
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 10 (2017), 4418–4429

Research Article

Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa

Smooth solutions for the p-order functional equation f(ϕ(x)) = ϕp(f(x))

Min Zhang∗, Jie Rui

College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China.

Communicated by C. Alaca

Abstract
This paper deals with the p-order functional equation{

f(ϕ(x)) = ϕp(f(x)),
ϕ(0) = 1, −1 6 ϕ(x) 6 1, x ∈ [−1, 1],

where p > 2 is an integer, ϕp is the p-fold iteration of ϕ, and f(x) is smooth odd function on [−1, 1] and satisfies f(0) = 0,−1 <
f
′
(x) < 0, (x ∈ [−1, 1]). Using constructive method, the existence of unimodal-even-smooth solutions of the above equation on

[−1, 1] can be proved. c©2017 All rights reserved.
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1. Introduction

The existence of solutions for functional equations has been extensively studied in some literatures.
In the last years, many authors considered p-order functional equation{

f(ϕ(x)) = ϕp(f(x)),
ϕ(0) = 1, −1 6 ϕ(x) 6 1, x ∈ [−1, 1], (1.1)

where p > 2 is an integer, ϕp is the p-fold iteration of ϕ. Eq. (1.1) is known as Cvitanović-Feigenbaum
equation when p = 2 and f(x) = −λx, 0 < λ < 1. Feigenbaum [6, 7], and Coullet and Tresser [2] introduced
the notion of renormalization for real dynamical systems. Later, Sullivan [10] proved the uniqueness of
a fixed point which satisfies the Cvitanović-Feigenbaum equation for period-doubling renormalization
operator. For some results about existence of solutions for Cvitanović-Feigenbaum equation, we refer the
interested reader to [4, 5, 9, 11].

For f(x) = −λx, (−1 < λ < 1), Chen [1] constructed the even C1 solutions of Eq. (1.1) if p = 3. If p is
large enough, Eckmann et al. [3] showed that there exists a solution of Eq. (1.1) similar with the function
ϕ(x) = |1 − 2x2|. For p > 2, Liao [8] proved that Eq. (1.1) has single-valley continuous solutions on [0, 1].
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For p > 2, Zhang and Si [12] proved that Eq. (1.1) has single-valley-extended continuous solutions on
[0, 1].

In [11], Yang and Zhang showed that it is interesting to construct smooth solutions and analytic
solutions for Eq. (1.1). In this paper, we will discuss the existence of unimodal-even-smooth solutions of
Eq. (1.1) on [−1, 1] when f(x) is odd smooth function on [−1, 1] and satisfies f(0) = 0,−1 < f

′
(x) < 0, (x ∈

[−1, 1]).

2. Basic definitions and lemmas

In this section, we will give some characterizations of unimodal-even continuous solution of Eq. (1.1)
where f(x) is a strictly decreasing odd continuous function on [−1, 1] and satisfies f(0) = 0, |f(x)| < |x|, (x ∈
[−1, 1], x 6= 0). And we will prove them in the Appendix.

Definition 2.1 (unimodal-even solution). We call ϕ a unimodal-even solution of Eq. (1.1), if (i) ϕ is an
even solution of Eq. (1.1); (ii) ϕ is strictly increasing on [−1, 0] and strictly decreasing on [0, 1].

Lemma 2.2. Suppose that ϕ(x) is a unimodal-even continuous solution of Eq. (1.1). Then:

(i) 0 is a recurrent but not periodic point of ϕ;
(ii) ϕ(x) has a unique fixed point β = ϕ(β) on [−1, 1], and

0 < −ϕp−1(1) = −f(1) = λ < β < α < 1, (2.1)

where ϕ(α) = 0;
(iii) for x ∈ [−λ, λ] and 0 6 i 6 p− 1, then |ϕi(x)| = α if and only if |x| = −f(α) and i = p− 1;
(iv) for 1 6 i 6 p− 1, then |ϕi(x)| > λ, for all x ∈ [f(α),−f(α)] and |ϕi(x)| > −f(α), for all x ∈ (−λ, f(α)] ∪

(−f(α), λ];
(v) for 1 6 i 6 p− 1, then ϕ has no periodic point of period i on [−λ, λ].

Lemma 2.3. Suppose that ϕ(x) is a unimodal-even continuous solution of Eq. (1.1). Let J = [0, λ], J0 = ϕ(J), Ji =
ϕi(J0). Then:

(i) for all i = 0, 1, · · · ,p− 2, then ϕi : J0 7−→ Ji is a homeomorphism;
(ii) for all i = 0, 1, · · · ,p− 2, then Ji ⊂ (λ, 1] or Ji ⊂ [−1,−λ). And J0, J1, · · · , Jp−2 are pairwise disjoint.

Lemma 2.4. Suppose that ϕ(x) is a unimodal-even continuous solution of Eq. (1.1). Then the equation ϕp−1(x) =
f(x) has only one solution x = 1 in (ϕ(−f(α)), 1].

