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Abstract
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1. Introduction and main results

Let Kn denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Eu-
clidean space Rn. For the set of convex bodies containing the origin in their interiors and the set of
convex bodies whose centroids lie at the origin in Rn, we write Kno and Knc , respectively. Let Sn−1 denote
the unit sphere in Rn, and let V(K) denote the n-dimensional volume of a body K. For the standard unit
ball B in Rn, we use ωn = V(B) to denote its volume.

If K ∈ Kn, then its support function, hK = h(K, ·) : Rn → (−∞,∞), is defined by (see [9, 30])

h(K, x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.
The study of width integral has a long history. The notion of the classical width-integral was first

considered by Blaschke (see [4]) and was further studied by Hardy et al. (see [16]). It was generalized to
the mixed width-integral by Lutwak [23] in 1977. For the more results associated with the mixed width-
integral, we refer the interested reader to [17, 21, 22, 25]. Particularly, Feng [6] generalized the definition
of mixed width integral to general mixed width integral: for τ ∈ (−1, 1), the general mixed width-integral,
B(τ)(K1, · · · ,Kn), of K1, · · · ,Kn ∈ Kno is defined by

B(τ)(K1, · · · ,Kn) =
1
n

∫
Sn−1

b(τ)(K1,u) · · ·b(τ)(Kn,u)dS(u),
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where b(τ)(K,u) = f1(τ)h(K,u) + f2(τ)h(K,−u) and the functions f1(τ) and f2(τ) are chosen as follows

f1(τ) =
(1 + τ)2

2(1 + τ2)
, f2(τ) =

(1 − τ)2

2(1 + τ2)
.

The main aim of this article is to define a corresponding notion of general Lp-mixed width-integral,
and to extend Feng’s inequalities to the inequalities related to general Lp-mixed width-integral. Moreover,
the extremum values and two Brunn-Minkowski type inequalities for the general Lp-mixed width-integral
are established.

Now, we define the general Lp-mixed width-integral as follows: for τ ∈ [−1, 1] and p > 0, the general
Lp-mixed width-integral, B(τ)

p (K1, · · · ,Kn), of K1, · · · ,Kn ∈ Kno is defined by

B
(τ)
p (K1, · · · ,Kn) =

1
n

∫
Sn−1

b
(τ)
p (K1,u) · · ·b(τ)p (Kn,u)dS(u), (1.1)

where b(τ)p (K,u) = (f1(τ)h
p(K,u) + f2(τ)h

p(K,−u))
1
p for any u ∈ Sn−1, and f1(τ), f2(τ) are chosen as

follows

f1(τ) =
(1 + τ)2p

(1 + τ)2p + (1 − τ)2p , f2(τ) =
(1 − τ)2p

(1 + τ)2p + (1 − τ)2p .

Obviously, f1(τ) and f2(τ) satisfy

f1(τ) + f2(τ) = 1,
f1(−τ) = f2(τ), f2(−τ) = f1(τ).

Note that the case p = 1 in definition (1.1) is just Feng’s general mixed width-integral. Two convex
bodies K and L are said to have similar general Lp-width if there exists a constant λ > 0 such that
b
(τ)
p (K,u) = λb

(τ)
p (L,u) for all u ∈ Sn−1. If b(τ)p (K,u) = b

(τ)
p (L,u) for all u ∈ Sn−1, then we call K and L

have the same general Lp-width.
Taking K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = L in (1.1), the general Lp-mixed width-integral,

B
(τ)
p,i (K,L), of K,L ∈ Kno is given by

B
(τ)
p,i (K,L) =

1
n

∫
Sn−1

b
(τ)
p (K,u)n−ib(τ)p (L,u)idS(u). (1.2)

Further, let L = B in (1.2). Then we write B(τ)
p,i (K) for B(τ)

p,i (K,B). Since b(τ)p (B,u) = 1, it follows that

B
(τ)
p,i (K) =

1
n

∫
Sn−1

b
(τ)
p (K,u)n−idS(u), (1.3)

where B(τ)
p,i (K) is called the ith general Lp-mixed width-integral of K. If i = 0, then we write B(τ)

p,0 (K) =

B
(τ)
p (K), which we call the general Lp-width-integral of K, namely,

B
(τ)
p (K) =

1
n

∫
Sn−1

b
(τ)
p (K,u)ndS(u).

