< 4 [mg(D) + pims(D) + ma(D) + ma(D)TEH] At.
Substituting (3.5) into (3.3), one can get
T
E ( sup Qt—K(a,t)|2> < Cl(D)AH—Cz(D)J E ( sup |QT—K(a,r)|2> dr,
0<t<TATY 0 0<t<TAT

where

C1(D) = 8{ [AFN?M(D) + po + mq (D) (1 4+ 2HTFH )] % [me(D) + pims(D) + ma(D) + ma(D)TEH]

+mj (D)md (D)L,
Ca(D) = 2AFMAM(D) + 3o + 1+ 2my (D) (1 + 2HTAH).

On applying the Gronwall inequality we then have the following inequality

E[ sup Q¢ —K(a,t)?| < Ci(D)ePITAL = C(D)AL.

0<tSTAT

So, the proof is complete. O

Theorem 3.2. If 0 is the first exit time of the solution K(a, t) to (2.1) from the domain D(r), and a function V(t, K)
exists which satisfies conditions (c) and (d), then the probability

PO>T)>1—c.
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Proof. Assuming that there exists a non-negative function V(t, K) satisfying condition (c), and applying
It6’s formula to V(t, K), we have

dV(t,K(a,t)) = LV(t,K(a,t)) + Vi (t,K(a,t))g(t, K(a,t))dB}.

Taking integral over the interval [0,t /\ 8] and taking expectations, yields
tA8
EV(tAD,K(a,tAB)) =V(ty,Ko) +E J LV(s,K(a,s))ds.
0
By condition (d), it follows that
-
EV(t A6, K(a, tAB)) < V(to, Ko) + EJ (m2(D) +1(s) +a(s)V(s,K(a,s))ds.
0
Applying Gronwall’s lemma, one can easily obtain that almost surely

T T
EV(t,K(a,t)) < (V(to, Ko) +m2(®)T+JO ll)l(s)ds> X exp (J ll)z(s)ds> .

0
Let . .
N; = (V(to, Ko) +m2(®)T+JO d)l(s)ds> X exp (L wz(s)ds> .

Note that V(0,K(a,0)) = r, and K(a, 0) is valued on the boundary of D(r), the probability p(6 < T) can
be bounded as

Ny > E[V(tAO,K(a,t AB)] > E[V(tAO,K(a, t AB))jgT)(w)] = TE[Ljg-1)(w)] > TP(6 < T). (3.6)
Rearranging (3.6), we have

PO<T)< Ny/r=c¢. (3.7)

Theorem 3.2 is proved. O

We can obtain the following results deduced from Theorem 3.2 directly.

Lemma 3.3. Let 0 be the first exit time of the solution K(a,t) to Eq. (1.1) from the domain D(r), and the

coefficients of Eq. (1.1) satisfy condition (a). If there exists a function V(t,K) satisfying conditions (c) and (d),

then li_)m D(r) = Gand, forany t € [0, T] and Ky € G, K(a, t) remains in G. Thus, for all finite T, K(a, t) is the
T—00

unique solution to Eq. (1.1) on t € [0, T].
Proof. The proof of this lemma is similar to that in [19]. O
For the Euler approximate solution Q, one can get the following Theorem 3.4 similarly.

Theorem 3.4. If p is the first exit time of the Euler approximate solution Q¢ to Eq. (2.3) from the domain D(r),
and if (t, K) and g(t, K) satisfy condition (b) and there exists a function V(t,K(t, a)) satisfying conditions (c)-(e),
then

Plp=>T)>1—¢(1+N(D)At)

for sufficiently small At, where N(D) = N(D)e™ fo b2(s)ds (V(O, Ko) + fglln(s)ds).
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Proof. Note that Q. is also the solution to Eq. (2.4), and applying It6’s formula to V(t, Q) yields,

VI, Qu) = Vilt, Qudt + {Vilt, Qo) ~ 5 — nlt @)z +1(4,20) ) at

1 _
+§Ht2H Wik (t, Qu)llg(t, Ze)[3dt + (Vi (t, Qt), g(t, Z¢)dBE)

0Z
= LV(Zt) Vt(t Qt Vt t Zt)dt+ <VK t Qt VK t Zt) —T;—H(t G)Zt+f(t Zt)> dt

+ %Ht”**l(vKK(t, Qu) — Vkk(t, Zy))[lg(t, Z¢)[3dt + (Vi (t, Qu), g(t, Z¢)dBY') .