Lemma 2.5. Let ϕ1,ϕ2 be two unimodal-even continuous solutions of Eq. (1.1). If

ϕ1(x) = ϕ2(x), x ∈ [λ, 1],

then ϕ1(x) = ϕ2(x) on [−1, 1].

3. Constructive method of solutions

In this section, we will prove that the existence of unimodal-even continuous solution of Eq. (1.1)
by the constructive method, where f(x) is a strictly decreasing odd continuous function on [−1, 1] and
satisfies f(0) = 0, |f(x)| < |x|, (x ∈ [−1, 1], x 6= 0).

Theorem 3.1. For arbitrary fixed strictly decreasing odd continuous function f(x) on [−1, 1] with f(0) = 0, |f(x)| <
|x|, (x ∈ [−1, 1], x 6= 0), denote f(−1) = −f(1) = λ. Suppose that ϕ0 is an even continuous function on [−1,−λ]∪
[λ, 1] and satisfies the following conditions:
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(i) there exists an α ∈ (λ, 1) such that ϕ0(−α) = ϕ0(α) = 0 and ϕ0 is strictly increasing on [−1,−λ] and
strictly decreasing on [λ, 1];

(ii) ϕp−1
0 (1) = f(1) = −λ, ϕ

p
0 (λ) = f(ϕ0(1));

(iii) denote J0 = [ϕ0(λ), 1], Ji = ϕ
i
0(J0), then

(a) for all i = 0, 1, · · · ,p− 2, then Ji ⊂ (λ, 1] or Ji ⊂ [−1,−λ), and J0, J1, · · · , Jp−2 are pairwise disjoint,
(b) for all i = 0, 1, · · · ,p− 2, then ϕi0 : J0 7−→ Ji is a homeomorphism,
(c) α or −α is in the interior of Jp−2;

(iv) the equation ϕp−1
0 (x) = f(x) has only one solution x = 1 in (α0, 1], where α0 ∈ J0 with ϕp−1

0 (α0) = 0,

then there exists a unique unimodal-even continuous function ϕ satisfying the equation{
f(ϕ(x)) = ϕp(f(x)), x ∈ [−1, 1],
ϕ(x) = ϕ0(x), x ∈ [−1,−λ]∪ [λ, 1]. (3.1)

Conversely, if ϕ0 is the restriction on [−1,−λ] ∪ [λ, 1] of a unimodal-even continuous solution to Eq. (1.1), then
above conditions (i)-(iv) must hold.

Proof. First of all, we can prove that if ϕ0 satisfies the conditions (i)-(iv), then there exists a unique
unimodal-even continuous function ϕ satisfying (3.1). Define

ψ = ϕp−1
0 |[ϕ0(λ),1].

By conditions (iii) and (iv), ψ is a homeomorphism. And since

ψ(ϕ0(λ)) = ϕ
p−1
0 (ϕ0(λ)) = f(ϕ0(1)) > 0 > −λ = ϕp−1

0 (1) = ψ(1),

thus ψ is strictly decreasing.
Let h(x) = −f(x). Trivially, {hk(1)} is decreasing and limk→∞ hk(1) = 0. Let

∆+
k = [hk+1(1),hk(1)], ∆−

k = [−hk(1),−hk+1(1)], ∆k = ∆+
k ∪∆

−
k (k = 0, 1, 2, · · · ),

then

[−1, 1] =
+∞⋃
k=0

∆k.

We define ϕ on ∆k by induction as follows.
Obviously, ϕ = ϕ0 is well-defined on ∆0. For x ∈ ∆1 = [−h(1),−h2(1)]∪ [h2(1),h(1)], let

ϕ1(x) = ψ
−1(f(ϕ0(f

−1(x)))), x ∈ ∆1. (3.2)

Trivially, ϕ1 is even continuous on ∆1 and respectively strictly increasing and decreasing on ∆−
1 and ∆+

1 .
For x ∈ ∆0 we have

ϕ
p−1
0 (ϕ1(f(x))) = f(ϕ0(x)). (3.3)

By condition (ii), we have

ψ(ϕ0(λ)) = ϕ
p−1
0 (ϕ0(λ)) = ϕ

p
0 (λ) = f(ϕ0(1)).

By (3.2) and ϕ0,ϕ1 being even, noting that x = h(1) we have

ϕ1(−h(1)) = ϕ1(h(1)) = ψ−1(f(ϕ0(1))) = ϕ0(λ) = ϕ0(h(1)) = ϕ0(−h(1)), (3.4)



M. Zhang, J. Rui, J. Nonlinear Sci. Appl., 10 (2017), 4418–4429 4421

i.e., ϕ0 and ϕ1 have the same value on the common endpoints of ∆0 and ∆1. Suppose that ϕ(x) is well-
defined as an even continuous function ϕk(x) on ∆k and respectively strictly increasing and decreasing
function on ∆−

k and ∆+
k for all k 6 m, where m > 1 is a certain integer. Let

ϕm+1(x) = ψ
−1(f(ϕm(f−1(x)))), (x ∈ ∆m+1), (3.5)

then ϕ(x) is well-defined as an even continuous function ϕk(x) on ∆k and respectively strictly increasing
and decreasing function on ∆−

k and ∆+
k for all k > 1, and for x ∈ ∆k we have

ψ(ϕk+1(f(x))) = f(ϕk(x)). (3.6)

