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Abstract

This paper is concerned with a kind of fractional order systems with Caputo-Hadamard derivative (of order q € C and
MR(q) € (1,2)) and not instantaneous impulses. The obtained result uncovers that there exists a general solution for these
impulsive systems, which means that the state trajectory of these impulsive systems is non-unique, and it is expounded by a
numerical example. (©2017 All rights reserved.
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1. Introduction

Fractional calculus has gained much attention since it provides a key tool to describe hereditary
properties of some materials and processes in many fields of science and engineering, and the general
theory of fractional calculus can be referred in [5, 12, 15], and there are some advances in numerical
calculation, controllability, chaos synchronization, etc. for fractional differential equations [4, 11, 20-22].

Impulsive differential equations have been focused since it serves as an important tool to characterize
the phenomena in which sudden, discontinuous jumps occur in various fields of science and engineering,
and impulsive fractional (partial) differential equations have received much attentions [1, 2, 6, 8, 16-18, 23,
26]. However, impulses are instantaneous impulses in many existing papers about the impulsive models,
and it can not describe some processes such as evolution processes in pharmacotherapy. Therefore, the
authors in [9] presented a kind of impulsive differential equations with not instantaneous impulses, and
the authors in [14] continued studying on differential equations with not instantaneous impulses in a
PCx-normed Banach space. Next, the fractional differential equations with not instantaneous impulses
were considered in [13, 19].

Furthermore, the works in [7, 10] developed fractional calculus in frame of Caputo-Hadamard frac-
tional derivative, and Caputo-Hadamard fractional differential equations were studied in [3]. Next, the
recent results in [24, 25] discovered that Caputo-Hadamard fractional differential equations with instan-
taneous impulses have general solution, which uncovered that there may be general solution for Caputo-
Hadamard fractional differential equations with not instantaneous impulses. Therefore, we will try to
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seek general solution for the following Caputo-Hadamard fractional differential equations with not in-
stantaneous impulses:

C—HD2+Z(t) = f(t/ Z(t))/ te (Sk/ tk—!—l]/ k = 0/ 1/ ey N/
Z(t) = gk(trz(t))/ te (tk/ Sk]rk: 1/2/"'11\1/ (11)
(

CL) - Za, Za,Zq S C

Here q € C, R(q) € (1,2) and a > 0, C_HDg+ denotes left-sided Caputo-Hadamard fractional derivative
of order q, f: [a, T] x C — C is an appropriate continuous function, gk : (tx, sk] x C — C which denote
not instantaneous impulses are some appropriate continuous functions, gy (sk,z(sk)) exist (here k =
1,2,...,N),anda=t)y=sp<ti <s1<thp <---<tn<Ssy <t =T

Next, we will introduce some definitions and conclusions in Section 2, and give the equivalent inte-
gral equations for a kind of Caputo-Hadamard fractional differential equations with not instantaneous
impulses in Section 3. Finally, an example is provided to illustrate the obtained result.

2. Preliminaries

Definition 2.1 ([12, p.110]). Let 0 < a < b < oo be finite or infinite interval of the half-axis R". The
left-sided Hadamard fractional integral of order « € C of function x(t) is defined by

t ox—1
”Hg*x(t):r(loqj (mi) x(s)%, (a<t<b),

where I'(+) is the Gamma function.

Definition 2.2 ([10, p4]). Let ®(a) > 0 and n = [R(«)] + 1, x € {x:[a,b] — C: 5" Vx(t) € ACla, b},
0 < a < b < oo. The left-sided Caputo-Hadamard fractional derivatives c_1 D&, x(t) exist everywhere on
[a,b] and if & & N,

D) = oot [ (1 57x(s) % = anmsnx(),
(TL— (X) a S S

where differential operator 6 = t% with §%x(t) = x(t). Moreover, if « =n € Ny, c-HD x(t) = d™x(t).

In particular, C_HD%+x(t) =x(t).
Lemma 2.3 ([10, p.5]). Let R(x) >0, n = [R(x)] +1, and x € Cla, b]. If R(«) # 0 or x € IN, then
c—nDZs (HdJx) (t) = x(t).

Lemma 2.4 ([10, p.6]). Let x € AC¥[a, b] or C§[a,b] and « € C, then

a

n—1 k
5%x(a t
W3 (eonDF o) (0 =x(t) = 3 S ()
k=0
Considering a special case in Corollary 17 in [25], we can draw the following conclusion.