Applying condition (d), we have
dV(t, Q) < m2(D) +1(t) + W2 (t)V(t, Z¢) + [Vie(t, Qi) — Vi(t, Zy)ldt

Vit Qu) = Vilt, 20, ~ 55— utt,0)2e+ 104, 20) ) a

+ %th“‘l(VKK(t, Q) — Vi (t, Qu)lIg(t, Ze)[3dt + (Vi (t, Qu), g(t, Z)dB})

mo (D) +P(t) +2(t) V(L Qi) +2(t) [V(L, Z¢) — V(t, Q¢)l dt
+ (Vie(t, Q) — Vi(t, Z¢))dt

(Vi Qu) = Vi, 20~ St =l @)20) + (4, 20) )

+ %HtZH‘l(VKK(t, Qt) — Vi (t, Ze))llg(t, Z)|3dt + (Vi (t, Qt), g(t, Z¢)dB!) .

Taking integral over the interval [0, p /\ t] and taking expectations, yields

p/At

pAt
E[V(pAt, Qpad)] < VIO, Ko) +m2(D)T+JO Bi(s)ds + E L Da(s)V(s, Qs)ds
p/At p/At
+EJ (Vt(s,Qs)—Vt(s,Zs)ds+EJ Wa(s)[V(s, Zs) — V(s, Qs)lds

0 0

e AZs
+ EJ <VK(S/ QS) _VK(SI ZS)/_ da - H.(S, a)ZS + f(sl ZS)> ds
0

1 b o
+2HEJO s2H 1 (Vikk (s, Qs) — Vikk (s, Z)) |1 g(s, Zs) |5 ds
p/At

p/A\t
<V(0,Ko)+m2(®)T+JO wl(s)ds%L Da(s)V(s, Qs )ds

p/At p/At
+EL ¢2(S)|V(S,Zs)—V(S,Qs)|dS+EL Vels, Qs) — Vi(s, Zslds

0Z,
a

p/At
+EJ Vi (s, Qs) — Vk (s, Zs )I‘ u(s,a)Zs +1(s,Zs)| ds
0

1 p/At B
+ 2HEJ s?M Vi (s, Qs) — Vi (s, Zs)ll|g(s, Zs) || 3ds.
0

Therefore, applying inequalities (2.5)-(2.7) and condition (e), we get that

)
E[V(p At Qon)] < VI(0,Ko) +mz(®)T+L Bi(s)ds

p/At t
+N2(D)m3(D)EJ Zo - QsldS+EJ0 Ba(s)V(p As, Qoas)ds

0
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where
1/2

Na(D) = my?(D) + pomy/ 2 (D) + mi/*(D) + my(D)T1/2 4 sup Po(t) + 1.

0<t<T

Applying Holder inequality and (3.5), for all t € [0, T], we have the bound

1/2

A\t
Jp EIZ, — Qslds < (4T(mg(D) + 12ms(D) + ma(D) + my(D)T2H)) 2 AL1/2.
0

Thus

)
EIV(o At Qoacl] < V(0 Ko) +m2(®)T+JO Bi(s)ds

1/2 Atl/z

+ N (D)m3(D) (4T(me(D) + pgms(D) + my(D) + my(D)T?M))
t
+ | W2l EVIoAS Qons)es

Applying the Gronwall inequality, yields

E [V(p/\t, QpAt)] <

.
V(0,Ko) + ma(D)T +J 1b1(s)ds] elo wa(s)ds | N(D)At?,
0

where N(D) = el ¥2()dsN, (D)ms(D) {4T [ms(D) + 12ms(D) + my(D) + my(D)T2H] L2,

A similar argument, being used to prove Theorem 3.2, can be used to bound P(p < T). Since Q, is
valued on the boundary of D(r) then V(p, Q,) =1, one can get

T T
V(0,Ko) +J wl(s)ds] elo W2l8)ds L N(D)AL > E [VITAp, Qrap)
0

> E[V(TAP, Qrap) Ljp<1}(w)]
= eIy (w)] = TP(p < T).

Rearranging the inequality and defining N(D) = N(D)e™ [o wa(s)ds / (V(O, Ko) + fg 1b1(s)ds>, and defin-

ing € = % € (0,1) as in (3.7), we have
Plp<T) < (1 + N(D)At1/2> €.

