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Abstract

This paper is devoted to construct Weyl’s theory for the singular left-definite even-order Hamiltonian systems in the
corresponding Sobolev space. In particular, it is proved that there exist at least n-linearly independent solutions in the Sobolev
space for the 2n-dimensional Hamiltonian system. c©2017 All rights reserved.
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1. Introduction

In 1964, Atkinson studied the following first-order differential equation [1]

JY′ = [λA(x) +B(x)] Y, x ∈ (a,b) ⊆ (−∞,∞), (1.1)

where J, A and B are square matrices of order k, Y is a k× 1 column matrix, A and B are integrable over
(a,b), J is a constant matrix and

J∗ = −J, A∗(x) = A(x) > 0, B∗(x) = B(x). (1.2)

Equation (1.1) is called the Hamiltonian system and contains kth order formally selfadjoint differential
equations [23] as well as more interesting differential equations.

Equation (1.1) with conditions (1.2), especially with A(x) > 0, has been studied for right-definite
equations in the Hilbert space L2

A(a,b) which is equipped with the inner product

(Y,Z) =
∫b
a

Z∗AYdx.
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In particular, in 1910, Weyl proved with his extraordinary way the second-order equation

− (p(x)y′)′ + q(x)y = λy, x ∈ [0,∞), (1.3)

has at least one solution χ(x, λ) = ϕ(x, λ) +m∞(λ)ψ(x, λ) satisfying∫∞
a

|χ|2 dx <∞,

where p and q are real-valued functions on the given interval, ϕ and ψ are linearly independent solutions
of (1.3) and m∞ is a point on the limiting-point or limiting-circle [25]. Atkinson generalized this result for
the linear 2n-dimensional Hamiltonian system (1.1) satisfying (1.2) and he proved that at least n-linearly
independent solutions of (1.1), (1.2) lie in L2

A(a,b).
A different approach was given by Niessen [17–19]. Niessen examined the matrix

A(x) = (1/2 Im λ)Y∗(x, λ)(J/i)Y(x, λ), Im λ 6= 0,

where Y(x, λ) is the fundamental solution of (1.1), (1.2). However, more efficient method was introduced
by Hinton and Shaw [4–6]. In this method, Hinton and Shaw used matrix function M(λ) which is similar
with Weyl’s function to construct the circle or ellipsoid equations. Then they proved that (1.1), (1.2) have at
least n-linearly independent solutions belonging to L2

A(a,b). Similar approach was given by Krall [8, 12].
However, all these results were introduced for the right-definite Hamiltonian systems. Right-definite

case is related with the right-hand side of (1.1). Positiveness condition in the right-hand side of the equa-
tion generates a weighted Hilbert space. On the other side, in real-world problems there exist functions
in the right-hand side of the equations changing the sign on the interval. As a famous application we can
give the Camassa-Holm equation [2]

−y′′ +
1
4
y = λw(x)y.

To introduce the motivation of the left-definite equations consider the equation

y′′ + y = 0. (1.4)

Multiplying (1.4) with y′, it is found that

(y′)2 + y2 = c2, (1.5)

where c is a constant. Solving for y′ we have

y′ =
√
c2 − y2.

Choosing y = c1 sinγ it is obtained

y = c1 sin(x+ c2),

where c1, c2 are constants. The left-side of (1.5) may arise in the standart Sturm-Liouville equations. In
fact, for sufficiently nice functions one obtains∫d

c

[
−(py′)′ + qy

]
ydx =

∫d
c

[
p
∣∣y′∣∣2 + q |y|2]dx− (py′)y |dc ,

where −∞ 6 c < d 6 ∞. Therefore imposing positiveness condition on p and q one can construct the
Sobolev space H1(c,d;p,q) with the inner product

〈y, z〉 =
∫d
c

[
py′z′ + qyz

]
dx.
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In recent years, the authors have studied some spectral properties of the regular and singular left-definite
Sturm-Liouville differential and difference equations [2, 3, 7, 14–16, 20, 24].

In 1995, Krall and Race [13] studied the singular left-definite second-order Sturm-Liouville equation

− (py′)′ + qy = λwy, (a,b) ⊆ (−∞,∞), (1.6)

where p,q,w are real-valued, positive functions over (a,b) such that p−1 is locally integrable on (a,b),
ε1w 6 q 6 ε2w, q and w are in L1(a,b) (also see [9, 10]). They proved that there is a solution
χ(x, λ) = ϕ(x, λ) +mb(λ)ψ(x, λ) of (1.6) belonging to H1(a,b;p,q). However, for a singular left-definite
fourth/sixth/... order or a linear singular left-definite Hamiltonian system has not been studied yet. Be-
side this, Weyl’s theory for the singular Dirac system has been investigated in [21]. In this paper, our
main aim is to develop Weyl’s theory for the singular left-definite linear even-dimensional Hamiltonian
system. It should be noted that regular left-definite Hamiltonian system has been studied in [11] and
some properties of the regular fractional operator in the Sobolev space has been investigated in [22].

