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Abstract

In this paper, we develop a new application of the Mittag-Leffler function that will extend the application to fractional
homogeneous differential equations, and propose a Mittag-Leffler function undetermined coefficient method. A new solution
is constructed in power series. When a very simple ordinary differential equation is satisfied, no matter the original equation
is linear or nonlinear, the method is valid, then combine the alike terms, compare the coefficient with identical powers, and
the undetermined coefficient will be obtained. The fractional derivatives are described in the Caputo sense. To illustrate the
reliability of the method, some examples are provided, and the solutions are in the form of generalized Mittag-Leffler function.
The results reveal that the approach introduced here are very effective and convenient for solving homogeneous differential
equations with fractional order. c©2017 All rights reserved.
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1. Introduction

Many phenomena in the physical, chemical, and biological sciences as well as in technologies are gov-
erned by differential equations. In recent years, fractional differential equations [8, 14, 17] have attracted
much attention in a variety of applied sciences, such as visco-elasticity, feed back amplifiers, electrical
circuits, electro-analytical chemistry, fractional multiples [8, 10, 17], etc.. Consider the general fractional
homogeneous partial differential equation

Dαt u(x, t) =
n∑
i=1

aixD
δi
xi
u(x, t) +A(u(x, t)), (1.1)
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subject to the initial condition
∂ju(x, 0)
∂tj

= ϕj(x),

wherem− 1 < α 6 m, j= 0, 1, 2, · · · ,m− 1,m ∈ N, δi ∈ N, 06 t 6 T , x = (x1, x2, · · · , xn) ∈ Rn,ai(x),ϕj(x)
are functions of variable x, and A(u(x, t)) is linear or nonlinear in u(x, t) and ux(x, t). Note that Dαt u(x, t)
is the αth-order Caputo partial fractional derivative of function u(x, t) with respect to ”t”.

Note that equation (1.1) can be used to describe transport, diffusion-wave phenomena in some fields.
And the importance of obtaining the exact and approximate solutions of fractional equations in physics
and mathematics is still a significant problem that needs new methods to discover exact and approximate
solutions. But these fractional differential equations are difficult to get their exact solutions [9, 12, 13, 21].
So, these types of equations are solved by various methods such as Adomian decomposition method
[1, 22], variational iteration method [7, 20], differential transform method [2, 6], homotopy perturbation
method [11, 15], an iterative method [4, 23], finite element method [19, 25], finite difference method [3, 18],
etc..

We need to recall some definitions that will be used in the theory of fractional differential equations
[8, 10, 17].

Definition 1.1. The Gamma function is defined as follows:

Γ(x) :=

∫∞
0
tx−1e−tdt, (Re(x) > 0).

Definition 1.2. The Mittag-Leffler (1902-1905) function Eα, is defined by the power series

Eα(t) :=

∞∑
k=0

tk

Γ(αk+ 1)
,α > 0.

Definition 1.3. The Riemann-Liouville fractional integral of order α (α > 0) of a function u(x, t) is denoted
by Iαt u(x, t) and defined as

Iαt u(x, t) :=
1
Γ(α)

∫t
0
(t− τ)α−1u(x, τ)dτ, t > 0.

Definition 1.4. The Caputo partial fractional derivative of order α (α > 0) of a function u(x, t) is denoted
by Dαt u(x, t) and defined as

Dαt u(x, t) :=

{
∂m

∂tmu(x, t), α = m,m ∈ N,
Im−α
t

∂m

∂tmu(x, t), m− 1 < α < m,m ∈ N.

Using Definition 1.4, it is obvious that when γ > −1 and C ∈ R, we have Dαt t
γ =

Γ(γ+1)
Γ(γ+1−α)t

γ−α,
Dαt C = 0, and

Dαt (Eα(t)) = D
α
t (

∞∑
k=0

tk

Γ(αk+ 1)
) =

∞∑
k=1

tk−1

Γ(α(k− 1) + 1)
=

∞∑
k=0

tk

Γ(αk+ 1)
= Eα(t).

