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Abstract

We study the existence of nonoscillatory solutions to a class of third-order neutral functional dynamic equations on time
scales. The integral convergence and divergence of the reciprocal of the coefficients in the equations are different. Two examples
are given to demonstrate the results. (©2017 All rights reserved.
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1. Introduction

This paper is concerned with the existence of nonoscillatory solutions to a third-order nonlinear neu-
tral functional dynamic equation

AN A
(r10) (rato) Cx(0) + pOX(@)*) ) 0, i) =0 1)
on a time scale T satisfying supT = oo, where t € [tg, 00)T = [to, 00) N T with tg € T. Throughout, we
assume that the following conditions are satisfied:

(C1) 71,12 € Cyq(ltog, o0)T, (0,00)) and there exists a constant Mg > 0 such that

At At
J =00 and J —— =My < o0
g T1(t) g T2(t)

*Corresponding author
Email addresses: q840410@qq . com (Yang-Cong Qiu), zadababo@yahoo . com (Akbar Zada), wfxytang@163.com (Shuhong Tang),
litongx2007@163.com (Tongxing Li)

doi:10.22436 /jnsa.010.08.28
Received 2017-06-18


http://dx.doi.org/10.22436/jnsa.010.08.28

Y.-C. Qiu, A. Zada, S. H. Tang, T. X. Li, J. Nonlinear Sci. Appl., 10 (2017), 43524363 4353

(C2) p € Cyq(lto, 00)1, R) and lim_, p(t) = po, where |po| < 1;

(C3) g,h € Cyq(ltg,00), T), g(t) < t, and limy_, o g(t) = limy_,c h(t) = oo; if pg € (—1,0], then there
exists a sequence {c Jik >0 such that limy_,, cx = co and g(ck41) = ci;

(C4) f € C([tp,00)T X R,R), f(t,x) is nondecreasing in x, and xf(t,x) > 0 for x # 0;
(C5) if

oo rv l
Lo LO WASAV e (1.2)

then define

t Vv 1
Rty =1+ J J (s A

R(g(t))
e R(Y)

which satisfies

c (0,1].

Definition 1.1. A solution x to (1.1) is said to be eventually positive (or eventually negative) if there exists
a ¢ € T such that x(t) > 0 (or x(t) < 0) for all t > c in T. A solution x is said to be oscillatory if it is
neither eventually positive nor eventually negative; otherwise, it is called nonoscillatory.

The qualitative analysis of dynamic equations on time scales has greatly improved the related results
for differential and difference equations in the last few years; see, e.g., [1-22]. Some results for existence
of oscillatory and nonoscillatory solutions to various classes of neutral functional dynamic equations were
presented in [9, 10, 13-15, 17-22], and some open problems were given in Mathsen et al. [18]. Zhu and
Wang [22] studied the existence of nonoscillatory solutions to a class of first-order dynamic equations.
Gao and Wang [10] considered the same problem of a second-order dynamic equation

[r(6)(x(8) + p(t)x (g(1)))] " +f (t,x (h(t))) = 0 (1.3)

J'°° At
— < O0.
to T(t)
[[& o
to T(t)
Motivated by [9], Qiu [19] considered (1.1) in the case where
J‘X’ At JOO At .
b T1(t)  Jgy m2(t) ’

whereas Qiu and Wang [20] investigated (1.1) under the assumptions that

J‘” At ro At
< oo and < 00.
t T1(t) o T2(t)

under the condition

Deng and Wang [9] discussed (1.3) with

For the diverse cases of convergence or divergence of the integrals ffzj 1/r1(t)At and ff:; 1/r5(t)At, the
nonoscillatory solutions to (1.1) have different behaviors. In this paper, we shall consider the case under
(C1), which means that the convergence and divergence of the integrals above are different. Finally, two
examples are given to demonstrate the results.
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2. Auxiliary results

For A =0, 1, define a Banach space

BC}\[T(),OO)T = {X X € C([T(),OO)T,]R) and sup

t€([To,00)T

(t)
R>2<7\ (t) ‘ < OO}

with the norm

[IX[[a = sup

X
te([To,00)T R#A(1)

where C([Tp, co)T,R) is denoted all continuous functions mapping [Ty, co) into R.
For the sake of simplicity, define

z(t) = x(t) +p(t)x(g(t)). (2.1)
Then we have the following lemma (its proof is similar to that of [9, Lemma 2.3]).

Lemma 2.1. Suppose that x is an eventually positive solution to (1.1) and limy_,o z(t)/RMt) = a for A = 0,1,
where A =1 is only if (1.2) holds.

(i) If ais finite, then
lim X1 _ a
t—oo RA(t) 14 pont

(ii) If a is infinite, then x/R™ is unbounded, or

lim su x(t) =00
ol RA(t)

The following theorem is presented for a classification scheme of eventually positive solutions to (1.1).
Theorem 2.2. If x is an eventually positive solution to (1.1), then there exist four cases for x:
(al) limg_ oo x(t) =0;
(@2) lim¢_, x(t) = b for some positive constant b;
(@3) lim¢_,o x(t) = 0o and lim¢_,« x(t)/R(t) = b, where b is a positive constant;
(ad) x is infinite and lim¢_, x(t)/R(t) = 0.