2. Preliminaries

In this section we shall remind some known results on singular right-definite Hamiltonian system in
L2
A(a,b).

Let us assume that a is the regular point and b is the singular point for the 2n-dimensional Hamilto-
nian system (1.1), (1.2). Let Y be a fundamental matrix of size 2n× 2n of (1.1), (1.2) satisfying

Y(a, λ) =
(
α∗1 −α∗2
α∗2 α∗1

)
,

where α1,α2 are n×n real-matrices such that rank(α1,α2) = n,

α1α
∗
1 +α2α

∗
2 = In, α1α

∗
2 −α2α

∗
1 = 0,

and In is the n×n identity matrix. If Y is partitioned into

Y =
(
θ φ

)
=

(
θ1 φ1
θ2 φ2

)
,

we may assume that (
α1 α2

)
θ(a) = In,

(
α1 α2

)
φ(a) = 0.

Now consider the following boundary condition at b′, b′ < b,(
β1 β2

)
Y(b′) = 0, (2.1)

where β1,β2 are n×n real-matrices such that rank(β1,β2) = n and

β1β
∗
1 +β2β

∗
2 = In, β1β

∗
2 −β2β

∗
1 = 0.

We set the solution χ of (1.1), (1.2) as

χ = Y

(
In
M(b′)

)
.

Then χ satisfies the boundary condition (2.1) at b′ if

M(b′) = −
(
β1φ1(b

′, λ) +β2φ2(b
′, λ)

)−1 (
β1θ1(b

′, λ) +β2θ2(b
′, λ)

)
, (2.2)

and χ∗(b′, λ)Jχ(b′, λ) = 0, where
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J =

(
0 −In
In 0

)
.

Circle equation can be introduced as

±
(
In M∗

)
Y∗(b′) (J/i)Y(b′)

(
In
M

)
= 0,

where ”+” holds when Im λ > 0 and ”−” holds when Im λ < 0.
Now let (

A B∗

B D

)
=

{
Y∗(b′) (J/i)Y(b′), Im λ > 0,
−Y∗(b′) (J/i)Y(b′), Im λ < 0,

and

E(M) =
(
In M∗

)( A B∗

B D

)(
In
M

)
.

The circle equation E(M) = 0 can be expressed as

E(M) = (M−C)∗R−2
1 (M−C) − R2

2 = 0,

where C = −D−1B, R1 = D−1/2, R2 = (B∗D−1B−A)1/2.
Then following theorem is valid [8, 12].

Theorem 2.1.

(i) D > 0;

(ii) B∗D−1B−A = D−1(λ);

(iii) R2 = R1;

(iv) as b′ increases, D increases, R1 decreases and R2 decreases;

(v) limb′→b R1(b
′, λ) = R0(λ) = R0, limb′→b R2(b

′, λ) = R0(λ) = R̃0, R0 > 0, R̃0 > 0;

(vi) as b′ approaches b, the circles E(M) = 0 are nested and limb′→bC(b
′, λ) = C0 exists;

(vii) M = C0 +R0UR0, U = R−1
1 (M−C)R

−1
1 is well-defined. As U varies over the unit-circle in the n×n sphere

the limit-circle or -point E0(M) is covered.

3. Dirichlet formula

To construct the Sobolev space we let [11]

A =

(
E 0
0 0

)
, B =

(
−B11 B12
B∗12 B22

)
, (3.1)

and −B11 6 0 6 B22, ρE 6 B11. Therefore classical L2
A(a,b) space implies

(Y,Z) =
∫b
a

Z∗AYdx =

∫b
a

Z∗1EY1dx.

On the other hand, Sobolev space H1(a,b;B11,B22) is equipped with the inner product

〈Y,Z〉 =
∫b
a

Z∗
(
B11 0
0 B22

)
Ydx =

∫b
a

[Z∗1B11Y1 +Z
∗
2B22Y2]dx.
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Now consider the equations

JY′ −BY = AF, LY := F,

where Y, F ∈ L2
A(a,b). Then

−Y′2 +B11Y1 −B12Y2 = EF1,
Y′1 −B

∗
12Y1 −B22Y2 = 0.

Therefore

(LY,Z) =
∫b
a

Z∗1
[
−Y′2 +B11Y1 −B12Y2

]
dx

= −Z∗1Y2 |ba +

∫b
a

[
Z∗
′

1 Y2 +Z
∗
1B11Y1 −Z

∗
1B12Y2

]
dx

= −Z∗1Y2 |ba +

∫b
a

[
(B∗12Z1 +B22Z2)

∗ Y2 +Z
∗
1B11Y1 −Z

∗
1B12Y2

]
dx

= −Z∗1Y2 |ba +

∫b
a

[Z∗1B11Y1 +Z
∗
2B22Y2]dx,

provided that

Z′1 −B
∗
12Z1 = B22Z2.