2. Description of the new Mittag-Leffler function undetermined coefficient method

Now we discuss this new method, which is called Mittag-Leffler function undetermined coefficient
method. To illustrate the basic idea of this method, take a simple fractional homogeneous equation as an
example:

Dαt u(x, t) = L(u(x, t)), (2.1)
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with the initial condition
u(x, 0) = ϕ(x),

where Dαt is the αth-order Caputo partial fractional derivative, 0 < α 6 1,ϕ(x) is a known function,
and L is a linear operator from a Banach space B to itself. In this paper, we will explain how to solve
some of differential equations with fractional level through the imposition the generalized Mittag-Leffler
function Eα(t), this function has already proved its efficiency as solutions of fractional calculus theory
and applications, and its convergence was also discussed in [17]. The new Mittag-Leffler function unde-
termined coefficient method suggests that the solution u(x, t) can be decomposed by an infinite series of
components for some equations:

u(x, t) = f(x)Eα(Atα) =
∞∑
n=0

f(x)An
tnα

Γ(nα+ 1)
, (2.2)

where A is an undetermined coefficient, using the initial condition u(x, 0) = ϕ(x), we have f(x) = ϕ(x).
substituting Eq. (2.2) into (2.1) and using the property, we get

∞∑
n=1

ϕ(x)An
t(n−1)α

Γ((n− 1)α+ 1)
= L(

∞∑
n=0

ϕ(x)An
tnα

Γ(nα+ 1)
).

Combining the alike terms and replacing n by n+ 1 in the first sum, we assume the form
∞∑
n=0

ϕ(x)An+1 tnα

Γ(nα+ 1)
= L(ϕ(x))

∞∑
n=0

An
tnα

Γ(nα+ 1)
. (2.3)

If the equation has a solution of generalized Mittag-Leffler function, it must satisfy the following condition
which is an ordinary differential equation

L(ϕ(x)) = Bϕ(x), (2.4)

and B is a constant, then Eq. (2.3) turns into the following form

ϕ(x)

∞∑
n=0

(An+1 −BAn)
tnα

Γ(nα+ 1)
= 0,

with the coefficient of tnα equal to zero and identifying the coefficients, we obtain recursive
An+1 −BAn = 0⇒ An+1 = BAn,

at n = 0,A1 = BA0 = B,

at n = 1,A2 = BA1 = B2,

at n = 2,A3 = BA2 = B3,

so the undetermined coefficient A is obtained, then substituting into (2.2), the general solution is

u(x, t) = ϕ(x)Eα(Btα).

Remark 2.1. For the fractional nonlinear equations, nonlinear term N(u(x, t)) can be decomposed as fol-
lows:

N(u(x, t)) = N(

∞∑
n=0

ϕ(x)An
tnα

Γ(nα+ 1)
)

= N(

∞∑
n=0

ϕ(x)un(t)) = N(ϕ(x))N(

∞∑
n=0

un(t)) = N(ϕ(x))(N(u0) +

∞∑
n=1

(N(

n∑
j=0

uj) −N(

n−1∑
j=0

uj))).

If the equation has a solution of generalized Mittag-Leffler function, it must satisfy N(ϕ(x)) = 0 or
N(ϕ(x)) = Cϕ(x), and C is a constant.
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Remark 2.2. For the fractional equation with derivative order 1 < α 6 2, and subject to the initial con-
ditions u(x, 0) = ϕ(x), ut(x, 0) = φ(x), if its solution u(x, t) is also decomposed by an infinite series of
components

∑∞
n=0 f(x)A

n tnα

Γ(nα+1) , combined with the initial conditions, we have f(x) = ϕ(x) and φ(x)
must be 0, then repeating the above process, the undetermined coefficient will be gotten. If φ(x) 6= 0, this
Mittag-Leffler function undetermined coefficient method will be invalid, we must explore other effective
methods.

3. Applications and results

In order to assess the advantages and the accuracy of the Mittag-Leffler function undetermined co-
efficient method, in this section, we discuss some illustrative examples for time fractional homogeneous
equations.

