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Abstract

A nonautonomous system of Volterra integrodifferential equations is studied in this paper. It is shown that if the coefficients
are continuous, bounded above and below by positive constants and satisfy certain inequalities, then one of the components will
be driven to extinction while the other one will stabilize at the certain positive solution of a nonlinear single species model.
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1. Introduction

An important and ubiquitous problem in predator-prey theory and related topics in mathematical
ecology concerns the long-term coexistence of species. In the past few years, permanence and extinction
of different types of ecosystems have been studied wildly both in theories and applications; see, for
example, [9-11, 14].

Consider the nonautonomous Lotka-Volterra system of differential equations

X{(t) =xi(t) |:bi(t) — Z aij(t)xj(t)] , i=1,2,---,n, n>2, (1.1)
i—1

where x;(t) is population density of the i-th species at time t; aj;(t) and bi(t), i,j = 1,2,---,n, are
continuous bounded functions defined on R.
Given a function f(t) which is defined on R, set

f* = sup{f(t)|t € R}, U = inf{f(t)|t € R}
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Assume that

al; >0, aly<+4oo, 1,j=1,2--,m, (1.2)
bl>0, bt<+4o00, i=1,2,---,n, (1.3)

i.e., the coefficients of system (1.1) are bounded above and below by strictly positive reals.

Montes de Oca and Zeeman [13] studied system (1.1), under which the functions aj;(t) and b;(t) were
assumed to satisfy conditions (1.2) and (1.3). It was shown that if for each k > 1, there exists iy < k such
that for any j < k the inequality

1
u L
bik h
1 u
akj aik]’

holds, then every solution (x1(t),%2(t),---,xn(t))" of system (1.1) with x;(tp) > 0, i = 1,2,---,n, for
some to € R has the property
lim (xq(t)—uj(t)) =0, lim x;(t)=0, j=2,3,---,n,

t—+o00 t—+o00

where uj (t) is the unique solution of the logistic differential equation
w(t) = u(t)ba(t) — an(t)),

which is bounded above and below by strictly positive reals for all t € R.

Montes de Oca and Zeeman [12], Zeeman [18], Ahmad [1, 2], Teng [15] and Zhao et al. [19] have also
studied the extinction of species in system (1.1), especially in [19], Zhao et al. obtained the same results
as [1, 12, 13, 18] did under the weaker assumption that for each k > 1, there exists ix < k such that for
any j < k the inequality

by (t) ) ag;(t)
sup < inf ——=
te[tg,+00) bik(t) t€lty,+oo) Qi j (t)

holds for some ty € R.

For when the growth rates have averages, and the interaction coefficients are constants, Ahmad and
Lazer [3-5] have given sufficient conditions involving the averages of the growth rates for one species to
be extinct in system (1.1). The work of Tineo [16] has complemented that in [3] concerning the extinction
of one species or persistence of the rest of the species.

However, in the real world, the growth rate of a natural species population will often not respond
immediately to changes in its own population or that of an interacting species, but rather will do so
after a time lag. Research has shown that time delays have a great destabilizing influence on species
populations. In [17], Wang studied the permanence of an autonomous two species competitive system
with infinite delays, but the extinction has not been considered. Besides, system in the nature world,
the nonautonomous case is more realistic. The main goal of this paper is to study the extinction of a
competitive system with infinite delays which is modified by [17, system (14)].

Motivated by the above, in the present paper, we shall study the following nonautonomous system of
Volterra integrodifferential equations

“+00

+o0
qm—mmhm—mmL MMMVMM—MML
+o00

kz(s)xz(t—s)ds],
(1.4)

+o00
wﬂzmuhm—wmj hMMWﬂM%%Nﬂ

kz(s)xz(t—s)ds],
0 0

where x;(t),x2(t) are population density of species x; and x; at time t, respectively; ri(t), ai(t), bi(t),
i = 1,2 are continuous, positive and bounded functions; k; : [0, +00) — [0,+00), i = 1,2 are piecewise
continuous and integrable on [0, +-00) with far “ki(s)ds = 1.
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The initial conditions of (1.4) are of the form
xi(s) = @i(s) >0, s€(—00,0l, ¢i(0)>0, (1.5)

where @, 1 = 1,2 are bounded and continuous functions on (—oo, 0].

2. Basic results

In this section, we shall develop some preliminary results, which will be used to prove the main result.
Lemma 2.1 ([6]). Ifa > 0,b > 0, and x’ > x(b — ax), when t > 0 and x(0) > 0, then

b
Iiminfx(t) > —.
t—+o0 a

Ifa>0,b>0,and x" <x(b—ax), when t > 0 and x(0) > 0, then
b

limsupx(t) < —.
t—+o00 a

Lemma 2.2. Assume that x(t) = (x1(t),x2(t)) " is any positive solution of system (1.4) with initial condition (1.5),
then there exists a positive constant Mg such that

limsupxi(t) <My, i=1,2,
t—+o0

i.e., any positive solution of system (1.4) are ultimately bounded above by a positive constant.

