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Abstract
In this note, we show a new sufficient condition for exponentially stability for a class of nonlinear impulsive switched

systems. Based on the result obtained, an effective computational method is devised for the construction of switched linear
stabilizing feedback controllers. Finally, a numerical example is given to illustrate the feasibility of the proposed methods.
Compared with the results shown by Xu and Teo [H.-L. Xu, K. L. Teo, IEEE Trans. Automat. Control, 55 (2010), 2429–2433], the
form of our result is simpler and its computational cost is lower. c©2017 All rights reserved.
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1. Introduction

An important class of hybrid dynamical systems is nonlinear impulsive switched systems. This class
of systems can be used in many fields, such as the automotive industry, mechanical systems and switching
power converters and so on [11].

The fundamentally research issues for linear or nonlinear impulsive switched systems are stability
analysis and controller design [11]. As a result, theory and methods for stability of linear or nonlinear
impulsive switched systems have been extensively studied by many researchers and many research papers
have been published in various academic journals, for examples, see [2, 28, 30, 31] and the references
therein.

In [24, 27], the authors discussed linear impulsive switched systems with linear impulsive increments.
In [23], Xu and Teo considered a general class of nonlinear impulsive switched systems with nonlinear
impulsive increments and presented some sufficient conditions for exponentially stability. The authors of
[7, 15] studied exponential stability of nonlinear impulsive switched systems with delays. In [16, 17], the
authors discussed finite-time stability for nonlinear impulsive switched systems. In [22, 29], the authors
investigated the stability properties for a class of nonlinear impulsive switched systems which include
both stable and unstable subsystems.
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Motivated by the above mentioned works, in this note, we shall also consider stability analysis for a
class of nonlinear impulsive switched systems, as in [23]. The main technique of this note is based on an
original argument developed in [23], with some technical changes. The main contributions of this note
is that some new sufficient conditions for exponentially stability are presented. The conditions of our
results are simpler than ones shown in [23] and the computational cost of solving these conditions is also
lower than solving those conditions shown in [23]. Some related papers those may be helpful to readers
can be found in [3–6, 9, 10, 12–14, 18–21, 25, 26].

2. Nonlinear impulsive switched systems

In this note we mainly adopt the notation and terminology in [23]. The nonlinear impulsive switched
systems considered in [23] can be described by

ẋ (t) = Aix (t) +Biω (t) +Ciu (t) +φi (t, x (t)) , t 6= τk,
∆x (t) = Dkx (t) +ψk (t, x (t)) , t = τk,
z (t) = Eix (t) ,
x
(
τ+0
)
= x0,

(2.1)

where x ∈ Rn is the state variable, ω (t) ∈ Rp is the disturbance input, u (t) ∈ Rr is the control input, and
z (t) ∈ Rq is the controlled output. The functions φi (t, x (t)) : [τ0,∞)× Rn → Rn are globally Lipschitz
continuous, and ψk (t, x (t)) : [τ0,∞)× Rn → Rn are nonlinear functions, and φi(t, 0) = ψi(t, 0) = 0.
Ai ∈ Rn×n,Bi ∈ Rn×p,Ci ∈ Rn×r,Dk ∈ Rn×n,Ei ∈ Rq×n, are known constant matrices.

∆x (τk) = x
(
τ+k
)
− x

(
τ−k
)
= x

(
τ+k
)
− x (τk) ,

with x
(
τ+k
)
= lim
t→τ+k

x (t) and x (τk) = x
(
τ−k
)
= lim
t→τ−k

x (t) meaning that the solution of system (2.1) is left

continuous. τk,k ∈ N denote the moments when impulsive control occurs which satisfy

0 = τ0 < τ1 < τ2 < · · · , lim
k→∞ τk = ∞.

Under the control of a switching signal, coupling with the impulsive effects, system (2.1) enters from the
i subsystem to the i+ 1 subsystem at the time point t = τk. Without loss of generality, we assume that

‖ω (t)‖2 6 α ‖x (t)‖2 , ‖φi (t, x (t))‖2 6 gi ‖x (t)‖2 , ‖ψk (t, x (t))‖2 6 ρk ‖x (t)‖2

for all [τ0,∞), where || · || denotes the Euclidean norm of vectors and α,gi, ρk are positive constants.
For exponential stabilization, Xu and Teo [23] also discussed a class of switched linear feedback con-

trollers u (t) = Fix (t), where Fi ∈ Rr×n are constant matrices. Then, the following impulsive switched
closed-loop system was obtained

ẋ (t) = (Ai +CiFi) x (t) +Biω (t) +φi (t, x (t)) , t 6= τk,
∆x (t) = Dkx (t) +ψk (t, x (t)) , t = τk,
z (t) = Eix (t) ,
x
(
τ+0
)
= x0.