Lemma 2.5. Let w € C, R(w) € (1,2), Z(i):l yi =0, and &, ¢ are two constants. The impulsive system

€ (aT], t£t(k=1,2,...,m),
=L (x(t;)) €C, k=1,2,...,m,

- 2.1
Ax"t:tk =x"(tf) =x"(t;) =L (x(ty)) €C, k=1,2,...,m, @1
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is equivalent to the integral equation

k k t w—1
X(t) =X+ aXaln -+ Y Llxlt) )+ Y tlilx(t ) I + r(lw)J <ln Z) g%
i=1 i=1 t a
k t w—1 t w—1
+Z [EL(x(t7) + T (x(t]))] r(lw) U (mil) g‘f’+L (mi) g% 2.2)

Lo\ ds Ind o/ g\ ds
—J <lns> g? +r(’\/\)ill)J 11'1;) g? ,fortE (tk,tk+1], kZO,,m,
a a

provided that the integral in (2.2) exists, here g = g(s,x(s)).

3. Main results

For convenience, let f = f(7,z(T)) in this section. Let

St 1 (Y 9! ar
z(t) =Ax+BxInt+zq +azgIn— + — In— f—, for t € (sy, tkp1] € (0,T], (3.1)
a T(q)Ja T T

where Ay and By (k = 0,1,...,N) are some constants. In fact, Eq. (3.1) satisfies fractional derivative
condition of system (1.1) by Definition 2.2. Substituting (3.1) into system (1.1), we have

) — Ak+Bklnt+za+azaln%+ﬁﬁl (lnﬁ)qflf%, for t € (si,txs1l, k=0,...,N
gk (t, z(t)), fort e (t, sk, k=1,2,...,N.

Thus, we obtain Ag =0, By =0,

1 Sk sk\d—1 dt
= - a _al - a5 < 1 — -
Ax gk(sk,z(sk)) Zat+aZglna F(q) L (n > f

1 Sk Sk dt
J— I _—— — JR—
Sk (i, z(sk)) Fq—1) L (ln . ) f T ] In sy,
and
1 Sk sk\d—2 dt
Bl = skgf (s, 2(5%)) ~ 020 — oy J (1n %) T
a
Therefore,

t 1 [t/ t\9! 4
za+a2alna+J <ln> f%’ fort € (a,tq],

Ma)Ja\ 7
gk (t,z(t)), fort e (ty, sk, k=1,2,...,N,
Sk t q—1
=t ()", <1 t) T e

, 1 q-—2 dT
+ [Skgk(sk,Z(sk)) Ta=1) ( ) o
fort e (Sk,tk+1], k = 1,2,. . .,N.
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It is clear that Eq. (3.2) meets all conditions of system (1.1). Moreover, Eq. (3.2) satisfies a hidden condition

lim ) {Eq. (3.2)}
{gk(t,z(t))fzafaia In %,%q) f; (ln%)q f%} =0

for t€(ty,sy] and all ke{1,2,..., N}

t 1 [t/ t\9' d
S z(t) =zq +azZgIn— —|—J In - f—T, fort e (a,T], (3.3)
a T(@la\ = T
& lim : {system (1.1)}.
{gk(t,z(t))—za—aza In %_7F(1q) J'(tl (ln%)q7 f% =0
for te(ty,sk] and all ke{1,2,..., N}

On the other hand, substituting Z(t) = z(s;) + 8z(s; ) In i + %q) f:k (In$)971£4T for t € (si, tis1] (here
k=0,1,...,N) into system (1.1), we have

t q—1
za—i—azalnt—i—lj lnE fg, fort € (a,t],
a T(@la\ = T

gk(t,z(t)), forte (t,skl, k=1,2,...,N,

t 1 ¢ t\97! dr
sk, z(sx)) + skgr (s, z(s ln—i—J <ln> f—,
gi(sx, z(sk)) + sk gy (sk, z(sk)) s () s, - .

fort e (Sk/tk+1]/ k=1,2,...,N.

