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Abstract

This paper deals with the p-order functional equation

{ flo(x)) = eP(f(x)),
(P(O) = 1/ -1 < (p(x) < 1/ X € [_1/ 1]/

where p > 2 is an integer, @P is the p-fold iteration of ¢, and f(x) is smooth odd function on [—1, 1] and satisfies f(0) = 0,—1 <
f'(x) <0,(x € [-1,1]). Using constructive method, the existence of unimodal-even-smooth solutions of the above equation on
[—1,1] can be proved. (©2017 All rights reserved.
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1. Introduction

The existence of solutions for functional equations has been extensively studied in some literatures.
In the last years, many authors considered p-order functional equation

{ fle(x)) = @P(f(x)), (11)
e(0)=1, —-1<o(x)<1, xel[-11], '

where p > 2 is an integer, P is the p-fold iteration of ¢. Eq. (1.1) is known as Cvitanovi¢-Feigenbaum
equation when p = 2 and f(x) = —Ax,0 < A < 1. Feigenbaum [6, 7], and Coullet and Tresser [2] introduced
the notion of renormalization for real dynamical systems. Later, Sullivan [10] proved the uniqueness of
a fixed point which satisfies the Cvitanovi¢-Feigenbaum equation for period-doubling renormalization
operator. For some results about existence of solutions for Cvitanovi¢-Feigenbaum equation, we refer the
interested reader to [4, 5, 9, 11].

For f(x) = —Ax, (=1 < A < 1), Chen [1] constructed the even C! solutions of Eq. (1.1) if p = 3. If p is
large enough, Eckmann et al. [3] showed that there exists a solution of Eq. (1.1) similar with the function
@(x) = [1 —2x?|. For p > 2, Liao [8] proved that Eq. (1.1) has single-valley continuous solutions on [0, 1].

*Corresponding author
Email addresses: zhangminmath@163.com (Min Zhang), rjhygl@163. com (Jie Rui)

doi:10.22436 /jnsa.010.08.34
Received 2017-01-12


http://dx.doi.org/10.22436/jnsa.010.08.34

M. Zhang, J. Rui, J. Nonlinear Sci. Appl., 10 (2017), 4418-4429 4419

For p > 2, Zhang and Si [12] proved that Eq. (1.1) has single-valley-extended continuous solutions on
[0, 1].

In [11], Yang and Zhang showed that it is interesting to construct smooth solutions and analytic
solutions for Eq. (1.1). In this paper, we will discuss the existence of unimodal-even-smooth solutions of
Eq. (1.1) on [—1, 1] when f(x) is odd smooth function on [—1, 1] and satisfies f(0) =0,—1 < f'(x) <0, (x e

2. Basic definitions and lemmas

In this section, we will give some characterizations of unimodal-even continuous solution of Eq. (1.1)
where f(x) is a strictly decreasing odd continuous function on [—1, 1] and satisfies f(0) = 0, [f(x)| < [x|, (x €
[—1,1],x # 0). And we will prove them in the Appendix.

Definition 2.1 (unimodal-even solution). We call ¢ a unimodal-even solution of Eq. (1.1), if (i) ¢ is an
even solution of Eq. (1.1); (ii) ¢ is strictly increasing on [—1,0] and strictly decreasing on [0, 1].

Lemma 2.2. Suppose that ¢(x) is a unimodal-even continuous solution of Eq. (1.1). Then:
(i) 0 is a recurrent but not periodic point of @;
(i) @(x) has a unique fixed point 3 = @(p3) on [—1,1], and
0<—@P ) =—f)=A<p<a<l, 2.1)

where () =0;
(iii) for x € [-A N and 0 <i<p—1, then |o'(x)| = aif and only if |x| = —f(«) and i =p —1;
(iv) for 1 <i<p—1, then [p'(x)] > A, for all x € [f(«), —f()] and |@*(x)| > —f(«), for all x € (—A, f(«)] U

(v) for 1 <i<p—1,then @ has no periodic point of period i on [—A, Al.

