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Abstract

A nonautonomous system of Volterra integrodifferential equations is studied in this paper. It is shown that if the coefficients
are continuous, bounded above and below by positive constants and satisfy certain inequalities, then one of the components will
be driven to extinction while the other one will stabilize at the certain positive solution of a nonlinear single species model.
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1. Introduction

An important and ubiquitous problem in predator-prey theory and related topics in mathematical
ecology concerns the long-term coexistence of species. In the past few years, permanence and extinction
of different types of ecosystems have been studied wildly both in theories and applications; see, for
example, [9–11, 14].

Consider the nonautonomous Lotka-Volterra system of differential equations

x ′i(t) = xi(t)

[
bi(t) −

n∑
j=1

aij(t)xj(t)

]
, i = 1, 2, · · · ,n, n > 2, (1.1)

where xi(t) is population density of the i-th species at time t; aij(t) and bi(t), i, j = 1, 2, · · · ,n, are
continuous bounded functions defined on R.

Given a function f(t) which is defined on R, set

fu = sup{f(t)|t ∈ R}, fl = inf{f(t)|t ∈ R}.
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Assume that

alij > 0, auij < +∞, i, j = 1, 2, · · · ,n, (1.2)

bli > 0, bui < +∞, i = 1, 2, · · · ,n, (1.3)

i.e., the coefficients of system (1.1) are bounded above and below by strictly positive reals.
Montes de Oca and Zeeman [13] studied system (1.1), under which the functions aij(t) and bi(t) were

assumed to satisfy conditions (1.2) and (1.3). It was shown that if for each k > 1, there exists ik < k such
that for any j 6 k the inequality

buk
alkj

<
blik
auikj

holds, then every solution (x1(t), x2(t), · · · , xn(t))T of system (1.1) with xi(t0) > 0, i = 1, 2, · · · ,n, for
some t0 ∈ R has the property

lim
t→+∞(x1(t) − u

∗
1(t)) = 0, lim

t→+∞ xj(t) = 0, j = 2, 3, · · · ,n,

where u∗1(t) is the unique solution of the logistic differential equation

u ′(t) = u(t)[b1(t) − a11(t)],

which is bounded above and below by strictly positive reals for all t ∈ R.
Montes de Oca and Zeeman [12], Zeeman [18], Ahmad [1, 2], Teng [15] and Zhao et al. [19] have also

studied the extinction of species in system (1.1), especially in [19], Zhao et al. obtained the same results
as [1, 12, 13, 18] did under the weaker assumption that for each k > 1, there exists ik < k such that for
any j 6 k the inequality

sup
t∈[t0,+∞)

bk(t)

bik(t)
< inf
t∈[t0,+∞)

akj(t)

aikj(t)

holds for some t0 ∈ R.
For when the growth rates have averages, and the interaction coefficients are constants, Ahmad and

Lazer [3–5] have given sufficient conditions involving the averages of the growth rates for one species to
be extinct in system (1.1). The work of Tineo [16] has complemented that in [3] concerning the extinction
of one species or persistence of the rest of the species.

However, in the real world, the growth rate of a natural species population will often not respond
immediately to changes in its own population or that of an interacting species, but rather will do so
after a time lag. Research has shown that time delays have a great destabilizing influence on species
populations. In [17], Wang studied the permanence of an autonomous two species competitive system
with infinite delays, but the extinction has not been considered. Besides, system in the nature world,
the nonautonomous case is more realistic. The main goal of this paper is to study the extinction of a
competitive system with infinite delays which is modified by [17, system (14)].

Motivated by the above, in the present paper, we shall study the following nonautonomous system of
Volterra integrodifferential equations

x ′1(t) = x1(t)

[
r1(t) − a1(t)

∫+∞
0

k1(s)x1(t− s)ds− b1(t)

∫+∞
0

k2(s)x2(t− s)ds

]
,

x ′2(t) = x2(t)

[
r2(t) − a2(t)

∫+∞
0

k1(s)x1(t− s)ds− b2(t)

∫+∞
0

k2(s)x2(t− s)ds

]
,

(1.4)

where x1(t), x2(t) are population density of species x1 and x2 at time t, respectively; ri(t), ai(t), bi(t),
i = 1, 2 are continuous, positive and bounded functions; ki : [0,+∞) → [0,+∞), i = 1, 2 are piecewise
continuous and integrable on [0,+∞) with

∫+∞
0 ki(s)ds = 1.
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The initial conditions of (1.4) are of the form

xi(s) = ϕi(s) > 0, s ∈ (−∞, 0], ϕi(0) > 0, (1.5)

where ϕi, i = 1, 2 are bounded and continuous functions on (−∞, 0].