Hence we have the Dirichlet formula

(LY,Z) = 〈Y,Z〉−Z∗1Y2 |ba . (3.2)

4. Singular left-definite Hamiltonian system

In this section we introduce the main results.
Equation (3.2) implies that

λ

∫b′
a

Y∗1E1Y1dx =

∫b′
a

Y∗1B11Y1dx+

∫b′
a

Y∗2B22Y2dx− Y
∗
1Y2 |b

′
a . (4.1)

Now consider the boundary condition (2.1) at b′. Then the solution

χ = Y

(
In
M(b′)

)
,

satisfies (2.1) if M(b′) is of the form (2.2). Equation (4.1) implies that

λ

∫b′
a

χ∗1Eχ1dx =

∫b′
a

χ∗1B11χ1dx+

∫b′
a

χ∗2B22χ2dx− χ
∗
1χ2 |b

′
a

=

∫b′
a

χ∗1B11χ1dx+

∫b′
a

χ∗2B22χ2dx− χ
∗
1(b
′)χ2(b

′) + χ∗1(a)χ2(a).

(4.2)

Note that (
χ1(a)
χ2(a)

)
=

(
α∗1 −α

∗
2M(b′)

α∗2 +α
∗
1M(b′)

)
,
(
χ1(b

′)
χ2(b

′)

)
=

(
β∗2
−β∗1

)
. (4.3)
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Substitution (4.3) into (4.2) we find

λ

∫b′
a

χ∗1Eχ1dx =

∫b′
a

χ∗1B11χ1dx+

∫b′
a

χ∗2B22χ2dx+β2β
∗
1 −M

∗α2α
∗
2

−M∗α2α
∗
1M+α1α

∗
2 +α1α

∗
1M.

(4.4)

Now, let β1 = 0 such that rankβ2 = n. This case corresponds to

χ2(b
′) = 0,

and (2.2) coincides with

M(b′) = −φ−1
2 (b′)θ2(b

′).

Then (4.4) gives

∫b′
a

χ∗1B11χ1dx+

∫b′
a

χ∗2B22χ2dx = λ

∫b′
a

χ∗1Eχ1dx+M
∗α2α

∗
2

+M∗α2α
∗
1M−α1α

∗
2 −α1α

∗
1M.

Fixing b′ in the upper limit in the integral we find

∫b′
a

χ∗1B11χ1dx+

∫b′
a

χ∗2B22χ2dx 6 Re λ
∫b
a

χ∗1Eχ1dx−α1α
∗
2 + Re {M∗(b)α2α

∗
2

+M∗(b)α2α
∗
1M(b) −α1α

∗
1M(b)} .

This implies the following theorem.

Theorem 4.1. There exists a solution

χ = Y

(
In
M(b)

)
of (1.1), (3.1) such that for all λ with Im λ 6= 0 χ lies in H1(a,b;B11,B22).

Remark 4.2. It seems that there is no need to consider β1 = 0 to introduce Theorem 4.1. However, in [13]
Krall and Race showed that there is needed to restrict the boundary conditions for further calculation in
their work. So we take β1 = 0 to coincide the further results in [13].

Theorem 4.3. Let rankR0 = r1, rankR0 = r2, ν = n+ min(r1, r2). Then for Im λ 6= 0, there exist ν solutions of
(1.1) satisfying ∫b′

a

Y∗1 B11Y1dx+
∫b′
a

Y∗2 B22Y2dx <∞.

Proof. Consider the solution

χ(x, λ) = Y(x, λ)
(
In
C0

)
=
(
Y1 · · · Yn

)
(x, λ).

Then ∫b′
a

Y∗j,1B11Yj,1dx+

∫b′
a

Y∗j,2B22Yj,2dx <∞,
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where Yj, 1 6 j 6 n, are n-linearly independent solutions.
Now let

χ̃(x, λ) = Y(x, λ)
(
In
M(b)

)
=
(
Z1 · · · Zn

)
(x, λ),

where M(b) = C0 + R0UR0 and U∗U 6 In. Therefore∫b′
a

Z∗k,1B11Zk,1dx+

∫b′
a

Z∗k,2B22Zk,2dx <∞,

where Zj, n+ 1 6 k 6 2n, are n-linearly independent solutions. Therefore

(
Y1 · · · Yn Z1 · · · Zn

)
(x, λ) = Y(x, λ)

(
In In
C0 M(b)

)
.

One can write (
In In
C0 M(b)

)
=

(
In 0
C0 R0UR0

)(
In In
0 In

)
. (4.5)

Equation (4.5) shows that

rank
(
In In
C0 M(b)

)
= n+ min(r1, r2) = ν.

Since the right matrix on the right side in (4.5) and Y(x, λ) are invertible,

rank
(
Y1 · · · Yn Z1 · · · Zn

)
= ν,

and this completes the proof.
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