Example 3.1. Consider the following one-dimensional linear time fractional homogeneous heat-like equa-
tion:

Dαt u(x, t) =
1
2
x2D2

xu, (3.1)

with boundary conditions
u(0, t) = 0,u(1, t) = et, (3.2)

and the initial condition
u(x, 0) = x2, (3.3)

where 0 < α 6 1, 0 < x < 1, t > 0. Denoting L(u(x, t)) = 1
2x

2uxx, and

L(x2) =
1
2
x2D2

x(x
2) = x2 = u(x, 0),

this equation satisfies the condition (2.4), and B = 1, so the new method is applicable, and the solution
of this equation can be expressed in the generalized Mittag-Leffler function u(x, t) =

∑∞
n=0 x

2An tnα

Γ(nα+1) ,
substituting into Eq. (3.1), we find

∞∑
n=1

x2An
t(n−1)α

Γ((n− 1)α+ 1)
= x2

∞∑
n=0

An
tnα

Γ(nα+ 1)
,

combining the alike terms and replacing n by n+ 1 in the first sum

∞∑
n=0

x2An+1 tnα

Γ(nα+ 1)
= x2

∞∑
n=0

An
tnα

Γ(nα+ 1)
,

x2
∞∑
n=0

(An+1 −An)
tnα

Γ(nα+ 1)
= 0.

With the coefficient of tnα equal to zero and identifying the coefficients, we obtain

An+1 = An,

so A = 1 and the solution of Eq. (3.1)-(3.2)-(3.3) is

u(x, t) = x2Eα(t
α).

Remark 3.2. Particularly, if α = 1, then the one-dimensional linear time fractional heat-like equation is the
regular heat-like equation, and the exact solution is x2et, which is consistent with the solution in [16].
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Example 3.3. Consider the time fractional homogeneous diffusion equation:

Dαt u(x, t) = D2
x1
u(x, t) +D2

x2
u(x, t) − u(x, t), (3.4)

with initial condition
u(x, 0) = sin x1 sin x2 + cos x1 cos x2, (3.5)

where 0 < α 6 1, x = (x1, x2) ∈ R2, t > 0. Denoting L(u(x, t)) = D2
x1
u(x, t) +D2

x2
u(x, t) − u(x, t), and

L(sin x1 sin x2 + cos x1 cos x2) = D
2
x1
(sin x1 sin x2 + cos x1 cos x2)

+D2
x2
(sin x1 sin x2 + cos x1 cos x2) − (sin x1 sin x2 + cos x1 cos x2)

= −3(sin x1 sin x2 + cos x1 cos x2) = −3u(x, 0),

this equation satisfies the condition (2.4), and B = −3, so the new method is applicable, and the solution
of this equation can be expressed in the generalized Mittag-Leffler function u(x, t) =

∑∞
n=0(sin x1 sin x2 +

cos x1 cos x2)A
n tnα

Γ(nα+1) , substituting into Eq. (3.4), and combining the alike terms and replacing n by
n+ 1 in the first sum, we find

∞∑
n=0

(sin x1 sin x2 + cos x1 cos x2)A
n+1 tnα

Γ(nα+ 1)
=

∞∑
n=0

(sin x1 sin x2 + cos x1 cos x2)(−3An)
tnα

Γ(nα+ 1)
,

with the coefficient of tnα equal to zero and identifying the coefficients, we obtain

An+1 = −3An,

so A = −3 and the solution of Eq. (3.4)-(3.5) is

u(x, t) = (sin x1 sin x2 + cos x1 cos x2)Eα(−3tα). (3.6)

Remark 3.4. The solution (3.6) is consistent with the result in [4]. Particularly, if α = 1, then the time
fractional homogeneous diffusion equation is the regular diffusion equation, and the exact solution is
(sin x1 sin x2 + cos x1 cos x2)e

−3t.

Example 3.5. Consider the fourth order time fractional homogeneous parabolic equation:

Dαt u(x, t) = D4
xu(x, t) +D2

xu(x, t) + u(x, t), (3.7)

with initial condition
u(x, 0) = cosh x, (3.8)

where 0 < α 6 1, x ∈ R, t > 0. Denoting L(u(x, t)) = D4
xu(x, t) +D2

xu(x, t) + u(x, t), and

L(cosh x) = D4
x(cosh x) +D2

x(cosh x) + cosh x = 3 cosh x = 3u(x, 0),

this equation satisfies the condition (2.4), and B = 3, so the new method is applicable, and the solution of
this equation can be expressed in the generalized Mittag-Leffler function u(x, t)=

∑∞
n=0 cosh xAn tnα

Γ(nα+1) ,
repeating the above process, we have A = B = 3, so the solution of Eq. (3.7)-(3.8) is

u(x, t) = cosh xEα(3tα). (3.9)