2. Basic results

In this section, we shall develop some preliminary results, which will be used to prove the main result.

Lemma 2.1 ([6]). If a > 0,b > 0, and x ′ > x(b− ax), when t > 0 and x(0) > 0, then

lim inf
t→+∞ x(t) > b

a
.

If a > 0,b > 0, and x ′ 6 x(b− ax), when t > 0 and x(0) > 0, then

lim sup
t→+∞ x(t) 6

b

a
.

Lemma 2.2. Assume that x(t) = (x1(t), x2(t))
T is any positive solution of system (1.4) with initial condition (1.5),

then there exists a positive constant M0 such that

lim sup
t→+∞ xi(t) 6M0, i = 1, 2,

i.e., any positive solution of system (1.4) are ultimately bounded above by a positive constant.

Proof. The positivity of the solution x(t) = (x1(t), x2(t))
T of (1.4) and (1.5) for t > 0 is immediate from the

form of (1.4) and the assumptions on the initial values.
From the first equation of system (1.4) and by the positivity of x1(t) and (1.4), we have

x ′1(t) 6 x1(t)

[
ru1 − al1

∫+∞
0

k1(s)x1(t− s)ds

]
(2.1)

6 ru1 x1(t), t > 0. (2.2)

For t− s > 0, it follows from (2.2) that
dx1(t)

x1(t)
6 ru1 x1(t). (2.3)

Integrating (2.3) on [t− s, t], we derive

x1(t) 6 x1(t− s)e
ru1 s,

which leads to
x1(t− s) > x1(t)e

−ru1 s. (2.4)

It follows from (2.1) and (2.4) that

x ′1(t) 6 x1(t)

[
ru1 − al1

( ∫+∞
0

k1(s)e
−ru1 sds

)
x1(t)

]
.

By Lemma 2.1, we have

lim sup
t→+∞ x1(t) 6

ru1

al1
∫+∞

0 k1(s)e
−ru1 sds

:=M1.

Similarly to the above analysis, from the second equation of system (1.4), we have

lim sup
t→+∞ x2(t) 6

ru2

al2
∫+∞

0 k2(s)e
−ru2 sds

:=M2.

Set M0 = max{M1,M2}, then the conclusion of Lemma 2.2 follows. This completes the proof.



M. Hu, L. L. Wang, J. Nonlinear Sci. Appl., 10 (2017), 4441–4450 4444

Consider the following logistic equations

x ′(t) = x(t)

[
r1(t) − a1(t)

∫+∞
0

k1(s)x(t− s)ds

]
, (2.5)

and
x ′(t) = x(t)[r1(t) − a1(t)x(t)]. (2.6)

Lemma 2.3 ([8]). Assume that r1(t), a1(t) are strictly positive, bounded, and continuous on R. Furthermore,
suppose that

∫+∞
0 s2k1(s)ds < +∞ and (au1 )

2M1K < a
l, where K =

∫+∞
0 sk1(s)ds < +∞. Let x1(t), x2(t) be

any two positive solutions of (2.5), then lim
t→+∞[x1(t) − x2(t)] = 0.

Lemma 2.4 ([1, 7]). Assume that r1(t), a1(t) are strictly positive, bounded, and continuous on R. The logistic
equation (2.6) has a unique solution x∗(t) such that δ1 6 x∗(t) 6 δ2, where δ1, δ2 are numbers satisfying 0 < δ1 <
rl1
au1

and r
u
1
al1
< δ2. If x(t) is a solution of equation (2.6) with x(0) > 0, then lim

t→+∞[x(t) − x∗(t)] = 0.

3. Main results

In this section, we study the extinction of all species but x1 of system (1.4).

Theorem 3.1. Assume that the inequality

lim sup
t→+∞

r2(t)

r1(t)
6 lim inf
t→+∞

{
a2(t)

a1(t)
,
b2(t)

b1(t)

}
(3.1)

holds, then the species x2 will be driven to extinction, that is, for any positive solution (x1(t), x2(t))
T of system

(1.4), x2(t)→ 0 exponentially as t→ +∞, and
∫+∞

0 x2(t)dt < +∞.