Lemma 2.3. Suppose that @(x) is a unimodal-even continuous solution of Eq. (1.1). Let ] = [0,A], Jo = @(]), Ji =
©'(Jo). Then:

(i) foralli=0,1,--- ,p—2, then @' : Jo — J; is a homeomorphism;
(ii) foralli=0,1,--- ,p—=2,then J; C (A, or J; C [-1,—=A). And Jo,]1,- - - , Jp—2 are pairwise disjoint.

Lemma 2.4. Suppose that ¢(x) is a unimodal-even continuous solution of Eq. (1.1). Then the equation @P~1(x) =
f(x) has only one solution x =1 in (@(—f(x)),1].

Lemma 2.5. Let @1,¢92 be two unimodal-even continuous solutions of Eq. (1.1). If

e1(x) = @2(x), x€[A1],

then @1(x) = @2(x) on [—1,1].

3. Constructive method of solutions

In this section, we will prove that the existence of unimodal-even continuous solution of Eq. (1.1)
by the constructive method, where f(x) is a strictly decreasing odd continuous function on [—1,1] and
satisfies T(0) = 0, |f(x)| < x|, (x € [-1,1],x £ 0).

Theorem 3.1. For arbitrary fixed strictly decreasing odd continuous function f(x) on [—1,1] with £(0) = 0, [f(x)| <
Ix|, (x € [=1,1],x # 0), denote f(—1) = —f(1) = A. Suppose that @q is an even continuous function on [—1, —A] U
[A, 1] and satisfies the following conditions:
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(i) there exists an « € (A, 1) such that @o(—«) = @o(x) = 0 and @y is strictly increasing on [—1,—A] and
strictly decreasing on [A, 1];

(i) of (1) =f(1) ==\ @f (A) = fleo(1));

(iii) denote Jo = [@o(A), 1], Ji = @§(Jo), then
(@) foralli=0,1,---,p—2,then J; C (A, 1] or J; C [-1,—A), and Jo, J1,-- -, Jp—2 are pairwise disjoint,
(b) foralli=0,1,---,p—2, then @ : Jo — Ji is a homeomorphism,
(c) ocor —a is in the interior of J,_2;

(iv) the equation (pop_l(x) = f(x) has only one solution x =1 in (xg, 1], where xg € Jo with (pg_l((xo) =0,

then there exists a unique unimodal-even continuous function ¢ satisfying the equation

flo(x)) = @P(f(x)), xe€[-1,1], 3.1)
@(x) = @o(x), x € [=1,=AJU[A,1]. ‘

Conwversely, if @ is the restriction on [—1,—A]l U [A, 1] of a unimodal-even continuous solution to Eq. (1.1), then
above conditions (i)-(iv) must hold.

Proof. First of all, we can prove that if @( satisfies the conditions (i)-(iv), then there exists a unique
unimodal-even continuous function ¢ satisfying (3.1). Define

-1
=05 g ar
By conditions (iii) and (iv), { is a homeomorphism. And since
P(po(A) = @F ' (@o(A) = fpo(1)) > 0> —A = @f (1) = (1),

thus 1 is strictly decreasing.
Let h(x) = —f(x). Trivially, (h*(1)}is decreasing and limy o, h¥(1) = 0. Let

AF = [R*T(1),h5 (1)), AL = [-hR(1), —h*T (1)), Av=AfUA; (k=0,1,2,---),
then

+o0o
1,1 = | Aw.
k=0

We define ¢ on Ay by induction as follows.
Obviously, @ = g is well-defined on Ag. For x € A} = [~h(1), —h?(1)] U [h?(1), h(1)], let

e1(x) =V (f(@o(f (X)), x €A (3.2)

Trivially, @1 is even continuous on A; and respectively strictly increasing and decreasing on A; and A[".
For x € Ay we have

) (@1(f(x))) = fl@o(x)). (3.3)

By condition (ii), we have

P(po(A) = 0 H(@o(N) = of (A) = f(@o(1)).