Proof. The positivity of the solution x(t) = (x1(t),x2(t)) " of (1.4) and (1.5) for t > 0 is immediate from the
form of (1.4) and the assumptions on the initial values.
From the first equation of system (1.4) and by the positivity of x;(t) and (1.4), we have

+o0
x1(t) < xq(t) [T}L — aj J ki(s)xq(t —s)ds 2.1
0
<rixa(t), t>0. (2.2)
For t —s > 0, it follows from (2.2) that
Xm(t) w
< . .
X1 (t) ST X1 (t) (2 3)

Integrating (2.3) on [t — s, t], we derive

which leads to
x1(t—s) = x(t)e 1S, (2.4)

It follows from (2.1) and (2.4) that

By Lemma 2.1, we have
1w
limsup x4 (t) < == b — = M.
t—+oo aj [y ki(s)e T %ds

Similarly to the above analysis, from the second equation of system (1.4), we have

i
T2

limsup x,(t) < = M,.

1 [T —ru :
t—+o0 a; |, ka(s)e"T2%ds

Set My = max{M, M2}, then the conclusion of Lemma 2.2 follows. This completes the proof. O
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Consider the following logistic equations

+o00
x'(t) = x(t) [rl(t) —aq(t) L ki1(s)x(t—s)ds|, (2.5)

and
x'(t) = x(t)[r1(t) — aq (t)x(t)]. (2.6)

Lemma 2.3 ([8]). Assume that v1(t), a;(t) are strictly positive, bounded, and continuous on R. Furthermore,
suppose that [§*° s%ki(s)ds < +oo and (a}')>MyK < a', where K = [, skq(s)ds < +oo. Let x1(t), xa(t) be
any two positive solutions of (2.5), then . 1irJ£1 [x1(t) —x2(t)] =0.

— 400

Lemma 2.4 ([1, 7]). Assume that v1(t), ai(t) are strictly positive, bounded, and continuous on R. The logistic
equation (2.6) has a unique solution x*(t) such that & < x*(t) < &, where 81, 6, are numbers satisfying 0 < &; <

;—% and :1% < 0p. If x(t) is a solution of equation (2.6) with x(0) > 0, then tli)rfoo[x(t) —x*(t)] =0.

3. Main results
In this section, we study the extinction of all species but x; of system (1.4).

Theorem 3.1. Assume that the inequality

lim sup r2(t) < liminf { (3.1)

tostoo T1(t) ~ t—ooo

az(t) ba(t) }
ai(t)” bq(t)

holds, then the species xp will be driven to extinction, that is, for any positive solution (x1(t),x2(t))" of system
(1.4), x2(t) — O exponentially as t — 400, and fgroo X2 (t)dt < 4o0.

Proof. Let x(t) = (x1(t),x2(t))" be a solution of system (1.4) with x;(0) > 0, i = 1,2. First we show that
x2(t) — 0 exponentially as t — +o0.
From (1.4) we have

4 - el roo Ke(5)x (t — s)ds — by (1) Jm Ka(s)xa(t — s)ds,
o - - 62)
28 ni - lshalt-sds—ba) | Ralshalt-slds
x2(t) 0 0
By (3.1), we can choose «, 3, ¢ > 0 such that
, ) o a o fa(t) bat)
imoup 215 < § o< < mind{ S0 22
And so, there exists a T; > 0 such that
T (t)B —ri(t)oe < —ePry(t) < —5[31‘} <0, (3.3)
aar(t) —Baz(t) <0, (3.4)
oy (t) — Bba(t) < 0 (3.5)

forallt > Tj.
Let
V(t) = x7 “(t)xP (1) (3.6)
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From (3.2), (3.3), (3.4), (3.5), it follows that

+oo
Vi) =V(t) [sz(t) —arg(t) + (xay (t) — faz(t)) JO ki (s)xi(t —s)ds

+o0
+ (b (t) — Bba(t J k: t—s)d ]
(xby(t) — Pb2(t)) . 2(s)x2(t —s)ds (3.7)
< V(t) [sz(t) - Om(t)]
< —eBriV(t).
Integrating inequality (3.7) from Ty to t (> Ty), then
V(t) < V(Tq) exp{—eBriV(t —Ty)}. (3.8)
By Lemma 2.2 we know that there exists & > 0 such that
xi(t)<é&, i=1,2, t>Ti.
Together with (3.6) and (3.8), then
x2(t) < Cexp{—eri(t—Ty)},
where ) .
C=¢&f(xa(Th)) Fxa(Th).
Therefore, we have x,(t) — 0 exponentially as t — 4oc0. This completes the proof. O
Lemma 3.2. Under the assumption of Theorem 3.1, and
+o0 Lo
J ki(s)e M marMilsds < oo, (3.9)
0

Let x(t) = (x1(t),x2(t))" be any positive solution of system (1.4) with initial condition (1.5), then there exists a
positive constant mg such that

Iiminfxq(t) > my,
t—+o0

where my is a constant independent of any positive solution of system (1.4), i.e., the first species x1(t) of system
(1.4) is permanent.