Remark 3.6. The solution (3.9) is consistent with the result in [4]. Particularly, if α = 1, then the fourth
order time fractional homogeneous parabolic equation is the regular parabolic equation, and the exact
solution is cosh xe3t.
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Example 3.7. In this case, we consider the time fractional homogeneous backward Kolmogorov equation:

Dαt u(x, t) = (x+ 1)Dxu(x, t) + (x2et)D2
xu(x, t), (3.10)

with initial condition
u(x, 0) = x+ 1, (3.11)

where 0 < α 6 1, x = (x1, x2) ∈ R2, t > 0. Denoting L(u(x, t)) = (x+ 1)Dxu(x, t) + (x2et)D2
xu(x, t), and

L(x+ 1) = (x+ 1)Dx(x+ 1) + (x2et)D2
x(x+ 1) = x+ 1 + 0 = u(x, 0),

this equation satisfies the condition (2.4), and B = 1, so the new method is applicable, and the solu-
tion of this equation can be expressed in the generalized Mittag-Leffler function u(x, t) =

∑∞
n=0(x +

1)An tnα

Γ(nα+1) , substituting into Eq. (3.10), and combining the alike terms and replacing n by n+ 1 in the
first sum, we find ∞∑

n=0

(x+ 1)An+1 tnα

Γ(nα+ 1)
=

∞∑
n=0

(x+ 1)An
tnα

Γ(nα+ 1)
+ 0,

so the solution of Eq. (3.10)-(3.11) is
u(x, t) = (x+ 1)Eα(tα). (3.12)

Remark 3.8. The solution (3.12) is consistent with the result in [24]. Particularly, if α = 1, then the time
fractional homogeneous backward Kolmogorov equation is the regular backward Kolmogorov equation,
and the exact solution is (x+ 1)et.

Example 3.9. In this case, we consider the time fractional nonlinear homogeneous forward Kolmogorov
equation:

Dαt u(x, t) = −Dx(
4u
x

−
x

3
)u+D2

xu
2, (3.13)

with initial condition
u(x, 0) = x2, (3.14)

where 0 < α 6 1, x ∈ R, t > 0. In the right side of the equation,

−Dx(
4u
x

−
x

3
)u+D2

xu
2 = Dx(

x

3
u) +D2

x(u
2) −Dx(

4u2

x
) = L(u(x, t) +N(u(x, t))),

where L(u(x, t)) = Dx(x3u),N(u(x, t)) = D2
x(u

2) −Dx(
4u2

x ), and we check that

L(x2) = Dx(
x

3
x2) = x2, N(x2) = D2

x(x
2)2 −Dx(

4(x2)2

x
) = 0,

this equation satisfies the condition (2.4), and B = 1, so the new method is applicable, and the solution of
Eq. (3.13)-(3.14) is

u(x, t) = x2Eα(t
α). (3.15)

Remark 3.10. The solution (3.15) is consistent with the result in [24]. Particularly, if α = 1, then the time
fractional nonlinear homogeneous forward Kolmogorov equation is the regular forward Kolmogorov
equation, and the exact solution is x2et.

Example 3.11. Consider the time fractional homogeneous biological population equation which satisfies
the Malthusian Law:

Dαt u(x,y, t) = D2
xu

2 +D2
yu

2 + hu(x,y, t), (3.16)

with initial condition
u(x, 0) =

√
xy, (3.17)
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where 0 < α 6 1, x ∈ R, t > 0,h is a constant. Denoting

L(u(x, t) =)hu(x,y, t),N(u(x, t)) = D2
xu

2 +D2
yu

2,

and we check that
L(
√
xy) = h

√
xy, N(

√
xy) = 0,

this equation satisfies the condition (2.4), and B = h, so the new method is applicable, and the solution of
Eq. (3.16)-(3.17) is

u(x, t) =
√
xyEα(ht

α). (3.18)

Remark 3.12. The solution (3.18) is consistent with the result in [5]. Particularly, if α = 1, then the time
fractional homogeneous biological population equation is the regular biological population equation, and
the exact solution is

√
xyeht.