By (3.2) and ¢y, @1 being even, noting that x = h(1) we have

@1(—h(1)) = @1(h(1)) = b~ (f(9o(1))) = @o(A) = @o(h(1)) = @o(—h(1)), (3.4)
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i.e., @o and @ have the same value on the common endpoints of Ay and A;. Suppose that ¢(x) is well-
defined as an even continuous function @y (x) on Ay and respectively strictly increasing and decreasing
function on A, and At for all k < m, where m > 1 is a certain integer. Let

Omi1(X) = (Flom(f (%)), (x € Amy1), (3.5)

then ¢(x) is well-defined as an even continuous function @ (x) on Ay and respectively strictly increasing
and decreasing function on A, and Afg for all k > 1, and for x € Ay we have

Y(pr11(f(x))) = f@r(x)). (3.6)

Next, we prove @y and @y have the same value on the common endpoints of Ay and Ay4q(k =
1,2,---). Fork=1,---,m, where m > 1 is a certain integer, we suppose that

@ (h (1)) = @i_1(h*(1)). 3.7)

By (3.5), noting that x = h™*1(1) we have

Omi1(—h™ 1) = @1 (W™ (1))
=V (flom(h™(1)))) (3.8)
=P (f(@m-_1(h™(1)))) = @m(h™ (1)) = @m(—h™ (1)),

by ©m—1, ®m, @m+1 are even, i.e., @ and @1 have the same value on the common endpoints of Ay and
Ak—l—l (k = 1,2, ce ) Let

[, (x =0),
@””‘{@uw, (x € Ay).

By @ being even continuous on Ay and respectively strictly increasing and decreasing on A, and A
and (3.4), (3.7), and (3.8), we have that ¢ is a unimodal-even continuous function on [—1,0) U (0, 1].

We now prove that ¢ is continuous at x = 0. Trivially, (h*(«)}is strictly decreasing and limy_, | « h*(x)
= 0. And since ¢ is strictly decreasing in (0,1] and ¢1(h(x)) = v~ (f(e(x))) = P~ (0) = xp, we have
{(pk(hk(oc))}lfioz is strictly increasing in (g, 1]. Let

lim @ (h*(«)) =7,

k——+o0

then v € (wy, 1]. From (3.6), we have
Y(@rs1(h () = fler(h (@),

ie., (pg*l((pkﬂ(hk“(oc))) = f(px(h*(«))). Letting k — oo, we get (pgfl(y) = f(y). By condition (iv), we
know y =1 = ¢(0). This proves that ¢ is continuous at x = 0. Thus, ¢ is a unimodal-even continuous
function on [—1, 1]. We have that ¢ satisfies (3.1) by (3.3) and (3.6), and ¢(x) is unique by Lemma 2.5.
Secondly, if ¢ is the restriction on [-1, —A] U [A, 1] of a unimodal-even continuous solution to Eq. (1.1),
then conditions (i)-(iv) must hold by the lemmas in Section 2. This completes the proof. O

Example 3.2. Let @o(x):[-1, —1/5]U[1/5, 1] — [—1, 1] is defined as

x+%, (—1<x< %),
104-/85 40+4v85 4 1
(PO(X) _ 15 X+ 75 7 ( 5 <X< 5)/
_10%/8*5X+ 40+;15¢8?, (% <x< %)’
—x—i—%, (%<x<1).

It is trivial that @ satisfies the conditions of Theorem 3 1 where p = 2, f(x) = —x/5 and A = —f(1) =
1/5, « = 4/5. Thereby we know it is the restriction on [ —1/5]U[1/5, 1] of a unimodal-even continuous
solution ¢ to Eq. (1.1).
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4. Unimodal-even-smooth solutions

In this section, we will prove that the existence of unimodal-even-smooth solution of Eq. (1.1) by the
constructive method. Where f(x) is odd smooth function on [—1,1] and satisfies f(0) = 0,—1 < f'(x) <
0, (x € [-1,1)]).