The general operator belongs to the asymmetric Brunn-Minkowski theory which has its starting point
in the theory of valuations in connection with isoperimetric and analytic inequalities (see [1, 2, 7, 8, 10–
15, 19, 20, 27–29, 31–35]).

The main results are the following: we first establish the isoperimetric type, Aleksandrov-Fenchel type
and cyclic inequalities for the general Lp-mixed width-integral.

Theorem 1.1. If τ ∈ [−1, 1] and K1, · · · ,Kn ∈ Knc , then for p > 0

V(K1) · · ·V(Kn) 6 B
(τ)
p (K1, · · · ,Kn)n, (1.4)

with equality if and only if K1, · · · ,Kn are n-balls.
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Theorem 1.2. If τ ∈ [−1, 1], K1, · · · ,Kn ∈ Kno , and 1 < m 6 n, then for p > 0

B
(τ)
p (K1, · · · ,Kn)m 6

m∏
i=1

B
(τ)
p (K1, · · · ,Kn−m,Kn−i+1, · · · ,Kn−i+1), (1.5)

with equality if and only if Kn−m+1, · · · ,Kn are all of similar general Lp-width.

Theorem 1.3. If τ ∈ [−1, 1], K,L ∈ Kno , and p > 0, then for i < j < k,

B
(τ)
p,i (K,L)k−jB(τ)

p,k(K,L)j−i > B(τ)
p,j (K,L)k−i, (1.6)

with equality if and only if K and L have similar general Lp-width.

Moreover, the extremum values for the general Lp-mixed width-integral are also established.

Theorem 1.4. If τ ∈ [−1, 1], K ∈ Kno , and p > 0, then for i < n− p,

B
(0)
p,i(K) 6 B

(τ)
p,i (K) 6 B

(±1)
p,i (K); (1.7)

for n− p < i < n or i > n
B
(0)
p,i(K) > B

(τ)
p,i (K) > B

(±1)
p,i (K). (1.8)

If K is not origin-symmetric, equality holds in the left inequality if and only if τ = 0 and equality holds in the
right inequality if and only if τ = ±1. When i = n, (1.7) and (1.8) are identical.

The proofs of theorems above will be given in Section 3 of this paper. In Section 4, two Brunn-
Minkowski type inequalities for the ith general Lp-mixed width-integral will be established.

2. Preliminaries

The radial function, ρK = ρ(K, ·) : Rn \ {0}→ [0,∞), of a compact star-shaped (about the origin) set K
in Rn is defined, for u ∈ Sn−1, by (see [9, 30])

ρ(K,u) = max{λ > 0 : λ · u ∈ K}.

The polar body, K∗, of K ∈ Kn is defined by (see [9, 30])

K∗ = {x ∈ Rn : x · y 6 1,y ∈ K}.

It is easy to check that for K ∈ Kno ,

(K∗)∗ = K and hK∗ =
1
ρK

, ρK∗ =
1
hK

.

An extension of the well-known Blaschke-Santaló inequality is as follows (see [24]).

Theorem 2.1. If K ∈ Knc , then
V(K)V(K∗) 6 ω2

n,

with equality if and only if K is an ellipsoid.

For K,L ∈ Kno , p > 1 and λ,µ > 0 (not both zero), the Firey Lp-combination (also called Lp-Minkowski
combination), λ ·K+p µ · L ∈ Kno , of K and L is defined by (see [26])

h(λ ·K+p µ · L, ·)p = λh(K, ·)p + µh(L, ·)p,

where the operation ”+p” is called Firey addition and λ ·K denotes the Firey scalar multiplication.
The polar coordinate formula for volume of a body K in Rn is

V(K) =
1
n

∫
Sn−1

ρ(K,u)ndS(u).