(2.2)

In this note, we show a new sufficient condition for exponentially stability of system (2.1). Based on
the result obtained, linear feedback gain matrices Fi are constructed such that system (2.2) is exponentially
stable. Finally, a numerical example is given to illustrate the feasibility of the proposed results.

3. Main results

In this section, we will give the main results of this note. To do this, we need the following lemmas
[8].

Lemma 3.1. For any x,y ∈ Rn, then ∣∣xTy∣∣ 6 ‖x‖ ‖y‖ .
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Lemma 3.2. Let H be a real symmetrical matrix, and λmax (H) , λmin (H) be the largest and the smallest eigenvalues
of H, respectively. Then for any x ∈ Rn, we have

λmin (H) x
Tx 6 xTHx 6 λmax (H) x

Tx.

Theorem 3.3. Let u (t) = 0 and suppose that the assumptions about ω (t) ,φi (t, x (t)) ,ψk (t, x (t)) are satisfied.
If there exist symmetric and positive definite matrices Pi such that the following conditions hold

(i):
[
ATi Pi + PiAi + σiI Pi

Pi −I

]
< 0;

(ii): lnβk + η (τk+1 − τk) 6 0,

where

σi =

(√
αλmax

(
BTi Bi

)
+
√
gi

)2

,η = maxηik < 0,

ηik = λmax
(
P−1
i

(
P2
i +A

T
i Pi + PiAi + σiI

))
< 0,

and

βk =

(√
λmax

(
P−1
i−1 (I+Dk)

T Pi (I+Dk)
)
+

√
ρk

λmax (Pi)

λmax (Pi−1)

)2

,

then the nonlinear impulsive switched system (2.1) is exponentially stable.

Proof. Let us construct switched Lyapunov functions

V (t) = x (t)T Pix (t) .

When t ∈ (τk, τk+1], we have

D+ (V (t)) = ẋ (t)T Pix (t) + x (t)
T Piẋ (t)

= x (t)T
(
ATi Pi + PiAi

)
x (t) + 2x (t)T Pi (Biω (t) +ϕi (t, x (t))) .

(3.1)

Then by Lemmas 3.1, 3.2 and the arithmetic-geometric mean for scalars, we have

2x (t)T Pi (Biω (t) +φi (t, x (t)))

6 2
√
x (t)T P2

ix (t)
T (Biω (t) +φi (t, x (t)))

T (Biω (t) +φi (t, x (t)))

6 x (t)T P2
ix (t)

T + (Biω (t) +φi (t, x (t)))
T (Biω (t) +φi (t, x (t)))

= x (t)T P2
ix (t)

T +ω (t)T BTi Biω (t) + 2ω (t)T BTi φi (t, x (t))

+φi (t, x (t))
T φi (t, x (t))

6 x (t)T P2
ix (t)

T + λmax
(
BTi Bi

)
ω (t)T ω (t) + 2ω (t)T BTi φi (t, x (t))

+φi (t, x (t))
T φi (t, x (t))

6 x (t)T P2
ix (t)

T + λmax
(
BTi Bi

)
ω (t)T ω (t) +φi (t, x (t))

T φi (t, x (t))

+ 2
√
ω (t)T BTi Biω (t)φi (t, x (t))

T φi (t, x (t))

6 x (t)T P2
ix (t)

T + λmax
(
BTi Bi

)
ω (t)T ω (t) +φi (t, x (t))

T φi (t, x (t))

+ 2
√
λmax

(
BTi Bi

)√
ω (t)T ω (t)φi (t, x (t))

T φi (t, x (t)).