Next, we prove ϕk and ϕk+1 have the same value on the common endpoints of ∆k and ∆k+1(k =
1, 2, · · · ). For k = 1, · · · ,m, where m > 1 is a certain integer, we suppose that

ϕk(h
k(1)) = ϕk−1(h

k(1)). (3.7)

By (3.5), noting that x = hm+1(1) we have

ϕm+1(−h
m+1(1)) = ϕm+1(h

m+1(1))

= ψ−1(f(ϕm(hm(1))))

= ψ−1(f(ϕm−1(h
m(1)))) = ϕm(hm+1(1)) = ϕm(−hm+1(1)),

(3.8)

by ϕm−1,ϕm,ϕm+1 are even, i.e., ϕk and ϕk+1 have the same value on the common endpoints of ∆k and
∆k+1 (k = 1, 2, · · · ). Let

ϕ(x) =

{
1, (x = 0),
ϕk(x), (x ∈ ∆k).

By ϕk being even continuous on ∆k and respectively strictly increasing and decreasing on ∆−
k and ∆+

k

and (3.4), (3.7), and (3.8), we have that ϕ is a unimodal-even continuous function on [−1, 0)∪ (0, 1].
We now prove that ϕ is continuous at x = 0. Trivially, {hk(α)} is strictly decreasing and limk→+∞ hk(α)

= 0. And since ϕ is strictly decreasing in (0, 1] and ϕ1(h(α)) = ψ−(f(ϕ(α))) = ψ−(0) = α0, we have
{ϕk(h

k(α))}|+∞k=2 is strictly increasing in (α0, 1]. Let

lim
k→+∞ϕk(hk(α)) = γ,

then γ ∈ (α0, 1]. From (3.6), we have

ψ(ϕk+1(h
k+1(α))) = f(ϕk(h

k(α))),

i.e., ϕp−1
0 (ϕk+1(h

k+1(α))) = f(ϕk(h
k(α))). Letting k→∞, we get ϕp−1

0 (γ) = f(γ). By condition (iv), we
know γ = 1 = ϕ(0). This proves that ϕ is continuous at x = 0. Thus, ϕ is a unimodal-even continuous
function on [−1, 1]. We have that ϕ satisfies (3.1) by (3.3) and (3.6), and ϕ(x) is unique by Lemma 2.5.

Secondly, if ϕ0 is the restriction on [−1,−λ]∪ [λ, 1] of a unimodal-even continuous solution to Eq. (1.1),
then conditions (i)-(iv) must hold by the lemmas in Section 2. This completes the proof.

Example 3.2. Let ϕ0(x) : [−1, − 1/5]∪ [1/5, 1] 7−→ [−1, 1] is defined as

ϕ0(x) =


x+ 4

5 , (−1 6 x < −4
5),

10+
√

85
15 x+ 40+4

√
85

75 , (− 4
5 6 x 6 −1

5),
−10+

√
85

15 x+ 40+4
√

85
75 , ( 1

5 6 x 6 4
5),

−x+ 4
5 , ( 4

5 < x 6 1).

It is trivial that ϕ0 satisfies the conditions of Theorem 3.1 where p = 2, f(x) = −x/5 and λ = −f(1) =
1/5,α = 4/5. Thereby we know it is the restriction on [−1, − 1/5]∪ [1/5, 1] of a unimodal-even continuous
solution ϕ to Eq. (1.1).
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4. Unimodal-even-smooth solutions

In this section, we will prove that the existence of unimodal-even-smooth solution of Eq. (1.1) by the
constructive method. Where f(x) is odd smooth function on [−1, 1] and satisfies f(0) = 0,−1 < f

′
(x) <

0, (x ∈ [−1, 1]).

Theorem 4.1. For arbitrary fixed odd smooth function f(x) on [−1, 1] with f(0) = 0,−1 < f
′
(x) < 0, (x ∈ [−1, 1]),

denote f(−1) = −f(1) = λ and α ∈ (λ, 1). Suppose that ϕ0 is an even smooth function on [−1, f(α)] ∪ [−f(α), 1]
and satisfies the following conditions:

(i) ϕ0(−α) = ϕ0(α) = 0 and ϕ0 is strictly increasing on [−1, f(α)] and strictly decreasing on [−f(α), 1];
(ii) ϕp−1

0 (1) = f(1) = −λ,ϕp0 (λ) = f(ϕ0(1)),ϕ
p
0 (−f(α)) = 0;

(iii) denote J0 = [ϕ0(λ), 1], Ji = ϕi0(J0), then
(a) for all i = 0, 1, · · · ,p− 2, then Ji ⊂ (λ, 1] or Ji ⊂ [−1,−λ), and J0, J1, · · · , Jp−2 are pairwise disjoint,
(b) for all i = 0, 1, · · · ,p− 2, then ϕi0 : J0 7−→ Ji is a homeomorphism,
(c) α or −α is in the interior of Jp−2;

(iv) the equation ϕp−1
0 (x) = f(x) has only one solution x = 1 on (ϕ0(−f(α)), 1];

(v) ϕp0 (x) = f(ϕ0(f
−1(x))), ∀x ∈ [−λ, f(α)]∪ [−f(α), λ];

(vi) f ′(1) + (ϕp−1
0 ) ′(1) · f ′(0) < 0.