Proof. Let x(t) = (x1(t), x2(t))
T be a solution of system (1.4) with xi(0) > 0, i = 1, 2. First we show that

x2(t)→ 0 exponentially as t→ +∞.
From (1.4) we have

x ′1(t)

x1(t)
= r1(t) − a1(t)

∫+∞
0

k1(s)x1(t− s)ds− b1(t)

∫+∞
0

k2(s)x2(t− s)ds,

x ′2(t)

x2(t)
= r2(t) − a2(t)

∫+∞
0

k1(s)x1(t− s)ds− b2(t)

∫+∞
0

k2(s)x2(t− s)ds.
(3.2)

By (3.1), we can choose α,β, ε > 0 such that

lim sup
t→+∞

r2(t)

r1(t)
<
α

β
− ε <

α

β
< lim inf
t→+∞

{
a2(t)

a1(t)
,
b2(t)

b1(t)

}
.

And so, there exists a T1 > 0 such that

r2(t)β− r1(t)α < −εβr1(t) < −εβrl1 < 0, (3.3)
αa1(t) −βa2(t) < 0, (3.4)
αb1(t) −βb2(t) < 0 (3.5)

for all t > T1.
Let

V(t) = x−α1 (t)xβ2 (t). (3.6)
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From (3.2), (3.3), (3.4), (3.5), it follows that

V ′(t) = V(t)

[
βr2(t) −αr1(t) + (αa1(t) −βa2(t))

∫+∞
0

k1(s)x1(t− s)ds

+ (αb1(t) −βb2(t))

∫+∞
0

k2(s)x2(t− s)ds

]
6 V(t)

[
βr2(t) −αr1(t)

]
< −εβrl1V(t).

(3.7)

Integrating inequality (3.7) from T1 to t (> T1), then

V(t) < V(T1) exp{−εβrl1V(t− T1)}. (3.8)

By Lemma 2.2 we know that there exists ξ > 0 such that

xi(t) < ξ, i = 1, 2, t > T1.

Together with (3.6) and (3.8), then
x2(t) < C exp{−εrl1(t− T1)},

where
C = ξ

α
β (x1(T1))

−α
βx2(T1).

Therefore, we have x2(t)→ 0 exponentially as t→ +∞. This completes the proof.

Lemma 3.2. Under the assumption of Theorem 3.1, and∫+∞
0

k1(s)e
−[rl−au1 M1]sds < +∞. (3.9)

Let x(t) = (x1(t), x2(t))
T be any positive solution of system (1.4) with initial condition (1.5), then there exists a

positive constant m0 such that
lim inf
t→+∞ x1(t) > m0,

where m0 is a constant independent of any positive solution of system (1.4), i.e., the first species x1(t) of system
(1.4) is permanent.

Proof. Let x(t) = (x1(t), x2(t))
T be a solution of system (1.4) with initial condition (1.5). Let ε be an enough

small positive constant. For this ε, it follows from Lemma 2.2 and Theorem 3.1 that there exists a T2 > T1
such that

x1(t) < M1 + ε, x2(t) < ε, t > T2. (3.10)

From the first equation of system (1.4), for t > T2,

x ′1(t) > x1(t)

[
rl1 − a

u
1

∫+∞
0

k1(s)x1(t− s)ds− b
u
1

∫+∞
0

k2(s)x2(t− s)ds

]
= x1(t)

[
rl1 − a

u
1

∫t−T2

0
k1(s)x1(t− s)ds

− au1

∫+∞
t−T2

k1(s)x1(t− s)ds− b
u
1

∫+∞
0

k2(s)x2(t− s)ds

]
,

(3.11)

which together with (3.10) implies

x ′1(t) > x1(t)

[
rl1 − b

u
1 ε− a

u
1 (M1 + ε)

∫t−T2

0
k1(s)ds
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− au1

∫+∞
t−T2

k1(s)x1(t− s)ds

]
.

Let η(t) be defined by

η(t) = rl1 − b
u
1 ε− a

u
1 (M1 + ε)

∫t−T2

0
k1(s)ds

− au1

∫+∞
t−T2

k1(s)x1(t− s)ds.

Then, by the boundedness of x1(t) and the property of the kernel k1(s),

lim
t→+∞η(t) = rl1 − bu1 ε− au1 (M1 + ε), (3.12)

and also from (3.11),
x ′1(t) > η(t)x1(t), t > T2,

which leads to
x1(t− s) < x1(t)e

−
∫t
t−s η(r)dr, t− s > T2. (3.13)

It follows from (3.11) and (3.13) that

x ′1(t) > x1(t)

[
rl1 − b

u
1 ε− a

u
1

( ∫t−T2

0
k1(s)e

−
∫t
t−s η(r)drds

)
x1(t)

− au1

∫+∞
t−T2

k1(s)x1(t− s)ds

]
.