(3.2)
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Thus, by the assumptions about ω (t) ,φi (t, x (t)), (3.1), (3.2), we obtain

D+ (V (t)) 6 x (t)T
(
ATi Pi + PiAi

)
x (t) + x (t)T P2

ix (t)
T

+αλmax
(
BTi Bi

)
x (t)T x (t) + gix (t)

T x (t) + 2
√
αgiλmax

(
BTi Bi

)
x (t)T x (t)

= x (t)T
(
P2
i +A

T
i Pi + PiAi +

(
αλmax

(
BTi Bi

)
+ 2
√
αgiλmax

(
BTi Bi

)
+ gi

)
I

)
x (t)

= x (t)T
(
P2
i +A

T
i Pi + PiAi +

(√
αλmax

(
BTi Bi

)
+
√
gi

)2

I

)
x (t)

By Schur complement theorem [1] and condition (i), we get

D+ (V (t)) 6 ηikV (t) ,

which implies that
V (t) 6 V

(
τ+k
)
eηik(t−τk), t ∈ (τk, τk+1] . (3.3)

When t = τk, by Lemmas 3.1, 3.2, and the assumption about ψk (t, x (t)), we have

V
(
τ+k
)
= ((I+Dk) x (τk) +ψk (τk, x (τk)))

T Pi ((I+Dk) x (τk) +ψk (τk, x (τk)))

= x (τk)
T (I+Dk)

T Pi (I+Dk) x (τk) + 2x (τk)
T (I+Dk)

T Piψk (τk, x (τk))

+ψk (τk, x (τk))
T Piψk (τk, x (τk))

6 λmax

(
Pi−1 (I+Dk)

T Pi (I+Dk)
)
x (τk)

T Pi−1x (τk) +ψk (τk, x (τk))
T Piψk (τk, x (τk))

+ 2x (τk)
T (I+Dk)

T Piψk (τk, x (τk))

6 λmax

(
Pi−1 (I+Dk)

T Pi (I+Dk)
)
V (τk) +ψk (τk, x (τk))

T Piψk (τk, x (τk))

+ 2
√
x (τk)

T (I+Dk)
T Pi (I+Dk) x (τk)ψk (τk, x (τk))

T Piψk (τk, x (τk))

6 λmax

(
Pi−1 (I+Dk)

T Pi (I+Dk)
)
V (τk) + ρk

λmax (Pi)

λmax (Pi−1)
x (τk)

T Pi−1x (τk)

+ 2

√
λmax

(
Pi−1 (I+Dk)

T Pi (I+Dk)
)
ρk

λmax (Pi)

λmax (Pi−1)
x (τk)

T Pi−1x (τk)

=

(√
λmax

(
Pi−1 (I+Dk)

T Pi (I+Dk)
)
+

√
λmax (Pi)

λmax (Pi−1)
ρk

)2

V (τk) .

(3.4)

For t ∈ (τ0, τ1], by inequality (3.3), we have

V (t) 6 V
(
τ+0
)
eηi1(t−τ0).

By inequality (3.4) and this last inequality, we have

V
(
τ+1
)
6 β1V (τ1) 6 β1V

(
τ+0
)
eηi1(τ1−τ0). (3.5)

For t ∈ (τ1, τ2], it follows from (3.3) and (3.5) that

V (t) 6 V
(
τ+1
)
eηi2(t−τ1) 6 β1V

(
τ+0
)
eηi1(τ1−τ0)eηi2(t−τ1).

By induction, for t ∈ (τk, τk+1], we have

V (t) 6 β1 · · ·βkV
(
τ+0
)
eηi1(τ1−τ0)eηi2(τ2−τ1) · · · eηik(τk−τk−1)eηik+1(t−τk).
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Since η = maxηik < 0 and lnβk + η (τk+1 − τk) 6 0, we get

V (t) 6 β1 · · ·βkV
(
τ+0
)
eηi0(τ1−τ0)eηi1(τ2−τ1) · · · eηik(τk−τk−1)eηik(t−τk)

6 β1 · · ·βkV
(
τ+0
)
eη(τ1−τ0)eη(τ2−τ1) · · · eη(τk−τk−1)eη(t−τk)

= β1 · · ·βkV
(
τ+0
)
eη(t−τ0)

= V
(
τ+0
)
e

k∑
j=1
βj
eη(t−τ0)

6 V
(
τ+0
)
e

k∑
j=1
βj
e−η(τk−τ0)eη(t−τ0)

= V
(
τ+0
)
elnβ1−η(τ1−τ0)elnβ1−η(τ2−τ1) · · · elnβk−η(τk−τk−1)eη(t−τ0)

6 V
(
τ+0
)
eη(t−τ0).

By Lemma 3.2 and this last inequality, we obtain

λmin (Pi) ‖x (t, τ0, x0)‖2 6 V (t) 6 V
(
τ+0
)
eη(t−τ0) 6 ‖x0‖2 λmax (P1) e

η(t−τ0).