Then there exists a unique unimodal-even-smooth function ϕ satisfying the equation{
f(ϕ(x)) = ϕp(f(x)), x ∈ [−1, 1],
ϕ(x) = ϕ0(x), x ∈ [−1, f(α)]∪ [−f(α), 1]. (4.1)

Conversely, if ϕ0 is the restriction on [−1, f(α)]∪ [−f(α), 1] of a unimodal-even-smooth solution to Eq. (1.1), then
above conditions (i)-(v) must hold.

Proof. First of all, we can prove that if ϕ0 satisfies the conditions (i)-(vi), then there exists a unique
unimodal-even-smooth function ϕ satisfying (4.1). Define

ψ = ϕp−1
0 |[ϕ0(λ),1].

By conditions (iii) and (iv) , ψ is a homeomorphism and smooth. And since

ψ(ϕ0(λ)) = ϕ
p−1
0 (ϕ0(λ)) = f(ϕ0(1)) > 0 > −λ = ϕp−1

0 (1) = ψ(1),

thus ψ is strictly decreasing.
Let h(x) = −f(x). Trivially, we have {hk(1)} and {hk(α)} are decreasing, and limk→∞ hk(1) = 0,

limk→∞ hk(α) = 0. Let

∆+
k = [hk+1(1),hk(1)], ∆−

k = [−hk(1),−hk+1(1)],

∆α,+
k = [hk+1(α),hk(α)], ∆α,−

k = [−hk(α),−hk+1(α)],

∆k = ∆+
k ∪∆

−
k , ∆αk = ∆α,+

k ∪∆α,−
k (k = 0, 1, 2, · · · ),

then

[−1, 1] =
+∞⋃
k=0

∆k =

+∞⋃
k=0

∆αk

⋃
[−1,−α]

⋃
[α, 1].

For initial function ϕ0(x), we get the unimodal-even continuous solution ϕ̃(x) of Eq. (1.1) by the construc-
tive method from Theorem 3.1. Next we construct a solution of Eq. (1.1) by new constructive method.

We define ϕ̄ on ∆αk by induction as follows:

ϕk(x) = ψ
−1(f(ϕk−1(f

−1(x)))), (x ∈ ∆αk ,k > 1),
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then ϕ̄ is well-defined as an even smooth function ϕk(x) on ∆αk and respectively strictly increasing and
decreasing function on ∆α,−

k and ∆α,+
k for all k > 1. And let

ϕ̄(x) =


1, (x = 0),
ϕk(x), (x ∈ ∆αk ,k > 1),
ϕ0(x), (x ∈ [−1, f(α)]∪ [−f(α), 1]),

we have that ϕ̄ is a unimodal-even continuous solution to Eq. (1.1) similar to Theorem 3.1 and we omit
the rest of proof.

From ϕ̃(x) = ϕ̄(x) = ϕ0(x) on [λ, 1], we have ϕ̃(x) = ϕ̄(x)(x ∈ [−1, 1]) by Lemma 2.5. We denote
ϕ(x) = ϕ̃(x) = ϕ̄(x). Since ϕ0(x) and f(x) are smooth, it follows that ϕ(x) is respectively smooth on
∆+
k ,∆−

k ,∆α,+
k , and ∆α,−

k by the constructive methods. And from

hk+1(1) ∈ (hk+1(α),hk(α)), −hk+1(1) ∈ (−hk(α),−hk+1(α)),

hk(α) ∈ (hk+1(1),hk(1)), −hk(α) ∈ (−hk(1),−hk+1(1)),

we have that ϕ(x) is smooth respectively on [−1, 0) and (0, 1].
It is obvious that limx→0+ ϕ

(n)(x) and limx→0− ϕ
(n)(x) exist. We prove

ϕ
(n)
+ (0) = lim

x→0+
ϕ(n)(x) = 0, ϕ

(n)
− (0) = lim

x→0−
ϕ(n)(x) = 0, n > 1 (4.2)

by induction as follows.
In view of

f(ϕ(x)) = ϕp(f(x)),

we have

f ′(ϕ(x)) ·ϕ ′(x) = (ϕp−1) ′
(
ϕ(f(x))

)
·ϕ ′(f(x)) · f ′(x).

Let x→ 0+, we have

f ′(1) · lim
x→0+

ϕ ′(x) = (ϕp−1) ′(1) · lim
x→0−

ϕ ′(x) · f ′(0), (4.3)

and let x→ 0−, we have

f ′(1) · lim
x→0−

ϕ ′(x) = (ϕp−1) ′(1) · lim
x→0+

ϕ ′(x) · f ′(0). (4.4)

By (4.3) and (4.4), we have [
|f ′(1)|2 − |(ϕp−1) ′(1) · f ′(0)|2

]
· lim
x→0+

ϕ ′(x) = 0.

