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Abstract

In this study, we establish the quantum calculus analogue of the classical Dirac system. Moreover, we investigate the Jost
solution, eigenvalues, spectral singularities and some quantitative properties of the spectrum of this new system. c©2017 All
rights reserved.
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1. Introduction

Spectral theory of operators is a branch of functional analysis which has a number of significant
applications from quantum physics to engineering. Spectral analysis of differential operators can be traced
back to Naimark [16]. Basic problems in the spectral theory of Sturm-Liouville and one dimensional Dirac
type operators were discussed in the book of Levitan and Sargsjan [14]. Also, differential operators with
spectral singularities have been main topic of various studies [12, 15].

Besides differential operators that we have mentioned up to here, difference operators have also be-
come a rising research area for its possible applications to real life problems [4, 11]. Krall et al. studied
some spectral properties of the non-selfadjoint discrete Schrödinger operator by taking into account the
principal functions and spectral singularities [13]. Adivar and Bairamov investigated the spectrum, the
spectral singularities, and the properties of the principal vectors corresponding to the spectral singu-
larities of discrete Sturm-Liouville and discrete Dirac operators [1]. In [6], discrete Dirac operator was
considered in terms of spectrum and spectral expansion.

Succeeding the developments in ordinary and discrete calculus, some new topics of quantum calculus
have been introduced by Kac and Cheung [10]. This new point of view to concepts of ordinary calculus
like q-derivative, q-integration etc. required the redefinition of classical equations. In particular, some
problems of q-difference equations have been studied by Berg et al. [7, 8]. Adivar and Bohner introduced
the quantum analogue of the classical Sturm-Liouville equation and studied the spectral properties of this
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equation [2]. In their study, they proved that the Jost solution of this equation has analytic continuation
to the lower half-plane and the finiteness of the eigenvalues and spectral singularities of the quantum
difference equation is achieved as a result of this analytic continuation. Related to the study [2], principal
functions of the second order quantum difference equation was treated in [3]. As a continuation of the
papers [2] and [3], the presence of the spectral parameter not only in the quantum difference equation but
also in the boundary condition has been considered by Aygar and Bohner [5].

The present paper was motivated by the above mentioned studies. In this paper, we let q > 1 and use
the notation

qN0 := {qn : n ∈N0} ,

where N0 denotes the set of nonnegative integers. We define the Hilbert space l2(qN, C2) consisting of all

sequences y = {y(t)} =

{
y(1)(t)

y(2)(t)

}
with the inner product,

〈y, f〉(qN,C2) :=
∑
t∈qN

(y(1)(t) f(1)(t) + y(2)(t) f(2)(t)), y, f : qN → C,

and the norm

‖y(t)‖(qN,C2) =

∑
t∈qN

(
∣∣∣y(1)(t)

∣∣∣2 + ∣∣∣y(2)(t)
∣∣∣2)
 1

2

for y : qN → C.

By using the definition of quantum derivative [2, 8], we construct the system of equations (y(2)(t))4 + p(t)y(1)(t) =
λy(1)(t)
µ(t) ,

−(y(1)( tq))
4 + r(t)y(2)(t) =

λy(2)(t)
µ(t) ,

t ∈ qN, (1.1)

which is quantum analogue of the well-known Dirac system(
0 1
−1 0

)(
y′1
y′2

)
+

(
p(x) 0

0 q(x)

)(
y1
y2

)
= λ

(
y1
y2

)
,

introduced by Levitan and Sargsjan [14]. Therefore the system (1.1) is called a quantum Dirac system.
The purpose of this paper is investigation of the spectral properties of the non-selfadjoint boundary

value problem (BVP) {
y(2)(qt) − y(2)(t) + p(t)µ(t)y(1)(t) = λy(1)(t),
y(1)( tq) − y

(1)(t) + r(t)µ(t)y(2)(t) = λy(2)(t), t ∈ qN, (1.2)

y(1)(1) = 0, (1.3)

where {p(t)}t∈qN and {r(t)}t∈qNare complex sequences, µ(t) is graininess function and λ is an eigenpa-
rameter. In essence, our ideas come from [1, 2]. In the next section, we find the Jost solution and Jost
function of (1.2)-(1.3). Finally, we discuss the eigenvalues and the spectral singularities of the BVP (1.2)-
(1.3) using the classical definitions of spectral analysis and get some quantitative properties of them under
the Pavlov’s condition

sup
t∈qN

{
exp

[
ε

(
ln t
lnq

)δ]
(|p(t)µ(t)|+ |r(t)µ(t)|)

}
<∞, (1.4)

where ε > 0, 1
2 6 δ 6 1.
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2. Jost solution and Jost function

Suppose that the condition ∑
t∈qN

ln t
lnq

(|p(t)µ(t)|+ |r(t)µ(t)|) <∞, (2.1)

is satisfied.