It is clear that Z(t) satisfies fractional derivative condition and not instantaneous impulses conditions in
system (1.1), but it does not satisfy the corresponding hidden condition (3.3). Hence, 2(t) is only regarded
as an approximate solution of system (1.1), and Eq. (3.2) is only a particular solution of system (1.1) since

it does not contain ﬁk (Int) -1y 4T the key part of approximate solution £(t) as t € (s, ti1]-

Theorem 3.1. Let &, O (k = 1,2,...,N) are some constants. The system (1.1) is equivalent to an integral
equation

St 1t/ 9 oar
za—i-azalna—i-r(q)L <lnT> f7, fort € (a,tq],
gk(t, z(t)), forte (tx,sul, k=1,2,...,N,
t t 1 [t/ t\9' dt
Jx + skdr In — +z4 + az ln—l—J <ln) f— + [Ex Ok + Ciesidr
L) = 4 F TR TR TR T ) S, e v T LB G (3.4)
1 Sk 1 t q-—1 t q-—1
Ry J (lns—k)q de+J lnE de—J lnE fE
I'q) |Ja T T i T T a T T
Int sk su\a—2 dt
Sk In =& f— t t k=12,...,N
+F(q—1) L (n T) = fort€ (s ticnl, 2, N,

provided that the integm_l in (3.4) exists, here gy = gi(sk, z(sk)) —zq — aZqIn 3= — ﬁ f:‘ (In %)q_lf% and
8% = gh(swx(si)) — 28 — L L 5 (In s8)a-2¢x,

Proof.
Sufficiency. By Lemma 2.4, the solution of system (1.1) as t € (a, t;] satisfies

1 t q—1
z(t) ZZa+aZalnt+J lnE fg, fort € (a,tq],
a r(q) a T T

and z(t) = g1(t,z(t)) for t € (ty, s1].
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Next, by above discussion, the approximate solution 2(t) as t € (sy, t2] is given by

2(t) = g1(s7,z(s7)) +s197 (s z(s*))lnt—kljt <lnt>q_1de for t € (s, o]
gilsy, 1 1911871, 1 $1 r(q) . T T ’ 1, 21.

Let error e;(t) = z(t) — 2(t) for t € (s1, t2], here z(t) denotes the exact solution of system (1.1). Moreover,
by the particular solution (3.2), the solution of system (1.1) satisfies

t 1 (t/ t\9! a
lim z(t):za+a2aln+J <lnT> f;, for t € (s1,ta],

10,610 a T(q)Ja
where §1 = g1(s1,z(s1)) —zqa — aZqIn 3 — ﬁ [o(In%)9-1f4T Thus,
Iim e (t)= lim {z(t)—2(t)}
§91—0,g;—=0 §1—0,9;—0

e[ () e ()]s

In L S1 S qa—2 drt
S 1
— — f— t to].
r( 1)J (111 ) , fort e (81, 2]

By (3.5), we make a hypothesis

e1(t) =« (gl, g{) lim e1(t)

§1—0,{—=0

N 1 t t\97! dr 51 s;\a-1 dr [t t\ 97! dr
=« (91,91) {F(q) Uﬂ <1n T) = _L (ln %) fT_L <ln1) fr] (3.6)

In= (s q—2
— 51 J <ln S—1> de} , for t € (sq1, 1],
a T

T

where k(- -) denotes an undetermined function with «(0,0) = 1. Therefore,
z(t) = 2(t) + e1(t)

s1 1
= gi1(s1,2(s1)) — I“(lq)J (1n %)q f%

/ 1 Sos1\972 dT t 1t )97 dr
+[5191(slf2(51”‘r(q—1>L (n3) fJ e e (1“T> Tt (37)

A 1| 1 dr (/. t\Thar (t/o t\9'.d
+[1—x(61,67)] {(q) Ua (ln %)q f:+Jsl <ln T) ff—L <ln T) f:]

Ing (s $1\9-2 drt
S1 1
— — tr].
+F(q—l)L (lnT) fT , fort e (sq,1]

On the other hand, consider a special case in system (1.1)

c—nDd z(t) = f(t,z(t)), te€ (sk,txp] k=01,
lim ¢ z(t) = g1(t,z(t)), te (t,s1],
t1—sq
Z((l) = Za, Z/(a) =Za, Za,Za €C.
c—nDd z(t) = f(t,z(t), te (si,trml k=01,
= ¢ z(t1) = z(s1) = g1(s1,z(s1)),
z(a) =zq, 2'(a) =Za, za,Zaq €C.
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c—nDd z(t) = f(t,z(1), te€ (si,trml k=01,