Thus by f ′(1) + (ϕp−1) ′(1) · f ′(0) < 0, we have

lim
x→0+

ϕ ′(x) = 0.

Similarly, we have

lim
x→0−

ϕ ′(x) = 0.

We assert that

f ′(ϕ(x)) ·ϕ(n)(x) = Hn(x) + (ϕp−1) ′
(
ϕ(f(x))

)
· (f ′(x))n ·ϕ(n)(f(x)), (4.5)
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and

lim
x→0+

Hn(x) = 0, (4.6)

where {
H1(x) = 0,
Hn(x) =

∑n−1
j=1 G

(n−1−j)
j (x), n > 2

(4.7)

and

Gj(x) =
(
(ϕp−1) ′(ϕ(f(x))) · (f ′(x))j

) ′ ·ϕ(j)(f(x)) − f ′′(ϕ(x)) ·ϕ ′(x) ·ϕ(j)(x).

Next we prove the assertions (4.2), (4.5), and (4.6) by induction. It is trivial that (4.2), (4.5), and (4.6) are
true for n = 1. Suppose that (4.2), (4.5), and (4.6) hold for all n 6 s, where s > 1 is a certain integer.
Consider n = s+ 1. In view of (4.5) for n = s, we have

f ′(ϕ(x)) ·ϕ(s+1)(x) + f ′′(ϕ(x)) ·ϕ ′(x) ·ϕ(s)(x) = H ′s(x) +
(
(ϕp−1) ′(ϕ(f(x))) · (f ′(x))s

) ′ ·ϕ(s)(f(x))

+ (ϕp−1) ′(ϕ(f(x))) · (f ′(x))s+1 ·ϕ(s+1)(f(x)).

Let
Gs(x) =

(
(ϕp−1) ′(ϕ(f(x))) · (f ′(x))s

) ′ ·ϕ(s)(f(x)) − f ′′(ϕ(x)) ·ϕ ′(x) ·ϕ(s)(x)

and

Hs+1(x) = H
′
s(x) +Gs(x).

By (4.7) for n = s, we get

Hs+1(x) =

s−1∑
j=1

G
(s−j)
j (x) +Gs(x) =

s∑
j=1

G
(s−j)
j (x),

i.e., (4.5) holds for n = s+ 1. In view of (a · b)(n) =
∑n
i=0C

i
n · a(n−j) · b(j), we have for 1 6 j 6 s,

G
(s−j)
j (x) =

s−j∑
i=0

Cis−j ·
[(
(ϕp−1) ′(ϕ(f(x))) · (f ′(x))j

) ′](s−j−i) · (ϕ(j)(f(x)))(i)

−

s−j∑
i=0

Cis−j · (f ′′(ϕ(x)) ·ϕ ′(x))(s−j−i) ·ϕ(i+j)(x).

And from (4.2) holding for n 6 s, we have

lim
x→0+

G
(s−j)
j (x) = 0.

It follows that
lim
x→0+

Hs+1(x) = 0,

i.e., (4.6) holds for n = s+ 1. In view of (4.5) for n = s+ 1 and letting x→ 0+, we get

f ′(1) · lim
x→0+

ϕ(s+1)(x) = (ϕp−1) ′(1) · (f ′(0))s+1 · lim
x→0−

ϕ(s+1)(x),
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and letting x→ 0−, we get

f ′(1) · lim
x→0−

ϕ(s+1)(x) = (ϕp−1) ′(1) · (f ′(0))s+1 · lim
x→0+

ϕ(s+1)(x).

By the above two equations, we have[
|f ′(1)|2 − |(ϕp−1) ′(1) · (f ′(0))s+1

|
2]
· lim
x→0+

ϕ(s+1)(x) = 0.

Thus by f ′(1) + (ϕp−1) ′(1) · f ′(0) < 0 and 0 < |f ′(0)| < 1, we have

lim
x→0+

ϕ(s+1)(x) = 0.

Similarly, we have

lim
x→0−

ϕ(s+1)(x) = 0,

i.e., (4.2) holds for n = s+ 1. Thereby (4.2), (4.5), and (4.6) are proved by induction.
By the differential limiting theorem, we have

ϕ
(n)
+ (0) = lim

x→0+
ϕ(n)(x) = 0, ϕ

(n)
− (0) = lim

x→0−
ϕ(n)(x) = 0.

Thus
ϕ(n)(0) = 0.

Thereby, ϕ(x) is a unimodal-even-smooth solution of Eq. (1.1).
Secondly, if ϕ0 is the restriction on [−1, f(α)] ∪ [−f(α), 1] of a unimodal-even-smooth solution to Eq.

(1.1), then conditions (i)-(v) must hold by the lemmas in Section 2. This completes the proof.

5. Appendix

Proof of Lemma 2.2.