Proof. Letx(t) = (x1(t),x2(t)) " be a solution of system (1.4) with initial condition (1.5). Let ¢ be an enough
small positive constant. For this ¢, it follows from Lemma 2.2 and Theorem 3.1 that there exists a T, > Ty
such that

x1(t) <Mi+¢ xt)<e t>Th. (3.10)

From the first equation of system (1.4), for t > T,

r +o00 +00
x1(t) = x1(t) r%—a}‘J kﬂs)xﬂt—s)ds—b}‘J k2(s)xz(t—s)ds]
L 0 0
r t—T
=x1(t) r%—a]‘J ki(s)x1(t—s)ds (3.11)
L 0
r+oo 400
—aj kl(s)xl(t—s)ds—b?J kz(s)xz(t—s)ds},

which together with (3.10) implies

T,
x1(t) > x1(t) [r}— }Ls—a}L(Mles)J ki(s)ds
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+o0o
—a}‘J kl(s)xl(t—s)ds].

t—T,

Let n(t) be defined by
t—T

n(t) = 1} — bie — a (M + e)JO Ka(s)ds

+o0
—a}*J ki(s)xq(t —s)ds.
t—T

Then, by the boundedness of x;(t) and the property of the kernel k;(s),

lim n(t) = r} —bi'e —aj* (M1 +¢),

t—+o00

and also from (3.11),
x1(t) >n(thx(t), t>T,

which leads to .
x1(t—s) < xl(t)e*ftfs”mdr, t—s>Th.

It follows from (3.11) and (3.13) that

t—T,

x1(t) > x1(t) [r%— %s—a%([

ki(s)e™ ﬁs“”‘“ds) x1(t)
0

+o0
—a}LJ kl(s)xl(t—s)ds].
t—T,

Noting that,
+o00
lim a}LJ ki(s)x1(t—s)ds =0,

t—+o0 t—T,
for the above ¢ > 0, there exists a T3 > T, large enough such that
+oo
a}*J ki(s)x1(t—s)ds < ¢,
=T,
also from (3.12), we have
1

By (3.16), for t > T;,

+o00

0
From (3.14), (3.15), (3.16), we derive that, for t > T3,

0

+o0
x{(t) > x1(t) [T} _ 115 _ a}L(J kl(s)e[r%b}Lsa}L(M1+s)s}s)xl(t) _ e} )

0
Let ¢ — 0, then
By Lemma 2.1 and (3.9),

Iiminfxq(t) > = my.
t—+o0 1( ) = a{LJ‘(')'_OO kl(s)e—[r%—a}‘Ml]sds 0

This completes the proof.

—ble—al(M;+e)—e<nt) <t —ble—al(M;+e)+e, t>Ts

t—T,
aiij kl(S)e_ﬁ*Sn(r)drdS < aiij kl(s)e_[r%_bl £—ay (M1+£)_E]Sds.

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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Theorem 3.3. Under the assumptions of Theorem 3.1, Lemmas 2.3 and 3.2, let x(t) = (x1(t),x2(t))" be any
positive solution of system (1.4) with initial condition (1.5), then the species x, will be driven to extinction, that is,
x2(t) = 0as t — 400, and x1(t) — x*(t) as t — +oo, where x*(t) is any positive solution of equation (2.5).

Proof. Let x(t) = (x1(t),x2(t))" be a solution of system (1.4) with x;(0) > 0, i = 1,2. From Lemmas
2.2 and 3.2, x1(t) is bounded above and below by positive constants on [0, +00). To finish the proof of
Theorem 3.3, it is enough to show that x;(t) — x*(t) as t — 400, where x*(t) is any positive solution of
equation (2.5).