(3.14)

Noting that,

lim
t→+∞au1

∫+∞
t−T2

k1(s)x1(t− s)ds = 0,

for the above ε > 0, there exists a T3 > T2 large enough such that

au1

∫+∞
t−T2

k1(s)x1(t− s)ds < ε, (3.15)

also from (3.12), we have

rl1 − b
u
1 ε− a

u
1 (M1 + ε) − ε < η(t) < r

l
1 − b

u
1 ε− a

u
1 (M1 + ε) + ε, t > T3. (3.16)

By (3.16), for t > T3,

au1

∫t−T2

0
k1(s)e

−
∫t
t−s η(r)drds < au1

∫+∞
0

k1(s)e
−[rl1−b

u
1 ε−a

u
1 (M1+ε)−ε]sds.

From (3.14), (3.15), (3.16), we derive that, for t > T3,

x ′1(t) > x1(t)

[
rl1 − b

u
1 ε− a

u
1

( ∫+∞
0

k1(s)e
−[rl1−b

u
1 ε−a

u
1 (M1+ε)−ε]s

)
x1(t) − ε

]
.

Let ε→ 0, then

x ′1(t) > x1(t)

[
rl1 − a

u
1

( ∫+∞
0

k1(s)e
−[rl1−a

u
1 M1]s

)
x1(t)

]
.

By Lemma 2.1 and (3.9),

lim inf
t→+∞ x1(t) >

rl1

au1
∫+∞

0 k1(s)e
−[rl1−a

u
1 M1]sds

:= m0.

This completes the proof.
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Theorem 3.3. Under the assumptions of Theorem 3.1, Lemmas 2.3 and 3.2, let x(t) = (x1(t), x2(t))
T be any

positive solution of system (1.4) with initial condition (1.5), then the species x2 will be driven to extinction, that is,
x2(t)→ 0 as t→ +∞, and x1(t)→ x∗(t) as t→ +∞, where x∗(t) is any positive solution of equation (2.5).

Proof. Let x(t) = (x1(t), x2(t))
T be a solution of system (1.4) with xi(0) > 0, i = 1, 2. From Lemmas

2.2 and 3.2, x1(t) is bounded above and below by positive constants on [0,+∞). To finish the proof of
Theorem 3.3, it is enough to show that x1(t) → x∗(t) as t → +∞, where x∗(t) is any positive solution of
equation (2.5).

Since

x ′1(t) 6 x1(t)

[
r1(t) − a1(t)

∫+∞
0

k1(s)x1(t− s)ds

]
,

then x1(t) 6 x∗(t) for all t > 0, where x∗(t) is any positive solution of equation (2.5) with x(0) = x1(0).
Clearly, x∗(t) is bounded above and below by positive constants on [0,+∞).

Define a function V(t) on [0,+∞) as

V(t) = − ln
(
x1(t)

x∗(t)

)
+ b1(t)

∫+∞
0

( ∫t
t−θ

k2(θ)x2(s)ds

)
dθ.

Calculating the derivative of V(t) along the solution x1(t) and x∗(t), it follows that

V ′(t) = −

(
x ′1(t)

x1(t)
−
x∗ ′(t)

x∗(t)

)
+ b1(t)x2(t) + b1(t)

∫+∞
0

k2(θ)x2(t− θ)dθ

= −a1(t)

∫+∞
0

k1(s)[x
∗(t− s) − x1(t− s)]ds+ b1(t)x2(t)

6 −al1

∫+∞
0

k1(s)[x
∗(t− s) − x1(t− s)]ds+ b

u
1 x2(t).

The above equality implies that

d

dt

(
− V(t) − al1

∫t
0

∫+∞
0

k1(s)[x
∗(θ− s) − x1(θ− s)]dsdθ+ b

u
1

∫t
0
x2(s)ds

)
> 0,

then,

−V(t) − al1

∫t
0

∫+∞
0

k1(s)[x
∗(θ− s) − x1(θ− s)]dsdθ+ b

u
1

∫t
0
x2(s)ds > V(0),

that is,

al1

∫t
0

∫+∞
0

k1(s)[x
∗(θ− s) + x1(θ− s)]dsdθ 6 V(0) − V(t) + bu1

∫t
0
x2(s)ds.

Since V(t) is bounded and
∫+∞

0 x2(t)dt < +∞, then

0 <
∫+∞

0

∫+∞
0

k1(s)[x
∗(θ− s) − x1(θ− s)]dsdθ < ζ < +∞,

where ζ = V(0) + bu1
∫+∞

0 x2(s)ds.
On the other hand, x∗(t) − x1(t) is a nonnegative, bounded and differential function such that x∗ ′(t) −

x ′1(t) is bounded on [0,+∞). Hence, by the Mean Valued Theorem, x∗ ′(t) − x ′1(t) is uniformly continuous
on [0,+∞). Therefore,

lim
t→+∞(x∗(t) − x1(t)) = 0.