Theorem 4.1. For arbitrary fixed odd smooth function f(x) on [—1, 1] with f(0) = 0,—1 < f'(x) <0, (x € [~1,1]),
denote f(—1) = —f(1) = Aand « € (A, 1). Suppose that @ is an even smooth function on [—1,f(x)] U [—f(x), 1]
and satisfies the following conditions:
(i) @o(—a) = Qo) = 0and @ is strictly increasing on [—1, f(o)] and strictly decreasing on [—f(x), 1];
(i) @f (1) =f(1) = —A, @) (A) = f(@o(1)), @} (—F()) = 0;
(iii) denote Jo = [@o(A), 1], Ji = @§(Jo), then
(a) foralli=0,1,---,p—2,then J; C (A, 1] or J; C [-1,—A), and Jo, J1,-- -, Jp—2 are pairwise disjoint,
(b) foralli=0,1,---,p—2, then @ : Jo — Ji is a homeomorphism,
(c) oor —« is in the interior of |, 2;
(iv) the equation (pop_l(x) = f(x) has only one solution x =1 on (@o(—f(x)),1];
V) @f (x) =fl@o(f1(x))), Vx € [=A, fla)]U[—f(r),Al;
(vi) /(1) + (@} )(1) - '(0) < 0.

Then there exists a unique unimodal-even-smooth function ¢ satisfying the equation

flo(x)) = P(f(x)), xel[-1,1], 1)
@(x) = @o(x), x € [-1, f(a)] U [=f(a), 1]. '

Conversely, if @q is the restriction on [—1,f(x)] U [—f(x), 1] of a unimodal-even-smooth solution to Eq. (1.1), then
above conditions (i)-(v) must hold.

Proof. First of all, we can prove that if ¢( satisfies the conditions (i)-(vi), then there exists a unique
unimodal-even-smooth function ¢ satisfying (4.1). Define

-1
=00 g1
By conditions (iii) and (iv) , 1\ is a homeomorphism and smooth. And since
P(@o(A) = @f " (@o(A) = fpo(1)) > 0> —A = @f (1) =(1),

thus 1 is strictly decreasing.
Let h(x) = —f(x). Trivially, we have {h*(1)} and {h*(«)} are decreasing, and limy_,o h*(1) = 0,
limy 0o W*() = 0. Let

Al =< (1), R ()], Ay = [=h (1), (1),
AP =W (), h¥ ()], AY™ = [h*(a), —h ()],
Ax = AL UAL, AR =AYTUAYT (k=0,1,2,--+),

then N N
1,1 = J A= U ar U1, —a |l 1.
k=0 k=0

For initial function @q(x), we get the unimodal-even continuous solution @(x) of Eq. (1.1) by the construc-
tive method from Theorem 3.1. Next we construct a solution of Eq. (1.1) by new constructive method.
We define @ on Ay by induction as follows:

or(x) =P flox1(f1(x), (xeAFk>1),
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then ¢ is well-defined as an even smooth function @y (x) on AY and respectively strictly increasing and
decreasing function on A}~ and A]‘i"+ forall k > 1. And let

L (x=0),
p(x) =9 oxlx), (xeAg k=1,
@o(x),  (x €1 fla)]U[—f(ex), 1]),

we have that @ is a unimodal-even continuous solution to Eq. (1.1) similar to Theorem 3.1 and we omit
the rest of proof.

From ¢(x) = @(x) = @o(x) on [A, 1], we have ¢(x) = @(x)(x € [-1,1]) by Lemma 2.5. We denote
@(x) = @(x) = @(x). Since @o(x) and f(x) are smooth, it follows that @(x) is respectively smooth on
AI, A, A]‘z"Jr, and A]‘f’* by the constructive methods. And from

h*1(1) € (K" (), h*(«)), —h**(1) € (—h*(a), —h* (),
h* () € (K1), h*(1)), —h¥*(a) € (—h*(1),—h*T1(1)),

we have that ¢(x) is smooth respectively on [—1,0) and (0, 1].
It is obvious that lim,_,o+ @™ (x) and limy_,o- ¢ (™) (x) exist. We prove