(i) We now prove that for all n > 0 and each x ∈ [−1, 1], we have

fn(ϕ(x)) = ϕp
n

(fn(x)). (5.1)

Obviously, (5.1) holds for n = 1 by Eq. (1.1). Suppose that (5.1) holds for n 6 k, where k > 1 is a certain
integer. Therefore, by induction and (1.1), we have that

ϕp
k+1

(fk+1(x)) = (ϕp
k

)
p
(fk+1(x)) = (ϕp

k

)
p−1
◦ϕpk(fk+1(x))

= (ϕp
k

)
p−1

(fk(ϕ(f(x)))) = (ϕp
k

)
p−2
◦ϕpk(fk(ϕ(f(x))))

= (ϕp
k

)
p−2

(fk(ϕ2(f(x)))) = · · · = (ϕp
k

)
p−i

(fk(ϕi(f(x))))

= · · · = fk(ϕp(f(x))) = fk(f(ϕ(x))) = fk+1(ϕ(x)),

i.e., (5.1) holds for n = k+ 1. Thereby, (5.1) is proved by induction. Let x = 0 in (5.1), we have that

fn(1) = fn(ϕ(0)) = ϕp
n

(fn(0)) = ϕp
n

(0).

And trivially {|fn(1)|} is strictly decreasing and limn→∞ |fn(1)| = 0. Thereby, we have that

lim
n→∞ϕpn(0) = lim

n→∞ fn(1) = 0, (5.2)

i.e., we proved that 0 is a recurrent but not periodic point of ϕ.
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(ii) Let x = 0 in (1.1), then

f(1) = f(ϕ(0)) = ϕp(f(0)) = ϕp(0) = ϕp−1(1).

Let −ϕp−1(1) = −f(1) = λ > 0. Since ϕ(0) = 1,ϕ(|ϕp−2(1)|) = ϕp−1(1) = −λ < 0 and ϕ(x) is strictly
decreasing on [0, 1], we have that ϕ(x) has a unique point α on [0, 1] such that ϕ(α) = 0. Firstly, we prove
that 0 < β < α. Since ϕ(0) = 1, ϕ(α) = 0, and ϕ(x) is strictly decreasing on [0, 1], we have that ϕ(x) has a
unique fixed point on (0,α) and has not fixed point on [α, 1], respectively. Suppose that ϕ(x) has another
fixed point q, then q ∈ [−1, 0]. And by ϕ(0) = 1 and (5.2), we have q 6= 0 and q 6= −1. Thus, we have
q ∈ (−1, 0). Since ϕ(x) is strictly increasing in [−1, 0], it follows that 0 > q = ϕ(q) > ϕ(−1) = ϕ(1) > −1.
And by induction, for all m > 0, we have 0 > q = ϕm(q) > ϕm(1). Specially,

0 > q = ϕp
n−1(q) > ϕp

n−1(1) = ϕp
n−1(ϕ(0)) = ϕp

n

(0).

This contradicts (5.2). Thus, we proved that ϕ(x) has a unique fixed point β = ϕ(β) in [−1, 1] and
0 < β < α < 1.

Secondly, we prove that λ < β. Suppose that λ > β. By 0 6 −f(x) 6 −f(1) = λ, we have that there
exists γ ∈ [0, 1], such that −f(γ) = β, i.e., γ = f−1(−β). And by Eq. (1.1), we have that

β = ϕp(β) = ϕp(−f(γ)) = ϕp(f(γ)) = f(ϕ(γ)) = f(ϕ(f−1(−β))).

Thus, f−1(β) = ϕ(f−1(−β)) = ϕ(−f−1(β)) = ϕ(f−1(β)). And since ϕ(x) has a unique fixed point β in
[−1, 1], we have f−1(β) = β. Thus, β = f(β). And by f(0) = 0,−x < f(x) < 0, (x ∈ (0, 1]), f(−x) = −f(x),
we know β = 0. This contradicts ϕ(0) = 1. Thus, we proved that λ < β.

(iii) Firstly, we prove the sufficiency. By Eq. (1.1), we have 0 = f(ϕ(α)) = ϕp(f(α)) = ϕp(−f(α)). And
since α and −α are the zero points of ϕ respectively on [0, 1] and [−1, 0], it follows that |ϕp−1(−f(α))| =
|ϕp−1(f(α))| = α. Thus the sufficiency is proved.

Secondly, we prove the necessity. Suppose that |ϕi(x)| = α for some x ∈ [−λ, λ] and 0 6 i 6 p− 1.
Then x 6= 0. α and −α are not periodic points of ϕ(x) by conclusion (i). We claim that |x| 6= λ. Suppose
that |x| = λ. And since

ϕp+1(α) = ϕp(ϕ(α)) = ϕp(0) = ϕp(f(0)) = f(ϕ(0)) = f(1) = −λ,

then
α = |ϕi(x)| = |ϕi(|x|)| = |ϕi(λ)| = |ϕi(−λ)| = |ϕi+p+1(α)|.