Since

+o0
qm<xwﬂmu—mmL huMﬁ—wm]

then x;(t) < x*(t) for all t > 0, where x*(t) is any positive solution of equation (2.5) with x(0) = x;(0).
Clearly, x*(t) is bounded above and below by positive constants on [0, +c0).
Define a function V(t) on [0, +o0) as

_(al o
vio =i (i) et [ (

Calculating the derivative of V(t) along the solution x;(t) and x*(t), it follows that

r kz(e)xz(s)ds> de.

t—0

+o00

VI(t) = —(iﬁ - ’;**((tt))) b1 (t)xa(t) + by (t) L K2(8)xa(t — 8)d8

+oo
=ﬂme Ka()x*(t —s) — x(t — s)lds + by (t)xa(t)
+oo

< —af J Ky (s)[x*(t—s) —x1(t —s)Ids + bI'xa(t).
0

The above equality implies that

t

t ptoo
d <—V(t)—a}J J kl(s)[x*(S—s)—xl(G—s)]dsdG—l—b}‘J

s xz(s)ds> >0,
dt 0 Jo 0

then,
t

t p+oo
—V(t) — a%J J k1(s)[x*(0 —s) —x1(0 —s)]dsd6 + b Jo x2(s)ds = V(0),

that is,
t

t pt+oo
a}J J ki(s)[x* (0 —s) +x1(0 —s)ldsd® < V(0) — V(t) + b}*J x(s)ds.
0Jo 0

Since V(t) is bounded and ISLOO x(t)dt < 400, then

+o00 p+o0
O<J J k1(s)x* (0 —s) —x1(0 —s)]dsd® < { < +o0,
0o Jo

where ¢ = V(0) + b}* O+°O x7(s)ds.

On the other hand, x*(t) — x1 (t) is a nonnegative, bounded and differential function such that x*/(t) —
x1(t) is bounded on [0, +00). Hence, by the Mean Valued Theorem, x*’(t) —x{(t) is uniformly continuous
on [0, +c0). Therefore,

Iim (x*(t) —x1(t)) =0.

t—+o00

This completes the proof. O
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Theorem 3.4. Under the assumptions of Theorem 3.1, Lemmas 2.4 and 3.2, let x(t) = (x1(t),x2(t))" be any
positive solution of system (1.4) with initial condition (1.5), then the species x, will be driven to extinction, that is,
x2(t) = 0as t — 400, and x1(t) — x*(t) as t — +oo, where x*(t) is any positive solution of (2.6).

Proof. The logistic equation (2.6)

can be written as o
(0 =50 [l - a() | atsx(as|
0
The following proof is similar to that of Theorem 3.3, we omit it here. This completes the proof. O

4. Numerical example and simulations
In this section, we give an example to illustrate the feasibility of our results with the two kernels
ki(s) =y1e Y5, ka(s) =vyise VS,

where v1,7v; are positive constants. The simulations are based on the technique of converting the scalar
integrodifferential equations into a system of ordinary differential (difference) equations and then numer-
ically solving them using Matlab and its built in graphical output routine.

Consider the following equations

+o00
x1(t) = x1(t) [(4 +sin gt) — J vie  Y1%%(t —s)ds
0

— (2 —cosTt) JJFOO

Yase Y2Sxp(t — s)ds} ,
0

) . 4.1)
x5(t) = x2(t) [2 — (2 —sint) Jo vie Y1%%(t —s)ds

+00
- J Yase Y2Sxp(t — s)ds} ,

0
where
T1(t) =4 +sin gt; ai(t) =1;by(t) =2 —cost,
1
T(t) = E; ap(t) =2—sint; by(t) = 1.
By simple computation, one could see that
lim sup r2(t) _1 lim inf { a(t) ba(t) } _1
toio0o T1 (t) 6’ t=+oo al(t) ! by (t) !

that is, the condition of Theorem 3.1 holds.
Let y1 = 10, v, = 5, the conditions in Lemmas 2.3 and 3.2 also hold.
From Theorem 3.3, species x; will be driven to extinction while species x; is asymptotically to any
positive solution of
+o0o
y'(t) =y(t) {(4 + sin ;—tt) - J yie YPy(t— s)ds} .
0
The integrodifferential equations (4.1) can be converted into a system of ordinary differential equations
by the introduction of auxiliary variables u, v, w, where

“+00 t
u(t) = J yie Y¥xi(t—s)ds =y J eﬂ”(t*s)xl(s)ds,
0 —00
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+oo t
v(t) :J y%se*WSxZ(t—s)ds :y%J (t—s)e*W(t*S)xZ(s)dS,
0 —00

“+o00 t
w(t) = J Y2 Y2 ¥xo(t —s)ds = YZJ e V2(t=8)x, (s)ds,
0 —00

then (4.1) can be transformed into

The solutions of (4.1) corresponding to y; = 10, y, = 5 and three initial values are displayed in Figures
1 and 2.

x2

0.5

-0.5
o

Figure 1: Dynamic behaviors of species x; in (4.1) with  Figure 2: Dynamic behaviors of species x, in (4.1) with

v1 = 10,2 = 5 and the initial values (x(0),y(0)) = v1 = 10,y = 5 and the initial values (x(0),y(0)) =
(0.1,0.1),(1,1),(2,2). (0.1,0.1),(1,1),(2,2).
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