This completes the proof.
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Theorem 3.4. Under the assumptions of Theorem 3.1, Lemmas 2.4 and 3.2, let x(t) = (x1(t), x2(t))
T be any

positive solution of system (1.4) with initial condition (1.5), then the species x2 will be driven to extinction, that is,
x2(t)→ 0 as t→ +∞, and x1(t)→ x∗(t) as t→ +∞, where x∗(t) is any positive solution of (2.6).

Proof. The logistic equation (2.6)
x ′(t) = x(t)[r1(t) − a1(t)x(t)],

can be written as

x ′(t) = x(t)

[
r1(t) − a1(t)

∫+∞
0

k1(s)x(t)ds

]
.

The following proof is similar to that of Theorem 3.3, we omit it here. This completes the proof.

4. Numerical example and simulations

In this section, we give an example to illustrate the feasibility of our results with the two kernels

k1(s) = γ1e
−γ1s, k2(s) = γ

2
2se

−γ2s,

where γ1,γ2 are positive constants. The simulations are based on the technique of converting the scalar
integrodifferential equations into a system of ordinary differential (difference) equations and then numer-
ically solving them using Matlab and its built in graphical output routine.

Consider the following equations

x ′1(t) = x1(t)

[
(4 + sin

π

2
t) −

∫+∞
0

γ1e
−γ1sx1(t− s)ds

− (2 − cosπt)
∫+∞

0
γ2

2se
−γ2sx2(t− s)ds

]
,

x ′2(t) = x2(t)

[
1
2
− (2 − sin t)

∫+∞
0

γ1e
−γ1sx1(t− s)ds

−

∫+∞
0

γ2
2se

−γ2sx2(t− s)ds

]
,

(4.1)

where

r1(t) = 4 + sin
π

2
t;a1(t) = 1;b1(t) = 2 − cosπt,

r2(t) =
1
2

;a2(t) = 2 − sin t;b2(t) = 1.

By simple computation, one could see that

lim sup
t→+∞

r2(t)

r1(t)
=

1
6

, lim inf
t→+∞

{
a2(t)

a1(t)
,
b2(t)

b1(t)

}
=

1
3

,

that is, the condition of Theorem 3.1 holds.
Let γ1 = 10, γ2 = 5, the conditions in Lemmas 2.3 and 3.2 also hold.
From Theorem 3.3, species x2 will be driven to extinction while species x1 is asymptotically to any

positive solution of

y ′(t) = y(t)

[
(4 + sin

π

2
t) −

∫+∞
0

γ1e
−γ1sy(t− s)ds

]
.

The integrodifferential equations (4.1) can be converted into a system of ordinary differential equations
by the introduction of auxiliary variables u, v,w, where

u(t) =

∫+∞
0

γ1e
−γ1sx1(t− s)ds = γ1

∫t
−∞ e−γ1(t−s)x1(s)ds,
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v(t) =

∫+∞
0

γ2
2se

−γ2sx2(t− s)ds = γ
2
2

∫t
−∞(t− s)e−γ2(t−s)x2(s)ds,

w(t) =

∫+∞
0

γ2e
−γ2sx2(t− s)ds = γ2

∫t
−∞ e−γ2(t−s)x2(s)ds,

then (4.1) can be transformed into

x ′1(t) = x1(t)

[
(4 + sin

π

2
t) − u(t) − (2 − cosπt)v(t)

]
,

x ′2(t) = x2(t)

[
1
2
− (2 − sin t)u(t)

]
,

u ′(t) = −γ1[u(t) − x1(t)],
v ′(t) = γ2[w(t) − v(t)],
w ′(t) = γ2[x2(t) −w(t)].

The solutions of (4.1) corresponding to γ1 = 10, γ2 = 5 and three initial values are displayed in Figures
1 and 2.

0 2 4 6 8 10 12 14 16 18 20
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Figure 1: Dynamic behaviors of species x1 in (4.1) with
γ1 = 10,γ2 = 5 and the initial values (x(0),y(0)) =
(0.1, 0.1), (1, 1), (2, 2).
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Figure 2: Dynamic behaviors of species x2 in (4.1) with
γ1 = 10,γ2 = 5 and the initial values (x(0),y(0)) =
(0.1, 0.1), (1, 1), (2, 2).
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