Y. Zhou, J. Nonlinear Sci. Appl., 10 (2017), 4372–4380 4375

3. Proof of main results

Proof of Theorem 1.1. From Jensen’s inequality (see [16]), we obtain

B
(τ)
p (K1, · · · ,Kn) =

1
n

∫
Sn−1

b
(τ)
p (K1,u) · · ·b(τ)p (Kn,u)dS(u)

> nω2
n

[∫
Sn−1

b
(τ)
p (K1,u)−1 · · ·b(τ)p (Kn,u)−1dS(u)

]−1 (3.1)

with equality if and only if K1, · · · ,Kn have joint constant general Lp-width. Together with Hölder’s
inequality (see [16]), we have[∫

Sn−1
b
(τ)
p (K1,u)−1 · · ·b(τ)p (Kn,u)−1dS(u)

]−n
>

n∏
i=1

[∫
Sn−1

b
(τ)
p (Ki,u)−ndS(u)

]−1

, (3.2)

with equality if and only if K1, · · · ,Kn have similar general Lp-width. Using Minkowski’s inequality (see
[16]), we have

[
1
n

∫
Sn−1

b
(τ)
p (Ki,u)−ndS(u)]−

p
n = [

1
n

∫
Sn−1

(f1(τ)h
p(Ki,u) + f2(τ)h

p(Ki,−u))
−n
p dS(u)]−

p
n

> [
1
n

∫
Sn−1

(f1(τ)h
p(Ki,u))

−n
p dS(u)]−

p
n

+ [
1
n

∫
Sn−1

(f2(τ)h
p(Ki,−u))

−n
p dS(u)]−

p
n

> [
1
n

∫
Sn−1

h(Ki,u)−ndS(u)]−
p
n = V(K∗

i )
− p
n ,

(3.3)

with equality if and only if Ki is origin-symmetric. Since p > 0, it follows from Theorem 2.1 and inequality
(3.3) that, [

1
nω2

n

∫
Sn−1

b
(τ)
p (Ki,u)−ndS(u)

]−1

> V(Ki), (3.4)

with equality if and only if Ki is an n-dimensional ellipsoid. By inequalities (3.1), (3.2), and (3.4), this
gives

V(K1) · · ·V(Kn) 6 B
(τ)
p (K1, · · · ,Kn)n.

By the equality conditions of inequalities (3.1), (3.2), and (3.4), equality holds in (1.4) if and only if
K1, · · · ,Kn are n-balls.

Lemma 3.1 ([22]). If f0, f1, · · · , fm are (strictly) positive continuous functions defined on Sn−1 and λ1, · · · , λm
are positive constants the sum of whose reciprocals is unity, then∫

Sn−1
f0(u)f1(u) · · · fm(u)dS(u) 6

m∏
i=1

[∫
Sn−1

f0(u)f
λi
i (u)dS(u)

] 1
λi

, (3.5)

with equality if and only if there exist positive constants α1, · · · ,αm such that α1f
λ1
1 (u) = · · · = αmfλmm (u) for all

u ∈ Sn−1.

Proof of Theorem 1.2. Let in Lemma 3.1

λi = m (1 6 i 6 m);

f0 = b
(τ)
p (K1,u) · · ·b(τ)p (Kn−m,u) (f0 = 1 if m = n);
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fi = b
(τ)
p (Kn−i+1,u) (1 6 i 6 m).

Then ∫
Sn−1

b
(τ)
p (K1,u) · · ·b(τ)p (Kn,u)dS(u)

6
m∏
i=1

[∫
Sn−1

b
(τ)
p (K1,u) · · ·b(τ)p (Kn−m,u)b(τ)p (Kn−i+1,u)mdS(u)

] 1
m

.