Y () = T U T R AR
z(t]) —z(t; ) = g1(s1,z(s1)) — 24 azaln‘l J (ln ) fT,

ra) Ja T
PN B (3.8)
Lt S , aZq 1 1 Jsl s1\9—2 drt
_ — _ _ il 21 f—,
()~ 2 ) =gils2lo) - - | (7)o
z(a) = zq, Z,(a) =Za, Za,Za €C.
Using (3.7) and Lemma 2.5 for system (3.8), respectively, we get
(418 = O R L D
1—x(g1,61) = & [91(51,2(51)) Za —aZaIn— ) L (ln T) =
1 51 $1\9—2 dt
/ A5 e = = A Al
+G [8191(51,2(31)) Za = Tg—1) L (ln T) f T] €191+ G101
Thus, Eq. (3.7) can be rewritten as
1
4 4sg In L —tlrtda 5 Y
z(t) = g1 +s1G; In - +2zq+aZqln . + M) . lnT f - + [&191 +C13191]

s1 1 t q—1 t q—1
L J (lns—l)q de+J <lnt> deJ <lnt> fE
r(q) a T T $1 T T a T T
Int s -2
+ 51 J <lns—l>q de} , fort € (sq1,ta],
a T

MNq—1) T

and z(t) = ga(t,z(t)) for t € (tp, sa].
Next, the approximate solution 2(t) for t € (s, tx4+1] is provided by
t 1 [t/ t\9 dr
5(1) — + (ot et (ot rtL t at
£(0) = g5, 2(50) + sughsf, 2(E) 0 -+ s | (%) for e (on i

Let error ey (t) = z(t) — 2(t) for t € (s, tk41], and z(t) denotes the exact solution of system (1.1). Further-
more, by the particular solution (3.2), the solution of system (1.1) satisfies

t 1t t\ 9 dr
Im z(t) =zq+az ln+J In — f—, fort € (sy,t ,
s g (t) =za o0 o+ g a( T) - (s, tit1]

here §x = gr(sk, z(sk)) —zq — aZq In 3k — %q) IZ“ (In %“)qflf%. Therefore,

Iim ex(t)= lim  {z(t) —2(t)}
91x—0,§;.—0 gx—0,9,—0

t q-1 Sk _1 t q-1
) ) [ () e
I'q) |Ja T T a T T sk T T

Int s« sk\d—2 dt
sk In 2k = fort Lt
F(q—l)L <HT> f—, for € (sk, tkt1]

With similarity to (3.6), suppose

t) =9 (gy, o+ li t
ex(t) =9 (9x, Gy) ot ex(t)

Cotanan ]t r t‘”dT_JSk skqldT_r t)
=9 (31, 40) ) (ms) a(lnT) . n-) £

In+ s« q—2
_ Sk J In Sk) fd:} , for t € (sy, tii1l,
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where 3(-, -) is an undetermined function. Thus,

z(t) = 2(t) + e (t)

— gilsw, z(si)) — r(lq) J CESN
g [ R )
o (g [ 02 (o) ()
+r(12itk1) Ek (h’ls:)q_zfd::}, for t € (sy, tis1l-

Considering a special case of system (1.1), we get

C,HD2+Z(’L) =Tf(t,z(t)), te (si,tip1), 1=0,1,...,%,
t 1 [t/ t\9!
: z(t):za—i-aialn—l-J In— fg, forte (ty,si), i=1,2,...,k—1,
lim a T(q)Ja T T
tk—sk
z(t) = gk(t, z(t)), t € (tx, skl,
z(a) = zq, Z/((l) =Za, Za,Za €C.
C*HDngZ(t) = f(t, Z(t))/ te (Si/ ti+1]/ i= 0/ 1/ s /k/
t 1 [t/ t\9!
z(t):za—i-azaln—i—J In — fg, forte (ty,sil,i=1,2,...,k—1,
= a T(q)Ja T T
z(sk) = gk sk, z(sk)),
z(a) = zq, 2'(a) =24, za,Za € C.
C—HDngZ‘(t) = f(t/ Z(t)), te (S‘i,/ ti—)—l]/ l = 0/ 1/ e /k/
t 1 [t/ t\9' d
z(t):za+a2aln+J In— f—T, te(ty,sid, i=1,2,...,k—1,
a T(q)la\ = T
_ _ s 1[5 Sk\9—1 dt
< z(sz) —z(sy ) = gr(sk, z(sx)) —zqa —aZqIn Ek — W L (ln ?k) f7, (3.10)
Tt ol (e—Y — ! _ QZg 1 lsk sx\972 dt
2/ (s) = 2'(55) = oklsw 2l = T2 — gy | (0 )
z(a) = zq, 2'(a) =Za, za,Za €C.