Theorem 2.1. Under the condition (2.1), the BVP (1.2)-(1.3) has unique solution

f(1)(1, z) = ei
z
2

1 +
∑
r∈qN0

A11
1re
i ln r

lnqz

− i
∑
r∈qN0

A12
1r e

i ln r
lnqz, (2.2)

f(t, z) =
(
f(1)(t, z)
f(2)(t, z)

)
=


( 1 0

0 1

)
+
∑
r∈qN0

Atr e
i ln r

lnqz

( ei
z
2

−i

)
ei

ln t
lnqz

 , (2.3)

for λ = 2 sin z2 , where z ∈ C+ := {z ∈ C : Imz > 0} and

Atr =

(
A11
tr A12

tr

A21
tr A22

tr

)
.

Proof. Substituting the function (2.3) in (1.2), we get

A12
tq = −

∑
s∈[qt,∞)∩qN

p(s)µ(s) + r(s)µ(s),

A11
tq =

∑
s∈[qt,∞)∩qN

p(s)µ(s)A12
sq,

A22
tq =

∑
s∈[t,∞)∩qN

p(s)µ(s)A12
sq,

A12
tq2 = −r(qt)µ(qt)A11

tq −
∑

s∈[qt,∞) ∩qN

[p(s)µ(s) + r(qs)µ(qs)]A11
sq,

A21
tq = p(t)µ(t)A11

tq +A
12
tq −A

11
tq2 ,

A11
tq2 = −A22

qt,q −
∑

s∈[qt,∞) ∩qN

r(s)µ(s) − p(s)µ(s)A12
s,q2 ,

A22
t,q2 = A

22
tq −A

11
tq +A

22
t
q ,q2 + r(t)µ(t)A

21
tq,

for r > q3

A12
tr = A

21
tr −

∑
s∈[t,∞) ∩qN

p(s)µ(s)A11
sr − r(s)µ(s)A

22
sr,

A11
tr = −A22

tq, tq
−

∑
s∈[qt,∞) ∩qN

p(s)µ(s)A11
sr − r(s)µ(s)A

22
s, rq

,

A22
tr = A

22
qt, tq

+ p(t)µ(t)A12
tr −A

11
t, rq

+A11
tr,

A21
tr = p(t)µ(t)A

11
tr +A

12
tr +A

21
qt, tq

−A12
t,qr.

Due to the condition (2.1), the series in the definition of Aijtr (i, j = 1, 2) are absolutely convergent.
Therefore, Aijtr (i, j = 1, 2) can be uniquely determined by p(t), r(t) and µ(t) (t ∈ qN), i.e., the BVP
(1.2)-(1.3) for λ = 2 sin z2 has the solution given by (2.2) and (2.3).
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The solution f is called Jost solution of the BVP (1.2)-(1.3). Using the equalities for Aijtr (i, j = 1, 2)
given in Theorem 2.1, one can obtain the inequality∣∣∣Aijtr∣∣∣ 6 C ∞∑

s∈
[
tq
[ ln r

2 lnq ],∞)∩qN

(|p(t)µ(t)|+ |r(t)µ(t)|) , i, j = 1, 2, (2.4)

by induction, where
[

ln r
2 lnq

]
is the integer part of ln r

2 lnq , C > 0 is a constant and t, r ∈ qN. Therefore the

function f is analytic in C+, continuous in C+ and f(z) = f(z+ 4π).

3. Eigenvalues and spectral singularities

Let ϕ(z) = ϕ̃(λ) = {ϕ̃(t, λ)} , t ∈ qN be the solution of the BVP (1.2)-(1.3) subject to the initial
conditions

ϕ(1)(1, z) = 0, ϕ(2)(q, z) = 1.

Then ϕ is entire function and
ϕ(z) = ϕ(z+ 4π).

Definition 3.1. The Wronskian of two solutions y = {y(t, z)}t∈qN and u = {u(t, z)}t∈qN of the BVP (1.2)-
(1.3) is, for t ∈ qN, defined by

W [y,u] (t) := {y(t, z)u(qt, z) − y(qt, z)u(t, z)} .