This contradicts that α and −α are not periodic points. Thus |x| 6= λ. We prove that |x| 6∈ (−f(α), λ) in the
following. Suppose that |x| ∈ (−f(α), λ), then ϕi+1 is negative on (−f(α), |x|) or (|x|, λ). This contradicts
ϕp is not negative in (−f(α), λ) since Eq. (1.1) and f ◦ϕ is not negative in (−1,−α). Thus |x| 6∈ (−f(α), λ).
By the similar argument we can claim that |x| 6∈ (0,−f(α)). So we have x = f(α) or x = −f(α). Since α and
−α are not periodic points, then for all j 6= i, we know that |ϕj(x)| 6= α. Thus, we have |x| = −f(α) and
i = p− 1. Thus the necessity is proved.

(iv) Firstly, we claim that

|ϕi(−f(α))| = |ϕi(f(α))| > λ, ∀1 6 i 6 p− 1. (5.3)

Suppose that there exists some 1 6 j 6 p− 1, such that 0 6 |ϕj(f(α))| = x 6 λ. Then

|ϕp−1−j(x)| = |ϕp−1−j(ϕj(f(α)))| = |ϕp−1(f(α))| = α

by conclusion (iii). This contradicts conclusion (iii). Thus (5.3) is proved.
Secondly, we prove that

|ϕi(x)| > λ, ∀x ∈ [f(α),−f(α)], 1 6 i 6 p− 1. (5.4)
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Trivially, ϕi are homeomorphisms respectively on [0,−f(α)] and [f(α), 0] by conclusion (iii). It suffices
from (5.3) to show that |ϕi(0)| > λ. Suppose that there exists some 1 6 j 6 p− 1, such that 0 6 |ϕj(0)| =
x 6 λ. Then

|ϕp−j(x)| = |ϕp−j(ϕj(0))| = |ϕp(0)| = |ϕp(f(0))| = |f(ϕ(0))| = λ.

Thus
|ϕj(λ)| = |ϕj(ϕp−j(x))| = |ϕp(x)| = |f(ϕ(f−1(x)))| 6 |f(1)| = λ.

Since ϕj(x) is also a homeomorphism in [0, λ] by conclusion (iii), we have |ϕj(−f(α))| 6 λ. This contradicts
(5.3). Thus (5.4) is proved.

Thirdly, we prove that

|ϕi(x)| > −f(α), ∀x ∈ (−λ, f(α)]∪ (−f(α), λ], 1 6 i 6 p− 1. (5.5)

Suppose that there exists some 1 6 j 6 p− 1 and |x| ∈ (−f(α), λ], such that 0 6 |ϕj(x)| = y 6 −f(α). Then

|ϕp−j(y)| = |ϕp−j(ϕj(x))| = |ϕp(x)| = |f(ϕ((f−1(x))))| 6 |f(1)| = λ.

This contradicts (5.4). Thus (5.5) is proved.

(v) Suppose that there exist some 1 6 j 6 p− 1 and x ∈ [−λ, λ], such that x is a periodic point of ϕ with
period j, i.e., ϕj(x) = x. Then we have |x| ∈ (−f(α), λ] by (5.4). Let

y = min{|x|, |ϕ(x)|, · · · , |ϕj−1(x)|},

then y ∈ (−f(α), λ] by (5.5). Since f−1(y) ∈ [−1,−α),ϕ(−α) = 0 > −α, and by conclusion (ii), we have
0 > ϕ(f−1(y)) > f−1(y). Thus, by Eq. (1.1) and f(x) being strictly decreasing odd function and f(0) = 0,
we know that

|ϕp(y)| = |f(ϕ(f−1(y)))| = f(ϕ(f−1(y))) < f(f−1(y)) = y.

This contradicts the definition of y. Thus we proved that ϕ has no periodic point of period i on [−λ, λ].
This completes the proof.

Proof of Lemma 2.3.

(i) For all i = 0, 1, · · · ,p− 2, then ϕi+1 : J 7−→ Ji is a homeomorphism by Lemma 2.2 (iii). Thus ϕi : J0 7−→
Ji is also a homeomorphism.

(ii) Firstly, we prove that for all i = 0, 1, · · · ,p− 2, we have Ji ⊂ (λ, 1] or Ji ⊂ [−1,−λ). We claim that
|ϕi+1(λ)| > λ. Suppose that there exists some 1 6 j 6 p− 1, such that |ϕj(λ)| 6 λ. Then by (5.3), we have
that

|ϕj(−f(α))| > λ > −f(α).

Thus we know that |ϕj| has a fixed point in [−f(α), λ]. This contradicts Lemma 2.2 (v). Thus |ϕi+1(λ)| > λ.
And since ϕi+1 : J 7−→ Ji is a homeomorphism and by (5.4), we have that Ji ⊂ (λ, 1] or Ji ⊂ [−1,−λ).