System (3.10) can be regarded as a special case of system (2.1) with single impulsive point. By using (3.9)
and Lemma 2.5 for system (3.10), we obtain
Sk -1
(%) e ]
T T

a

16 (90, 00) = (st 2(51)) — 20— aza I % — o |

Sk 9-2 dt
(ln %) fT} = &0k + CkSkOr-

a

. ~ 1
+ (i [skgk(Sk,Z(Sk)) B P J

Thus, (3.9) is rewritten as

X ot St 1t/ t\9T ar X .
z(t) = gk + sk In s +2zq+aZqgln a + m Ja <ln T) f7 + [E»kgk + Ckskgu

Sk —1 t q—1 t q—1
L J <lns—k)q de—i—J <lnt> de—J <lnt> fg
I'q) |Ja T T sy T T a T T
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Int sk suNd—2 dt
Sk 7](. at
+r(q - ) Ja (ln T ) f T 4 fort e (sk/tk+1],

and z(t) = giy1(t, z(t)) for t € (txy1, sxi2l.

Necessity. We will verify that Eq. (3.4) satisfies all conditions of system (1.1). Taking the fractional

derivative to Eq. (3.4), we have
t q-1
ey
Mla)Ja \ T T

@) )
t 1 [t t\97 dr
C—HDng Zq +0Zg ll'la-i- J (ln) f’[’] =C—-H D?1+
= f(t,z(t)), forte (a,t],

MNg)Ja\ 7

(i)

A " t _ t 1 t £\ 91 dt
CfHDgﬁr {Qk—i—SkgﬁlnSk—i—za—i—azalna—f—wL <1n1> f7

; o | [ ()" r t“dT_J‘ £
+ [Exdx + Ciesk O] {F(q) i <ln T) f - + . lnT f - i lnT f .
11'1L Sk _2
M iﬁ)J (lns?k>q fd:}}
q “ te(sk tis1]

= {f(t,z(t))t>a + M)

t t\97! dr t t\ 9! dr
X {CHDSI J <].n "['> f? —C—H Dg+ J <1n ’[’) f?
Sk @ te(sk ti]

= {f(t,z(t)tza + [ExGr + Cesiic] [F(L 2(D)ezs — F(L 2(0)ezal e o
= f(t,Z(t))te(sk,tkHJ'

[ExOx + CieskOic

Therefore, Eq. (3.4) satisfies C,HDg+z(t) = f(t,z(t)) (here t € (s, tx+1] and k = 0,1,...,N) in system
(1.1).
Finally, by Eq. (3.4), we have

lim {Eq. (3.4)}
9k (tz(t))~za—aZaln £~y [§ (In 1) ¥ dx] =0
for all k=1,2,....N

t 1 [t/ t\9!
@z(t):za—i-azaln—i-J In— fg, forte (q,T],
a T(q)la\ =T T
{ c-nDd.z(t) = f(t,z(1), t € (o, T],

z(a) = zq, 2'(a) =Za, za,Za € C.

Therefore,
lim {Eq. (3.4)}
[gk(t,z(t) )—za—aZqIn %,%q) Ie(ng) ‘Hf%} =0
for all k=1,2,...,N
& lim {system (1.1)}.
gi(t,z(t))—zq—azqIn %—ﬁ f; (ln %) q_lf%} =0
for all k=1,2,...,N
Thus, Eq. (3.4) satisfies all conditions of system (1.1).
According to above proof, the conclusion can be drawn. The proof is now completed. O
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4. An example

In this section, we will give an example to illustrate that there exists a general solution for the Caputo-

Hadamard fractional differential equations with not instantaneous impulses.

Example 4.1. Let us consider the following impulsive system

3

C_HD12+z(t) =Int, te(1,21U(3,4],
z(t) = 12, te (23],
z(1) =1, z'(1) = 1.

By Theorem 3.1, the general solution of (4.1) can be obtained as

NGl

1+Int+ — ! (Int)
r(3)

t2, forte (2,3,

, fort e (1,2],

9— ! (ln3)

3
18- 1 (ln3)2] In &

(5 r3) 3
2(t) = 1 1 3
{& 8—In3— (%) (ln3) 17—r(g)(ln3)2]}

3
5 t\2 3In3 5
. {F(Z) [(ln3)2 + <1n3> [lnt—i— ;} . — (Int)2

for t € (3,4],

+C

3
2
+ (lni) In L
t>1 r(i) 3

t>3}

(4.1)

(4.2)

here & and ( are two constants. To show solution trajectory of system (4.1), we plot (4.2) for several values

of & and C in Fig. 1.

30

sL z3 ]

20} 1

Figure 1: Solution trajectory of system (4.1).

z1,22,23, and z4 denote (4.2) with £ =2 and (=2, =0and (=2, & =2and (=0, and § =0 and

C =0, respectively, and z is the solution trajectory of system (4.1) without impulses in Fig. 1.
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