That is

‖x (t, τ0, x0)‖ 6

√
λmax (P1)

λmin (Pi)
‖x0‖ e

η
2 (t−τ0).

This completes the proof.

Remark 3.4. Compared with the result shown by Xu and Teo [23], the form of our result is simpler and its
computational cost is lower.

Theorem 3.5. Let the assumptions aboutω (t) ,φi (t, x (t)) ,ψk (t, x (t)) be satisfied. If there exist matrices Li,Wi
with Li is symmetric and positive definite such that the following conditions hold:

(i):
[
I+ (AiLi +CiWi)

T + (AiLi +CiWi)
√
σiLi√

σiLi −I

]
< 0;

(ii): 0 <
√
λmax

(
Li−1 (I+Dk)

T L−1
i (I+Dk)

)
+

√
ρk

λmax(L−1
i )

λmax(L−1
i−1)

< 1,

where

σi =

(√
αλmax

(
BTi Bi

)
+
√
gi

)2

,

then the impulsive switched closed-loop system (2.2) is exponentially stable and we have the following switched
linear feedback controllers:

u (t) = Fix (t) , Fi =WiL
−1
i .

Proof. By Schur complement theorem [1], we know that condition (i) of Theorem 3.5 is equivalent to

I+ (AiLi +CiWi)
T + (AiLi +CiWi) + σiL

2
i < 0. (3.6)

Let
Pi = L

−1
i , Fi =WiL

−1
i .

Multiplying Pi from both sides of (3.6), we obtain

P2
i + Pi (AiL+CiWi)

T Pi + Pi (AiL+CiWi)Pi + σiI 6 0.
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That is,
P2
i + (Ai +CiFi)

T Pi + Pi (Ai +CiFi) + σiI 6 0.

By using Schur complement theorem [1] again and this last inequality, we have[
(Ai +CiFi)

T Pi + Pi (Ai +CiFi) + σiI Pi
Pi −I

]
< 0.

Thus, condition (i) of Theorem 3.3 holds. Since

0 <
√
λmax

(
Li−1 (I+Dk)

T L−1
i (I+Dk)

)
+

√√√√ρk λmax
(
L−1
i

)
λmax

(
L−1
i−1

) < 1,

which implies
lnβk + η (τk+1 − τk) 6 0,

and so condition (ii) of Theorem 3.3 also holds. Then the impulsive switched closed-loop system (2.2) is
exponentially stable. This completes the proof.

4. A numerical example

In this section, we will illustrate the effectiveness of our result by using the same example which was
shown in [23]. Consider the following nonlinear impulsive switched system with arbitrary switching laws
and two switching status:

A1 =

[
1 1
0 1.5

]
, B1 =

[
2.1 0.2
−1.1 0

]
, C1 =

[
1.6 1
2 1.5

]
, φ1 (t, x (t)) =

[
sin x1

0

]
,

A2 =

[
2 1
2 3

]
, B2 =

[
1.5 1.3
1.2 0

]
, C2 =

[
1.8 0.8
1 1.7

]
, φ2 (t, x (t)) =

[
sin x1
sin x2

]
,

and

Dk = −

[
0.58 0

0 0.58

]
, ψk (t, x (t)) = 0.3

[
sin x1
sin x2

]
, ωi (t) =

[
x1 sin 20πt
x2 sin 20πt

]
.

Then, we can choose
α = g1 = g2 = 1, ρk = 0.09,

and so
σ1 = 11.4060, σ2 = 10.3003.

Solving linear matrix inequalities in condition (i) of Theorem 3.5, we have

L1 =

[
0.0435 0

0 0.0435

]
, W1 =

[
−3.2351 3.6644
4.1145 −5.6082

]
,

L2 =

[
0.0481 0

0 0.0481

]
, W2 =

[
−2.7226 −3.6994
4.7316 1.4918

]
.

Simple calculations show that β1 = 0.4448 < 1 and β2 = 0.5105 < 1. All the conditions of Theorem 3.5 are
satisfied, so the nonlinear impulsive switched system is exponentially stable.
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