Theorems 3.2 and 3.4 show that both K(a,t) and Q¢ remain in the domain D(r). And therefore, by
Theorem 3.1, the Euler approximate solution Q¢ will converge to the K(a, t) with probability

Pt<T)<Plp<T)+P(s<T)< (2 n N(D)Atl/z) €. (3.8)

O

Theorem 3.5. Let G be an open subset of V, and denote the unique solution to Eq. (1.1) for t € [0, T] with initial

value Ko € G by K(a,t) € G. Let Q¢ be the Euler approximate solution to (2.2) and also let D C G be any compact
a,t)

set. Suppose conditions (a)-(e) are satisfied, and for all a € (0,A), sup ‘%
teD

) ‘ exists. Then for any €, & > 0

there exists At* > 0 such that (when At < At*)

P ( sup 1Q¢ —K(a, t)* > 6) <e.

0<t<T
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Proof. Introducing the event sub-space Q = {w D SUPp 1 Qe — K(a,t)]? > 6} and using Theorem 3.1,
we find that

C(D)At > E | sup |Q¢—K(a,t)]*
|0<t<T

WV
rm

Iir>1(w) sup IQt—K(a,t)Zl
0<t<T

>E I{T>T}((,U)I{Q} sup |Qt_K(a/t)|2]
0<t<T

> 8E [Ipesmy (@) oy (@)] =8P ((r > TN Q)

WV

§[P(Q)—P(t<T)].

Whence on using (3.8) we conclude that probability

¢ c C((D
Kla, @) =P [ sup 1Qc—K(a, P > 5 | <2¢ + eN((D)at/2 4 PN 5y
0<t<T )
which, for appropriate choice of At, proves Theorem 3.5. B

4. An example

We consider the following stochastic age-dependent capital system with respect to fBm

Afat) y aKlat) — 1 K(a 1)~ tK(a,t) +K(a, )95, (a,t)€Q,

K(a,0) = exp(—1=5), ac[0,1], 1)
K(0,) = Y()A(t) 22 o Kla, t)da, te0,T],

N(t) = [y K(a, t)da, t € [0, TI.

where Q = (0,1) x (0,T). B is a fBm with Hurst number H = %. For the simulation of B with H = 3/4,
the generators of the fBm described in [1] are used. We can set this problem in our formulation by taking
H = [%([0,1]) and V = B}([0,1]) (a Sobolev space with elements satisfying the boundary conditions

above), and set p(t, a) = oy, Y(DA(L) = 2t F(L(t),N(t)) = J8 K(a, t)da, L(t) = ot fEK) =

—tK, g(t,K) =K, and K(a, 0)=exp(— ).

Obviously, F(L,N) and n(t, a) satisfy condition (a) and the operators f and g satisfy condition (b).
Then, the approximate solution will converge to the true solution of Eq. (4.1) for any (a,t) € Q in the
sense of Theorem 3.5. Here we take T = 1 in Eq. (4.1). The results are obtained with fixed step sizes
At = 0.005, Aa = 0.05 in our calculation.

1

Figure 1 (a) shows the explicit solution to Eq. (4.1) without perturbation, that is EK(a, t)=exp(——== —

l1—a
"2—2). Figures 1 (b)-(d) show Euler approximate solution of Eq. (4.1) with 100, 1000, and 10000 experi-
ments, respectively, where EQ(a,t) = % > -1 Kk(a,t). These figures reveal the fact that the numerical
approximate solution will tend to the true one in the mean sense.
For Eq. (4.1), it is difficult to obtain the analytic (explicit) solution, so the explicit solution K(a,t)
to Eq. (4.1) can be replaced by exp(—ﬁ — L22)(1 + ABI!). Figures 2 (a) and (b) give the simulation of

exp(—it- — %2)(1 + AB!!) and the Euler approximate solution Q(a, t), respectively. The absolutely error

1—a
and square error are also respectively shown in Figures 2 (c) and (d). The maximum of square error is
not greater than 0.02. It is obvious that the numerical approximation will tend to the true solution in the

mean square sense.
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(a) Analysis Solution without Perturbation (b) Numerical Solution with 100 Test

0o
a t

(c¢) Numerical Solution with 1000 Test (d) Numerical Solution with 10000 Test

Figure 1: Numerical simulation of stochastic age-dependent capital system: (a) analysis solution and Euler approxi-
mate solution for several tests, (b) n = 100, (c) n = 1000, (d) n = 10000.

(a) exp(—1/(1-a)—t2/2)+ Perturbation (b) Euler Numerical Solution

(c) Error (d) Square Error

o
o
X

o
o
@

K(a,t)-Q(a,t)

(K@@ )-Q(art)?

-0

Figure 2: Error simulation of stochastic age-dependent capital system with fBm.
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