oM (0) = lim ™ (x)=0, ¢™(0)= lim ¢™(x)=0, n>1 (42)
x—0t x—0—
by induction as follows.
In view of
fle(x)) = @P(f(x)),
we have
(@) - @'(x) = (@) ((f(x))) - @' (f(x)) - '(x)
Let x — 0", we have
/(1) lim ¢'(x) = (P 1)’(1) - lim o’(x)-f'(0), (4.3)
x—0t x—0~
and let x — 0—, we have
/(1) lim @'(x) = (P 1)’(1)- lim ¢'(x)-f'(0). (4.4)
x—0~ x—0t

By (4.3) and (4.4), we have

[/ (1) = (@P1)(1) - #(0)] - lim o’ (x) =0.

x—0*

Thus by /(1) + (P~ 1)/(1) - f(0) < 0, we have

li "(x) =0.
Jim, (x) =0
Similarly, we have
lim ¢'(x) =0.
x—0—

We assert that

'(@(x)) - @™ (x) = Ha(x) + (@71 (@(f(x)) - (F(x))™ - @™ (F(x)), (4.5)
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and
lim H =0, 4.6
Jim Hn (x) (4.6)
where
Hi(x) =0, n
and

@) =" (@(x)) - @' (x) - V) (x).

Next we prove the assertions (4.2), (4.5), and (4.6) by induction. It is trivial that (4.2), (4.5), and (4.6) are
true for n = 1. Suppose that (4.2), (4.5), and (4.6) hold for all n < s, where s > 1 is a certain integer.

Consider n = s+ 1. In view of (4.5) for n = s, we have

f(@0x)) - @ () +17(0(x)) - @' (x) - @' (x) = H{x) + (0P 1) (@ (F(x)) - (F'(x))°)
+ (P (@(F(x)) - (F/(x)* - 9 (£(x)).

!/

Let

/

Gs(x) = ((@P 1) (@(F(x)) - (F'(x))°) - @' (F(x)) = t”(@(x)) - @'(x) - @) ()

and
Hg1(x) = Hg(x) + G (x).

By (4.7) for n = s, we get

s—1 s )
Ho(x) =) G )+ 60 =Y 67 (v),
j=1 i=1

i.e., (4.5) holds for n = s + 1. In view of (a-b)(™ =31  CL .a(™7).b0), we have for 1 <j <s,

5—j

= Z Cly - [((@P ™M (@(f())) - (0 1577V (0D ((x))) )
s—j

=Xl (00 9'09) 7Y )

And from (4.2) holding for n < s, we have

lim G{*(x) =0.

x—0F

It follows that
lim HS+1 (X) = O/
x—0*

i.e., (4.6) holds for n = s + 1. In view of (4.5) for n = s + 1 and letting x — 0™, we get

£(1)- lim @+ (x) = (@P~1)/(1) - (£(0))* - lim (51 (x),

x—0* x—0~

@) (f(x))
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and letting x — 07, we get

#(1) - Tim @ (x0) = (@) (1) (F(0)**1 - Lim @+ (x),

x—0~ x—0F

By the above two equations, we have

Thus by /(1) + (¢P~1)’(1) - f/(0) < 0 and 0 < [f'(0)| < 1, we have

lim ¢t (x) =0.

x—0F

Similarly, we have

lim B+ (x) =0,

x—0—

i.e., (4.2) holds for n = s + 1. Thereby (4.2), (4.5), and (4.6) are proved by induction.
By the differential limiting theorem, we have

eM(0) = lim ™ (x) =0, ¢™(0)= lim ¢™(x)=0.

x—07* x—0~

Thus
@™ (0) =0.

Thereby, @(x) is a unimodal-even-smooth solution of Eq. (1.1).
Secondly, if g is the restriction on [—1, f()] U [—f(x), 1] of a unimodal-even-smooth solution to Eq.