Example 3.13. Consider the time fractional homogeneous biological population equation which satisfies
the Verhulst Law:

Dαt u(x,y, t) = D2
xu

2 +D2
yu

2 + hu(1 − ru), (3.19)

with initial condition
u(x, 0) = e

√
hr
8 (x+y), (3.20)

where 0 < α 6 1, x ∈ R, t > 0,h, r are constant. Denoting

L(u(x, t)) = hu,N(u(x, t)) = D2
xu

2 +D2
yu

2 − hru2,

and checking that

L(e
√
hr
8 (x+y)) = he

√
hr8(x+y), N(e

√
hr
8 (x+y)) = 0,

this equation satisfies the condition (2.4), and B = h, so the new method is applicable, and the solution of
Eq. (3.19)-(3.20) is

u(x, t) = e
√
hr
8 (x+y)Eα(ht

α). (3.21)

Remark 3.14. The solution (3.21) is consistent with the result in [5]. Particularly, if α = 1, then the time
fractional homogeneous biological population equation is the regular biological population equation, and

the exact solution is e
√
hr
8 (x+y)eht.

Example 3.15. Consider the general fourth-order time fractional Boussinesq equation with one-dimens-
ional space variable:

Dαt u(x, t) = βD4
xu(x, t) + γD2

xu(x, t) + θD2
xu

2(x, t) − 4θu2(x, t), (3.22)

with initial condition
u(x, 0) = ex, ut(x, 0) = 0, (3.23)

where 1 < α 6 2, x ∈ R, t > 0,β,γ and θ are constant coefficients. Denoting

L(u(x, t)) = βD4
xu(x, t) + γD2

xu(x, t),N(u(x, t)) = θD2
xu

2(x, t) − 4θu2(x, t),

and checking that
L(ex) = (β+ γ)ex, N(ex) = 0,

this equation satisfies the condition (2.4), and B = β+γ, so the new method is applicable, and the solution
of Eq. (3.22)-(3.23) is

u(x, t) = exEα((β+ γ)tα). (3.24)
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Remark 3.16. The solution (3.24) is consistent with the result in [23]. Particularly, if α = 2, then the gen-
eral fourth-order time fractional Boussinesq equation with one-dimensional space variable is the regular
fourth-order Boussinesq equation, and the exact solution is exE2((β+ γ)t2).

Example 3.17. Let us consider the sixth-order time fractional Boussinesq equation:

Dαt u(x, t) = D6
xu(x, t) +D4

xu(x, t) +D2
xu(x, t) +D2

xu
2(x, t) − 4θu2(x, t), (3.25)

with initial condition
u(x, 0) = ex, ut(x, 0) = 0, (3.26)

where 1 < α 6 2, x ∈ R, t > 0 . Denoting

L(u(x, t)) = D6
xu(x, t) +D4

xu(x, t) +D2
xu(x, t),N(u(x, t)) = θD2

xu
2(x, t) − 4θu2(x, t),

and checking that
L(ex) = 3ex, N(ex) = 0,

this equation satisfies the condition (2.4), and B = 3 so the new method is applicable, and the solution of
Eq. (3.25)-(3.26) is

u(x, t) = exEα(3tα). (3.27)

Remark 3.18. The solution (3.27) is consistent with the result in [23]. Particularly, if α = 2, then sixth-order
time fractional Boussinesq equation is the regular sixth-order Boussinesq equation, and the exact solution
is exE2(3t2).

4. Conclusion

In this work, a new Mittag-Leffler function undetermined coefficient method is proposed and used
to solve fractional homogeneous differential equations. This method is very simple, only need to verify
weather an ordinary differential equation is right, when the ordinary differential equation is not satisfied,
the method is invalid. By using this new method, we can get the analytical solution successfully. This
method is effective and direct, which can be applied to other kinds of fractional homogeneous equations.

Acknowledgment

We express our thanks to the referees for their fruitful advices and comments. This work is supported
by National Natural Science Foundation of China (11501082), Natural Science Foundation of Shandong
Province (ZR2016AQ07) and Postdoctoral Science Foundation of Jiangsu Province (1402046C).