Let us define the semi-strips P0 := {z : z ∈ C, z = ξ+ iτ, 0 6 ξ 6 4π, τ > 0} and P := P0 ∪ [0, 4π] . Then,
from Definition 3.1 for z ∈ C+, we get

W [f(z),ϕ(z)] =
[
f(1)(t, z)ϕ(2)(qt, z) − f(2)(qt, z)ϕ(1)(t, z)

]
= f(1)(1, z).

We will denote respectively the set of all eigenvalues and spectral singularities of the BVP (1.2)-(1.3) by
σd and σss. It is obvious that

σd =
{
λ : λ = 2 sin

z

2
, z ∈ P0, f(1)(1, z) = 0

}
, (3.1)

σss =
{
λ : λ = 2 sin

z

2
, z ∈ [0, 4π], f(1)(1, z) = 0

}
\ {0} . (3.2)

Let
F(z) := f(1)(1, z)e−i

z
2 , (3.3)

then the function F is analytic in C+, continuous in C+. Moreover, the functions f(1) and F have the same
zeros in the semi-strip P. Clearly we can write

F(z) = 1 +
∑
r∈qN0

A11
1re
i ln r

lnqz − i
∑
r∈qN0

A12
1re
i( ln r

lnq−
1
2 )z, (3.4)

and hence,
F(z+ 4π) = F(z).

Using (3.1), (3.2), (3.3), we find the eigenvalues and spectral singularities of the BVP (1.2)-(1.3) as

σd =
{
λ : λ = 2 sin

z

2
, z ∈ P0, F(z) = 0

}
, (3.5)

σss =
{
λ : λ = 2 sin

z

2
, z ∈ [0, 4π], F(z) = 0

}
\ {0} . (3.6)
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Definition 3.2. The multiplicity of a zero of F in P is called the multiplicity of the corresponding eigen-
value or spectral singularity of the BVP (1.2)-(1.3).

From (3.5) and (3.6) we conclude that, in order to investigate the quantitative properties of the sets σd
and σss, we require to discuss the quantitative properties of the zeros of F in P.

Define

Q1 := {z : z ∈ P0, F(z) = 0} ,
Q2 := {z : z ∈ [0, 4π] , F(z) = 0} .

(3.7)

We also denote the set of all limit points of Q1 by Q3 and the set of all zeros of F with infinite multiplicity
by Q4. So from (3.5), (3.6) and (3.7), we conclude the following:

σd =
{
λ : λ = 2 sin

z

2
, z ∈ Q1

}
,

σss =
{
λ : λ = 2 sin

z

2
, z ∈ Q2

}
\ {0} .

(3.8)

Theorem 3.3. If (2.1) holds, then

(i) The set Q1 is bounded and countable.

(ii) Q1 ∩Q3 = ∅, Q1 ∩Q4 = ∅.

(iii) The set Q2 is compact and µ(Q2) = 0, where µ is Lebesgue measure in the real axis.

(iv) Q3 ⊂ Q2, Q4 ⊂ Q2, µ(Q3) = µ(Q4) = 0.

(v) Q3 ⊂ Q4.

Proof. From (2.4) and (3.4), we have

F(z) = 1 + o(1), z ∈ P, |z|→∞. (3.9)

Equation (3.9) shows that the set Q1 is bounded. Since F(z) is analytic in C+ and is a 4π periodic function,
we find that Q1 has at most a countable number of elements. This proves (i). From the boundary
uniqueness theorems of analytic functions, we obtain (ii)-(iv) [9]. Using the continuity of all derivatives
of F on [0, 4π], we get (v).

From Theorem 3.3 and (3.8), we have the following.

Theorem 3.4. Under the condition (2.1),

(i) the set of eigenvalues of the BVP (1.2)-(1.3) is bounded, has at most a countable number of elements, and its
limit points can lie only in [−2, 2].

(ii) σss ⊂ [−2, 2] and µ(σss) = 0.

In preparation for the next result, we assume that the complex sequences {p(t)}t∈qN and {r(t)}t∈qN

satisfy ∑
t∈qN

exp
(
ε

ln t
lnq

)
(|p(t)µ(t)|+ |r(t)µ(t)|) <∞ (3.10)

for some ε > 0.
Note that for δ = 1, the condition (1.4) reduces to (3.10).