Secondly, we prove that for all 0 6 i 6 p − 2, Ji are pairwise disjoint. Suppose that there exists
0 6 i < j 6 p− 2, such that Ji ∩ Jj = Jij 6= ∅. Let y ∈ Jij, then there exists xi ∈ [0, λ], xj ∈ [0, λ], such that
ϕi+1(xi) = y = ϕj+1(xj). Thus we have

|ϕp−j+i(xi)| = |ϕp−1−j(ϕi+1(xi))| = |ϕp−1−j(ϕj+1(xj))| = |ϕp(xj)| = |f(ϕ(f−1(xj)))| 6 |f(1)| = λ.

This contradicts Ji ⊂ (λ, 1] or Ji ⊂ [−1,−λ). Thus we proved that J0, · · · , Jp−2 are pairwise disjoint. This
completes the proof.

Proof of Lemma 2.4. Obviously, x = 1 is a solution of the equation ϕp−1(x) = f(x) by Eq. (1.1). Suppose that
x = x0 is an arbitrary solution of this equation, i.e., ϕp−1(x0) = f(x0). Since (ϕ(−f(α)), 1] = ϕ([0,−f(α)]),
we have that there exists y0 ∈ [0,−f(α)], such that ϕ(y0) = x0. Thus, ϕp−1(ϕ(y0)) = f(x0). And by
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Eq. (1.1), we get f(ϕ(f−1(y0))) = ϕp−1(ϕ(y0)) = f(x0). It follows that ϕ(f−1(y0)) = x0 since f is strictly
monotone. Since |f−1(y0)| ∈ [0,α] and ϕ is strictly decreasing in [0,α], we have y0 = |f−1(y0)| = −f−1(y0),
i.e., f(y0) = −y0. By f(0) = 0, f(x) > −x(x ∈ (0, 1]), we have y0 = 0. It is proved that x0 = ϕ(y0) = ϕ(0) =
1. This completes the proof.

Proof of Lemma 2.5. Since ϕ1 and ϕ2 are even, thus ϕ1(x) = ϕ2(x) on [−1,−λ]. There exist α ∈ (λ, 1),β ∈
(λ, 1) such that ϕi(α) = 0,ϕi(β) = β (i = 1, 2) by (2.1). Denote ϕ0(x) = ϕ1(x) = ϕ2(x)(x ∈ [−1,−λ] ∪
[λ, 1]), α1 = ϕ1(−f(α)) = ϕ1(f(α)),α2 = ϕ2(−f(α)) = ϕ2(f(α)). We now prove that α1 = α2. Trivially,

α1 > ϕ1(−f(1)) = ϕ0(λ) > ϕ0(β) = β > λ,

by (2.1). Similarly, α2 > ϕ0(λ) > λ. And by Lemma 2.3 and Lemma 2.2 (iii), we have that

ϕ
p−1
0 (α1) = ϕ

p−1
1 (α1) = ϕ

p
1 (f(α)) = 0.

Similarly, ϕp−1
0 (α2) = 0. Since ϕp−1

0 has a unique zero on [ϕ0(λ), 1], we conclude that α1 = α2.
Let α0 = α1 = α2, then α0 ∈ [ϕ0(λ), 1] and ϕp−1

0 (α0) = 0. Define

ψ = ϕp−1
0 |[ϕ0(λ),1].

By Lemma 2.2 (iii) and Lemma 2.3, ψ is a homeomorphism. Since

ψ(ϕ0(λ)) = ϕ
p−1
0 (ϕ0(λ)) = f(ϕ0(1)) > 0 > −λ = ϕp−1

0 (1) = ψ(1),

ψ is strictly decreasing. Let h(x) = −f(x). Trivially, {hk(1)} is decreasing and

lim
k→∞hk(1) = 0.

Let
∆k = [−hk(1),−hk+1(1)]∪ [hk+1(1),hk(1)], (k = 0, 1, 2, · · · ).

Then [−1, 1] =
⋃+∞
k=0∆k.

We now prove ϕ1(x) = ϕ2(x) on ∆k by induction.
Obviously, ϕ1(x) = ϕ2(x) on ∆0. Suppose that ϕ1(x) = ϕ2(x) on ∆k for all k 6 m, where m > 0 is a

certain integer. Let

ϕ(x) = ϕ1(x) = ϕ2(x), x ∈ [−1,−hm+1(1)]∪ [hm+1(1), 1].

If 0 6 x 6 h(1) = λ, then ϕi(−x) = ϕi(x) > ϕi(λ) = ϕ0(λ) > ϕ0(β) = β > λ. Thus by Eq. (1.1) we have

f(ϕ(h−1(x))) = f(ϕ(−f−1(x)))

= f(ϕi(f
−1(x))) = ϕp−1

i (ϕi(x))

= ϕp−1
0 (ϕi(x)) = ψ(ϕi(x)), (i = 1, 2, x ∈ ∆m+1).

(5.6)

Then equation (5.6) is equivalent to

ϕi(x) = ψ
−1(f(ϕ(h−1(x)))), (i = 1, 2, x ∈ ∆m+1).

Thus ϕ1(x) = ϕ2(x) on ∆m+1. By induction, ϕ1(x) = ϕ2(x) on ∆k for all k > 0. This completes the
proof.
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