(1.1), then conditions (i)-(v) must hold by the lemmas in Section 2. This completes the proof. O
5. Appendix
Proof of Lemma 2.2.
(i) We now prove that for all n > 0 and each x € [—1, 1], we have
(@ (x)) = @ (f™(x)). (5.1)

Obviously, (5.1) holds for n =1 by Eq. (1.1). Suppose that (5.1) holds for n < k, where k > 1 is a certain
integer. Therefore, by induction and (1.1), we have that

PP () = (0P (T (%) = (7)o P (1 (x))
= (@) (o)) = (") 0 o (X (F(x)))
= (@) QA = - = (@) (F (@i (F(x))))

i.e., (5.1) holds for n = k + 1. Thereby, (5.1) is proved by induction. Let x = 0 in (5.1), we have that
(1) = ™ (@(0)) = @P" (f*(0)) = ¢P"(0).
And trivially {|f™(1)[} is strictly decreasing and limy,_, [f™(1)| = 0. Thereby, we have that
lim P (0) = lLim f™(1) =0, (5.2)

n—oo n—oo

i.e., we proved that 0 is a recurrent but not periodic point of ¢.
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(i) Let x =01in (1.1), then

f(1) = f(@(0)) = @P(f(0)) = @P(0) = P '(1).

Let —@P~1(1) = —f(1) = A > 0. Since @(0) = 1, @(lP2(1)]) = P (1) = —A < 0 and @(x) is strictly
decreasing on [0, 1], we have that ¢(x) has a unique point « on [0, 1] such that ¢(«) = 0. Firstly, we prove
that 0 < f < «. Since @(0) =1, @(«) =0, and @(x) is strictly decreasing on [0, 1], we have that ¢(x) has a
unique fixed point on (0, x) and has not fixed point on [«, 1], respectively. Suppose that ¢(x) has another
fixed point q, then q € [-1,0]. And by ¢(0) =1 and (5.2), we have q # 0 and q # —1. Thus, we have
q € (—1,0). Since @(x) is strictly increasing in [—1, 0], it follows that 0 > q = ¢(q) > ¢(—1) = ¢(1) > —1.
And by induction, for all m > 0, we have 0 > q = ¢@™(q) > @™(1). Specially,

“e(0)) = P (0).

This contradicts (5.2). Thus, we proved that @(x) has a unique fixed point = ¢(f) in [-1,1] and
O<B<a<l

Secondly, we prove that A < 3. Suppose that A > 3. By 0 < —f(x) < —f(1) = A, we have that there
exists y € [0, 1], such that —f(y) = B, i.e., y = f }(—B). And by Eq. (1.1), we have that

B=oP(B) =P (—f(y)) = @P(f(v)) = fle(y)) = f(o(f '(—B))).

Thus, f~1(B) = (f1(—B)) = o(—f 1 (B)) = @(f }(B)). And since @(x) has a unique fixed point § in
[—1,1], we have f~1(B) = B. Thus, B = f(B). And by f(0) = 0,—x < f(x) < 0, (x € (0,1]), f(—x) = —f(x),
we know 3 = 0. This contradicts ¢(0) = 1. Thus, we proved that A < f3.

n

0>q=0¢""1(q)> " (1) = ¢P

(iii) Firstly, we prove the sufficiency. By Eq. (1.1), we have 0 = f(p(«)) = @P(f(«)) = @P(—f(x)). And
since o and —« are the zero points of ¢ respectively on [0,1] and [—1,0], it follows that [@P ! (—f(«))| =
|P~1(f())| = . Thus the sufficiency is proved.

Secondly, we prove the necessity. Suppose that |@'(x)| = « for some x € [-A,A]land 0 < i < p—1.
Then x # 0. o and —o« are not periodic points of @(x) by conclusion (i). We claim that [x| # A. Suppose
that [x| = A. And since

P () = @P(0(a)) = @P(0) = @P((0)) = f(@(0)) = f(1) = —A,
a = ()| =l (X))l = lo M) = l@*(=A) = [P (a1)].