Combining with (1.1), we have

B
(τ)
p (K1, · · · ,Kn)m 6

m∏
i=1

B
(τ)
p (K1, · · · ,Kn−m,Kn−i+1, · · · ,Kn−i+1).

The equality condition of inequality (3.5) implies that equality holds in (1.5) if and only if Kn−m+1,
· · · , Kn are all of similar general Lp-width.

Proof of Theorem 1.3. It follows from Hölder’s inequality (see [16]) that

B
(τ)
p,i (K,L)

k−j
k−iB

(τ)
p,k(K,L)

j−i
k−i =

(
1
n

∫
Sn−1

b
(τ)
p (K,u)n−ib(τ)p (L,u)idS(u)

) k−j
k−i

×
(

1
n

∫
Sn−1

b
(τ)
p (K,u)n−kb(τ)p (L,u)kdS(u)

) j−i
k−i

>
1
n

∫
Sn−1

b
(τ)
p (K,u)n−jb(τ)p (L,u)jdS(u) = B(τ)

p,j (K,L).

This gives
B
(τ)
p,i (K,L)k−jB(τ)

p,k(K,L)j−i > B(τ)
p,j (K,L)k−i.

The equality condition of Hölder’s inequality implies that equality holds in (1.6) if and only if K and L
have similar general Lp-width.

Taking i = 0, j = i, and k = n in inequality (1.6), we have the following.

Corollary 3.2. If τ ∈ [−1, 1], K,L ∈ Kno , and p > 0, then for 0 6 i 6 n,

B
(τ)
p,i (K,L)n 6 B(τ)

p (K)n−iB
(τ)
p (L)i; (3.6)

for i < 0 or i > n, inequality (3.6) is reversed, with equality in every inequality if and only if i = n or, when i 6= n,
K and L have similar general Lp-width.

Let i = 1 in Corollary 3.2. The dual Minkowski type inequalities for the general Lp-mixed width-
integral are as follows.

Corollary 3.3. If τ ∈ [−1, 1] and K,L ∈ Kno , then

B
(τ)
p,1 (K,L)n 6 B(τ)

p (K)n−1B
(τ)
p (L),

with equality if and only if K and L have similar general Lp-width.

Corollary 3.4. If τ ∈ [−1, 1] and K,L ∈ Kno , then

B
(τ)
p,−1(K,L)n > B(τ)

p (K)n+1B
(τ)
p (L)−1,

with equality if and only if K and L have similar general Lp-width.
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Proof of Theorem 1.4. From (1.3) and using Minkowski’s inequality (see [16]), we obtain that for i < n− p

B
(τ)
p,i (K)

p
n−i =

[
1
n

∫
Sn−1

b
(τ)
p (K,u)n−idS(u)

] p
n−i

=

[
1
n

∫
Sn−1

(f1(τ)h
p(K,u) + f2(τ)h

p(K,−u))
n−i
p dS(u)

] p
n−i

6

[
1
n

∫
Sn−1

(f1(τ)h
p(K,u))

n−i
p dS(u)

] p
n−i

+

[
1
n

∫
Sn−1

(f2(τ)h
p(K,−u))

n−i
p dS(u)

] p
n−i

=

[
1
n

∫
Sn−1

(hp(K,u))
n−i
p dS(u)

] p
n−i

or

[
1
n

∫
Sn−1

(hp(K,−u))
n−i
p dS(u)

] p
n−i

=

[
1
n

∫
Sn−1

(h(K,u))n−i dS(u)
] p
n−i

.

(3.7)

Similarly, from Minkowski’s inequality we have that for n− p < i < n or i < n,

B
(τ)
p,i (K)

p
n−i >

[
1
n

∫
Sn−1

(h(K,u))n−i dS(u)
] p
n−i

.

From the equality condition of Minkowski’s inequality, we see that equalities hold in (3.6) and (3.7) if and
only if K and −K are dilates of one another, i.e., K is centered.