References

[1] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544.
1

[2] A. Al-rabtah, V. S. Ertürk, S. Momani, Solutions of a fractional oscillator by using differential tranform method, Comput.
Math. Appl., 59 (2010), 1356–1362. 1

[3] S. Chen, F. Liu, I. Turner, V. Anh, An implicit numerical method for the two-dimensional fractional percolation equation,
Appl. Math. Comput., 219 (2013), 4322–4331. 1

[4] C. D. Dhaigude, V. R. Nikam, Solutions of fractional partical differentical equations using iterative method, Fract. Calc.
Appl. Anal., 15 (2012), 684–699. 1, 3.4, 3.6

[5] A. M. A. El-Sayed, S. Z. Rida, A. A. M. Arafa, Exact solutions of fractional-order biological population model, Commun.
Theor. Phys., 52 (2009), 992–996. 3.12, 3.14

[6] V. S. Ertürk, S. Momani, Z. Odibat, Application of generalized differential transfom method to multi-order fractional
differential equations, Commun. Nonlinear Sci., 13 (2008), 1642–1654. 1

[7] J.-H. He, Variational iteration method- a kind of nonlinear analytical technique: some examples, Int. J. Nonlinear Mech.,
34 (1999), 699–708. 1



Y. Q. Liu, H. G. Sun, X. L. Yin, B. G. Xin, J. Nonlinear Sci. Appl., 10 (2017), 4515–4523 4523

[8] R. Hilfer, Applications of fractional calculus in physics, World scientific, Singapore, (2000). 1, 1
[9] X.-Y. Jiang, M.-Y. Xu, Analysis of fractional anomalous diffusion caused by an instantaneous point source in disordered

fractal media, Int. J. Nonlinear Mech., 41 (2006), 156–165. 1
[10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Ams-

terdam, (2006). 1, 1
[11] X.-C. Li, M.-Y. Xu, X.-Y. Jiang, Homotopy perturbation method to time-fractional diffusion equation with a moving bound-

ary condition, Appl. Math. Comput., 208 (2009), 434–439. 1
[12] Y.-Q. Liu, J.-H. Ma, Exact solutions of a generalized multi-fractional nonlinear diffusion equation in radical symmetry,

Commun. Theor. Phys., 52 (2009), 857–861. 1
[13] J.-H. Ma, Y.-Q. Liu, Exact solutions for a generalized nonlinear fractional Fokker-Planck equation, Nonlinear Anal. Real

World Appl., 11 (2010), 515–521. 1
[14] R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339

(2000), 1–77. 1
[15] M. A. Noor, Some iterative methods for solving nonlinear equations using homotopy perturbation method, Int. J. Comput.

Math., 87 (2010), 141–149. 1
[16] M. A. Noor, S. T. mohyud-Din, Modified variation iteration method for heat and wave-like equations, Acta Appl. Math.,

104 (2008), 257–269. 3.2
[17] I. Podlubny, Fractional differential equations, Academic Press, New York, (1999). 1, 1, 2
[18] H.-G. Sun, W. Chen, C.-P. Li, Y.-Q. Chen, Finite difference schemes for variable-order time fractional diffusion equation,

Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2012 (2012), 16 pages. 1
[19] H.-G. Sun, W. Chen, K. Y. Sze, A semi-discrete finite element method for a class of time-fractional diffusion equatons, Phil.

Trans. R. Soc. A, 2013 (2013), 15 pages. 1
[20] A.-M. Wazwaz, The variational iteration method for analytic treatment for linear and nonlinear ODEs, Appl. Math.

Comput., 212 (2009), 120–134. 1
[21] S.-W. Wang, M.-Y. Xu, Axial couette flow of two kinds of fractional viscoelastic fluids in an annulus, Nonlinear Anal.

Real World Appl., 10 (2009), 1087–1096. 1
[22] A.-M. Wazwaz, S. M. El-Sayed, A new modification of the Adomian decomposition method for linear and nonlinear

operators, Appl. Math. Comput., 122 (2001), 393–405. 1
[23] F. Xu, Y.-X. Gao, W.-P. Zhang, Construction of analytic solution for time-fractional Boussinesq equation using iterative

method, Adv. Math. Phys., 2015 (2015), 7 pages. 1, 3.16, 3.18
[24] A. Yildirim, Application of the homotopy perturbation method for the Fokker-Planck equation, Int. J. Numer. Methods

Biomed. Eng., 26 (2010), 1144–1154. 3.8, 3.10
[25] P. Zhuang, F. Liu, I. Turner, Y. T. Gu, Finite volume and finite element methods for solving a one-dimensional space-

fractional Boussinesq equation, Appl. Math. Model., 38 (2014), 3860–3870. 1


	Introduction
	Description of the new Mittag-Leffler function undetermined coefficient method
	Applications and results
	Conclusion