This contradicts that « and —« are not periodic points. Thus [x| # A. We prove that |x| ¢ (—f(x),A) in the
following. Suppose that x| € (—f(«),A), then eilis negative on (—f(a), [x|) or (|x|,A). This contradicts
@P is not negative in (—f(«),A) since Eq. (1.1) and f o ¢ is not negative in (=1, —«). Thus |x| & (—f(c),A).
By the similar argument we can claim that [x| ¢ (0, —f(«)). So we have x = f(«) or x = —f(«). Since « and
—« are not periodic points, then for all j # i, we know that l@J (x)| # «. Thus, we have |x| = —f(«) and
i =p — 1. Thus the necessity is proved.

(iv) Firstly, we claim that
ot (—f(e))l =o' (f(e))| > A, VI<i<p—1 (5.3)
Suppose that there exists some 1 <j < p — 1, such that 0 < | (f(«))| = x < A. Then
Pl =P (@) (f(e))) = 9P (f(o))] = &

by conclusion (iii). This contradicts conclusion (iii). Thus (5.3) is proved.
Secondly, we prove that

lot(x)| > A, Vxe[f(a),—fla)], 1<i<p—1. (5.4)
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Trivially, @' are homeomorphisms respectively on [0, —f(c)] and [f(),0] by conclusion (iii). It suffices
from (5.3) to show that [@*(0)| > A. Suppose that there exists some 1 < j < p —1, such that 0 < |’ (0)| =
x < A. Then

[P (X)| = 1P (@7 (0))] = 9P (0)] = 9P (f(0))] = [f(@(0))] = A.
Thus
) (A =19 (@P 7 (X)) = loP (x)| = [f(@(f ' (x)))| < [f(1)] = A,
Since @’ (x) is also a homeomorphism in [0, A] by conclusion (iii), we have |@) (—f(c))| < A. This contradicts

(5.3). Thus (5.4) is proved.
Thirdly, we prove that

@ ()l > —f(e),  Wx € (=A, fla)] U (—f(a),Al, 1<i<p—1. (5.5)
Suppose that there exists some 1 <j <p —1and |x| € (—f(e),Al, such that 0 < | (x)| =y < —f(«). Then
[P Ty =1eP (@ (X)) =P (x)| = [f(@((f ' (x))) < [f(1)] =A.

This contradicts (5.4). Thus (5.5) is proved.

(v) Suppose that there exist some 1 < j < p—1and x € [—A, A], such that x is a periodic point of ¢ with
period j, i.e., ' (x) = x. Then we have |x| € (—f(«),A] by (5.4). Let

y = min{}x|, le(x)], -, 1@ (x)]},

then y € (—f(«),Al by (5.5). Since f~1(y) € [-1,—«), (—«) = 0 > —«, and by conclusion (ii), we have
0> @(f'(y)) > f~'(y). Thus, by Eq. (1.1) and f(x) being strictly decreasing odd function and f(0) = 0,
we know that

0P (y)l = If(@(f 1Y)l = fle(f 1 (y) < f(f ' (y)) =v.

This contradicts the definition of y. Thus we proved that ¢ has no periodic point of period i on [—A, Al
This completes the proof. O

Proof of Lemma 2.3.

(i) Foralli=0,1,--- ,p—2,then o' :J— Jiisa homeomorphism by Lemma 2.2 (iii). Thus ol Jo—
Ji is also a homeomorphism.

(ii) Firstly, we prove that for alli =0,1,---,p—2, we have J; C (A, 1] or J; C [-1,—A). We claim that
| 1(A)] > A. Suppose that there exists some 1 < j < p — 1, such that |@J (A)] < A. Then by (5.3), we have
that .

@ (—f(a))] > A > —f().

Thus we know that |@’| has a fixed point in [—f(«), Al. This contradicts Lemma 2.2 (v). Thus [@**1(A)] > A.
And since @1 :J— Jiisa homeomorphism and by (5.4), we have that J; C (A, 1] or J; C [-1,—A).