Theorem 3.5. Under condition (3.10), the BVP (1.2)-(1.3) has a finite number of eigenvalues and spectral singu-
larities with a finite multiplicity.
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Proof. Using (2.4) and (3.10), we obtain that

|A(t, r)| 6 C exp[−ε2
ln r
lnq ], t = 1, r ∈ qN0 , (3.11)

where C > 0 is a constant. Using (3.4) and (3.11), we observe that the function F has an analytic con-
tinuation to the half-plane Imz > −ε2 . Since F is a 4π periodic function, the limit points of its zeros in P
cannot lie in [0, 4π]. Also, we obtain that the bounded sets Q1 and Q2 have a finite number of elements
from Theorem 3.3. Using the analyticity of F in the region Imz > −ε2 , we find that all zeros of F in P have
a finite multiplicity. Therefore, we get the finiteness of the eigenvalues and the spectral singularities of
the BVP (1.2)-(1.3).

Now let us suppose that

∑
t∈qN

exp

[
ε

(
ln t
lnq

)δ]
(|p(t)µ(t)|+ |r(t)µ(t)|) <∞, ε > 0,

1
2
6 δ < 1, (3.12)

which is weaker than (3.10). It is seen that the condition (3.10) undertakes the analytic continuation of F
from the real axis to the lower half-plane. So the finiteness of the eigenvalues and the spectral singularities
of the BVP (1.2)-(1.3) are achieved as a result of this analytic continuation. It is evident that, under the
condition (3.12), the function F is analytic in C+ and infinitely differentiable on the real axis. However
F does not have an analytic continuation from the real axis to the lower half-plane. Therefore, under
the condition (3.12), the finiteness of the eigenvalues and the spectral singularities of the BVP (1.2)-(1.3)
cannot be proved in a way similar to Theorem 3.5.

Under the condition (3.12), to show that the eigenvalues and the spectral singularities of the BVP
(1.2)-(1.3) are of finite number, we will use the following:

Theorem 3.6 ([6]). Let us assume that the 4π periodic function g is analytic in C+, all of its derivatives are
continuous in C+, and

sup
z∈P

∣∣g(k)(z)∣∣ 6 ηk, k ∈N∪ {0} .

If the set G ⊂ [0, 4π] with Lebesgue measure zero is the set of all zeros of the function g with infinite multiplicity in
P, and if

ω∫
0

ln T(s)dµ(Gs) = −∞,

where T(s) = inf
k

ηks
k

k! and µ(Gs) is the Lebesgue measure of s-neighborhood of G and ω ∈ (0, 4π) is an arbitrary

constant, then g ≡ 0 in C+.

It follows from (2.4) and (3.4) that ∣∣F(k)(z)∣∣ 6 ηk, k ∈N∪ {0} ,

where

ηk = B
∑
r∈qN0

(
ln r
lnq

)k
exp(−

ε

2

(
ln r
lnq

)δ
), k ∈N0,

and B > 0 is a constant.
We can get the estimate for ηk

ηk 6 B

∞∫
0

xk exp(−
ε

2
xδ)dx 6 Ddkk!kk

1−δ
δ , (3.13)

where D and d are constants depending on B, ε and δ.
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Theorem 3.7. If (3.12) holds, then Q4 = ∅.

Proof. Using Theorem 3.6, we obtain that the function F satisfies the condition

ω∫
0

ln T(s)dµ(Q4,s) > −∞, (3.14)

where T(s) = inf
k

ηks
k

k! , k ∈ N0, µ(Q4,s) is the Lebesgue measure of the s-neighborhood of Q4, and ηk is

defined by (3.13). Now we get

T(s) 6 D exp
{
−

1 − δ

δ
e−1d−

δ
1−δ s−

δ
1−δ

}
, (3.15)

by (3.13). It follows from (3.14) and (3.15) that

ω∫
0

s−
δ

1−δdµ(Q4,s) <∞. (3.16)

Since δ
1−δ > 1, from (3.16), we obtain that, for arbitrary s, µ(Q4,s) = 0 or Q4 = ∅.

Theorem 3.8. Assume (3.12) holds. Then, the BVP (1.2)-(1.3) has a finite number of eigenvalues and spectral
singularities with a finite multiplicity.

Proof. In order to prove the theorem, we need to show that the function F has a finite number of zeros
with finite multiplicities in the region P.

Using Theorem 3.3 and Theorem 3.7, we conclude that the set Q3 = ∅. Thus, the bounded sets Q1 and
Q2 do not have accumulation points, that is to say, the function F has only a finite number of zeros in P.
Since Q4 = ∅, these zeros are of finite multiplicity.
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