From f1(+1) = 1 and f2(+1) = 0, we have

B
(+1)
p,i (K) =

1
n

∫
Sn−1

(hp(K,u))
n−i
p dS(u) =

1
n

∫
Sn−1

(h(K,u))n−i dS(u).

Together with (3.7), we have
B
(τ)
p,i (K) 6 B

(±1)
p,i (K),

which is just the right inequality of (1.3).
According to the equality condition of (3.7), we know that if τ 6= ±1, then equality holds in the right

inequality of (1.7) if and only if K is centered, i.e., if K is not origin-symmetric, equality holds in the right
inequality if and only if τ = ±1.

Now, we prove the left inequality of (1.7). Since f1(0) = f2(0) = 1
2 , together with Minkowski’s inequal-

ity, we have

B
(0)
p,i(K)

p
n−i

=

[
1
n

∫
Sn−1

b
(0)
p (K,u)n−idS(u)

] p
n−i

=

[
1
n

∫
Sn−1

(
1
2
hp(K,u) +

1
2
hp(K,−u)

)n−i
p

dS(u)

] p
n−i

=

[
1
n

∫
Sn−1

(
1
2
f1(τ)h

p(K,u) +
1
2
f2(τ)h

p(K,−u) +
1
2
f1(τ)h

p(K,−u) +
1
2
f2(τ)h

p(K,u)
)n−i

p

dS(u)

] p
n−i

6

[
1
n

∫
Sn−1

(
1
2
f1(τ)h

p(K,u) +
1
2
f2(τ)h

p(K,−u)
)n−i

p

dS(u)

] p
n−i
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+

[
1
n

∫
Sn−1

(
1
2
f1(τ)h

p(K,−u) +
1
2
f2(τ)h

p(K,u)
)n−i

p

dS(u)

] p
n−i

=

[
1
n

∫
Sn−1

(f1(τ)h
p(K,u) + f2(τ)h

p(K,−u))
n−i
p dS(u)

] p
n−i

=

[
1
n

∫
Sn−1

b
(τ)
p (K,u)n−idS(u)

] p
n−i

= B
(τ)
p,i (K)

p
n−i .

That is,
B
(τ)
p,i (K) > B

(0)
p,i(K).

The equality condition of Minkowski’s inequality tells us that if τ 6= 0, then equality holds in the left
inequality of (1.7) if and only if K is centered. Thus if K is not origin-symmetric, then equality holds in
the left inequality of (1.7) if and only if τ = 0.

For the case n− p < i < n or i > n, the proof is similar.

4. Brunn-Minkowski type inequalities

In this section, we establish two Brunn-Minkowski type inequalities for the ith general Lp-mixed
width-integral.

Theorem 4.1. If τ ∈ [−1, 1], K,L ∈ Kno , and p > 0, then for i 6 n− p,

B
(τ)
p,i (K+p L)

p
n−i 6 B(τ)

p,i (K)
p
n−i +B

(τ)
p,i (L)

p
n−i ,

with equality if and only if K and L have similar general Lp-width.

In fact, the more general result than Theorem 4.1 will be obtained as follows.

Theorem 4.2. If K,L ∈ Kno , τ ∈ [−1, 1], and p > 0, then for i 6 n− p 6 j 6 n and i 6= jB(τ)
p,i (K+p L)

B
(τ)
p,j (K+p L)


p
j−i

6

B(τ)
p,i (K)

B
(τ)
p,j (K)


p
j−i

+

B(τ)
p,i (L)

B
(τ)
p,j (L)


p
j−i

; (4.1)

for j > n > i > n− p and i 6= jB(τ)
p,i (K+p L)

B
(τ)
p,j (K+p L)


p
j−i

>

B(τ)
p,i (K)

B
(τ)
p,j (K)


p
j−i

+

B(τ)
p,i (L)

B
(τ)
p,j (L)


p
j−i

, (4.2)

with equality in every inequality if and only if K and L have similar general Lp-width.