Secondly, we prove that for all 0 < i < p —2, J; are pairwise disjoint. Suppose that there exists
0<i<j<p-—2 suchthat J;N]; =Ji # 0. Lety € Jij, then there exists x; € [0,A],x; € [0,A], such that
e (xi) =y = @’ T(x;). Thus we have

P T (xa)l = 1oP 1T (@M (xi))l = loP 1 (@ (x5)) = [0 (x5)] = [f{e(F 1 (x5)))] < [F(1)] = A.

This contradicts J; C (A, 1] or J; C [~1,—A). Thus we proved that Jo,---, Jp—2 are pairwise disjoint. This
completes the proof. O

Proof of Lemma 2.4. Obviously, x = 1 is a solution of the equation @P~!(x) = f(x) by Eq. (1.1). Suppose that
X = xg is an arbitrary solution of this equation, i.e., P~ 1(x) = f(xo). Since (@ (—f(«)), 1] = ([0, —f(e)]),
we have that there exists yo € [0, —f(«)], such that @(yo) = xo. Thus, P (@(yo)) = f(x¢). And by
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Eq. (1.1), we get f(o(f1(yo))) = @P (@(yo)) = f(xo). It follows that @(f~1(yo)) = xo since f is strictly

monotone. Since |[f~1(yg)| € [0, «] and ¢ is strictly decreasing in [0, «], we have yo = I~ 1(yo)l = —F1(yo),
ie., f(yo) = —yo. By f(0) =0, f(x) > —x(x € (0,1]), we have yo = 0. It is proved that xo = ¢(yo) = ¢(0) =
1. This completes the proof. O

Proof of Lemma 2.5. Since @1 and @7 are even, thus @;(x) = @2(x) on [—1, —A]. There exist x € (A, 1), €
(A1) such that @i(«) = 0,¢i(B) = p (i = 1,2) by (2.1). Denote @o(x) = @1(x) = @2(x)(x € [-1,-A]U
A1), ¢ = @1(—f(a)) = @1(f(ax)), x2 = @a(—Ff(x)) = @2(f(ex)). We now prove that «; = xp. Trivially,

x1 > @1(—f(1)) = @o(A) > @o(B) =B > A,
by (2.1). Similarly, oz > @o(A) > A. And by Lemma 2.3 and Lemma 2.2 (iii), we have that

of Hoa) = @ (o) = oF (f(o)) = 0.

Similarly, (pgfl(ocz) = 0. Since (pgfl has a unique zero on [@(A), 1], we conclude that o) = .
Let &g = o1 = &, then g € [p(A),1] and (pgfl(oco) = 0. Define

_ P11
V=05 gy

By Lemma 2.2 (iii) and Lemma 2.3, { is a homeomorphism. Since

V(@o(N) = @f M {@o(N) = fleo(1)) > 0> —A = @ ' (1) = (1),
1 is strictly decreasing. Let h(x) = —f(x). Trivially, {h*(1)} is decreasing and
lim h*(1) = 0.

k—o0

Let
Ay = [h*(1), R U WD), R4 (1)), (k=0,1,2,---).

Then [—1,1] = ;%) Ax.

We now prove ¢1(x) = @2(x) on Ay by induction.

Obviously, @1(x) = @2(x) on Ag. Suppose that @;(x) = @2(x) on Ay for all k < m, where m > 0 is a
certain integer. Let

@(x) = @1(x) = @a(x), x € [=L,—h™ (DU L™ (1),1].
If 0 < x < h(1) =A, then @i(—x) = @i(x) = @i(A) = @o(A) > @o(B) = B > A. Thus by Eq. (1.1) we have
flo(h™' (%)) = fle(—F(x))
= fl@i(f " (x
= op Heilx

P (x)) (5.6)

I
=
ES)
)
Rad
=

I
=
n

®

m

>
3
+
AN

Then equation (5.6) is equivalent to

eilx) =0 (flo(h (%)), (i=12x€Ami1).

Thus @1(x) = @2(x) on Ap 1. By induction, @1(x) = @2(x) on Ay for all k > 0. This completes the
proof. O
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