To complete the proof of Theorem 4.2, the following lemmas may be required. An extension of
Beckenbach’s inequality (see [3]) was obtained by Dresher (see [5]) through the means of moment-space
techniques.

Lemma 4.3 (Beckenbach-Dresher inequality). If p > 1 > r > 0, p 6= r, f,g > 0, and φ is a distribution
function, then (∫

E
(f+ g)pdφ∫

E
(f+ g)rdφ

) 1
p−r

6

(∫
E
fpdφ∫

E
frdφ

) 1
p−r

+

(∫
E
gpdφ∫

E
grdφ

) 1
p−r

, (4.3)

with equality if and only if the functions f and g are positively proportional.

Here E is a bounded measurable subset in Rn.
The inverse Beckenbach-Dresher inequality was established in the reference [18].
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Lemma 4.4 (Inverse Beckenbach-Dresher inequality). If 1 > p > 0 > r, p 6= r, f,g > 0, and φ is a distribution
function, then (∫

E
(f+ g)pdφ∫

E
(f+ g)rdφ

) 1
p−r

>

(∫
E
fpdφ∫

E
frdφ

) 1
p−r

+

(∫
E
gpdφ∫

E
grdφ

) 1
p−r

, (4.4)

with equality if and only if the functions f and g are positively proportional.

Proof of Theorem 4.2. From (1.3) and (4.3), it follows that for i 6 n− p 6 j 6 nB(τ)
p,i (K+p L)

B
(τ)
p,j (K+p L)


p
j−i

=

(
1
n

∫
Sn−1 b

(τ)
p (K+p L,u)n−idS(u)

1
n

∫
Sn−1 b

(τ)
p (K+p L,u)n−jdS(u)

) p
j−i

=

 1
n

∫
Sn−1 (f1(τ)h

p(K+p L,u) + f2(τ)h
p(K+p L,−u))

n−i
p dS(u)

1
n

∫
Sn−1 (f1(τ)hp(K+p L,u) + f2(τ)hp(K+p L,−u))

n−j
p dS(u)

 1
n−i
p −

n−j
p

=

 1
n

∫
Sn−1 (f1(τ)h

p(K,u) + f2(τ)h
p(K,−u) + f1(τ)h

p(L,u) + f2(τ)h
p(L,−u))

n−i
p dS(u)

1
n

∫
Sn−1 (f1(τ)hp(K,u) + f2(τ)hp(K,−u) + f1(τ)hp(L,u) + f2(τ)hp(L,−u))

n−j
p dS(u)

 1
n−i
p −

n−j
p

6

 1
n

∫
Sn−1 (f1(τ)h

p(K,u) + f2(τ)h
p(K,−u))

n−i
p dS(u)

1
n

∫
Sn−1 (f1(τ)hp(K,u) + f2(τ)hp(K,−u))

n−j
p dS(u)


p
j−i

+

 1
n

∫
Sn−1 (f1(τ)h

p(L,u) + f2(τ)h
p(L,−u))

n−i
p dS(u)

1
n

∫
Sn−1 (f1(τ)hp(L,u) + f2(τ)hp(L,−u))

n−j
p dS(u)


p
j−i

=

B(τ)
p,i (K)

B
(τ)
p,j (K)


p
j−i

+

B(τ)
p,i (L)

B
(τ)
p,j (L)


p
j−i

.

This gets the desired inequality (4.1). Using the same method, inequality (4.2) follows from inequality
(4.4).

Together with the equality conditions of inequalities (4.3) and (4.4), we see that equality holds in
inequalities (4.1) and (4.2) if and only if b(τ)p (K,u) and b(τ)p (L,u) are positively proportional, namely, K
and L have similar general Lp-width.

Let j = n in (4.1). Since B(τ)
p,n(K+ L) = B

(τ)
p,n(K) = B

(τ)
p,n(L) = ωn is a constant, we obtain Theorem 4.1.
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