Proof. Assume that x is an eventually positive solution to (1.1). According to (C2) and (C3), there exist a
ty € [tg, 00)1 and [po| < p1 < 1 satisfying x(t) > 0, x(g(t)) > 0, x(h(t)) > 0, and [p(t)| < p;1 for t € [t;, 00)T.

For t € [t1, 00)T, we have
A

(0 (2(0z2©) %) = ~f(t,x(h(w) <0,

which means that r(t) (T‘z(t)ZA(t))A is strictly decreasing on [t;,00)T. Then there are two cases to be
considered.

Case 1. Suppose first that 1 (TQZA)A and (rzzA)A are eventually negative. Then

lim 7 (t) (r2(t)z2 (1)) = Ly,

t—o0
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where —co < L, < 0, and there exist a constant ¢ < 0 and a t, € [t1, co) such that rq(t) (Tz(t)zA(t))A <c

for t € [tp, o), which means that
A c
1)z2(1))" <
((z2(10)" < 5

Letting t be replaced by s and integrating (2.2) from t, to t, t € [0(t2), co), we obtain

, te [t2/ OO)T- (22)

(828 (t) — ra(t2)z2 (1) < c J Tﬁz).

Letting t — oo, by virtue of (C1), we have 75(t)z®(t) — —oo, which implies that Z8 is eventually negative
and z is eventually strictly decreasing. Hence, z is either eventually positive or eventually negative. We
claim that

lim z(t) = Ly, (2.3)

t—o0
where 0 < Lj < co. Assume that lim¢_, z(t) < 0. Then, by (2.1), we have py € (—1,0] and so there exists
a t3 € [tp, co)T such that
x(t) < —p(t)x(g(t)) < pix(g(t)), t € [ts, 0c0)T.
From (C3), there exists a positive integer ko such that cy € [t3,00)T for all k > kg. For any k > ko + 1, we
always have

k—ko

x(cx) < pix(glex)) = pix(ex—1) < pix(glck—1)) = pixlex—2) < --- < P} i

x(glcker1)) =Py "x(cky),

which means that limj_,o, x(ck) = 0. Hence, we obtain limj_,, z(cx) = 0, which contradicts

lim z(t) < 0.

t—o00

So (2.3) holds, and by Lemma 2.1 we have lim_, x(t) = 0 or lim_,,, x(t) = b, where b is a positive
constant.

Case 2. Suppose now that 11 (rzzA)A and (rzzA)A are eventually positive. Then

lim m(t) (r2()22(1) " = Ly,

t—o0

where 0 < [, < co. We have the following two cases:

lim 74 (1) (A1) =b>0 or lim 74 (1) (ra(Dz2 (1) =0.
If limg o0 11 () (rz(t)ZA(t))A =b > 0, then there exists a t, € [t;, c0)T such that
A A b
(r(0z2(1)" > = 5 (2.4)

for t € [tp, co)T. Letting t be replaced by s and integrating (2.4) from t; to t, t € [o(t2), co)T, we obtain

t
T (1)z2 (1) >T2(t2)zA(t2)+bJ As .
to Tl(S)

Letting t — oo, by (C1) we have T2(t)z2(t) — oo, which implies that z# is eventually positive and z is
eventually strictly increasing. Hence, z is either eventually positive or eventually negative. Assume that
lim¢_, o z(t) < 0. Then it will cause a similar contradiction to the one as above. So we get

lim z(t) = Ly,

t—o0
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where 0 < Ly < 0.
Tf lim o0 71 () (r2(£)22 (1)) = 0, then

lim Tz(t)ZA(t) =14,

t—o0
where —c0 < 1 < oo, since (rzzA)A is eventually positive. Furthermore, we conclude that 1222 is
eventually strictly increasing, from which it follows that z2 is either eventually positive or eventually
negative. Hence, z is always monotonic eventually, which implies that z is also either eventually positive
or eventually negative. Similarly as before, we know that lim_,, z(t) = Ly > 0.

When [; = oo, we also have 0 < Ly < oo similarly as before. When —oco < L1 < oo, there exist a

constant d > 0 and a t3 € [t;, 00) such that 12(t)z2(t) < d for t € [t3, 00), which yields

, telts,o00)r. (2.5)

Letting t be replaced by s and integrating (2.5) from t3 to t, t € [0(t3), 0o)T, we obtain

t
A
2(t) — z(t3) < dJ S —d-My,

t3 T2(s)
from which it follows that z is upper bounded by (C1). So we have 0 < Ly < oo.

If 0 < Ly < oo, then we see that the case (al) or (a2) holds in terms of Lemma 2.1. On the other hand,
if Ly = oo, then by Lemma 2.1 we deduce that x is infinite. Moreover, according to L’'Hopital’s rule (see
[7, Theorem 1.120]), we obtain

. A A T Z(t) _
Jim (1) (ra(t)z% (1)) = lim RO~ Lo,
where 0 < [, < oo. It follows from Lemma 2.1 that 0 < lim¢_, o, x(t)/R(t) < co. If lim¢ o x(t)/R(t) = b
for some positive constant b, then lim_, x(t) = co. That is, the case (a3) or (a4) holds.
To sum up, we obtain one of the cases (al)-(a4) holds. The proof is complete. O

3. Main results

In this section, we present the existence criteria for each type of eventually positive solutions to (1.1).
Firstly, assume that

o LV 1
Lo Lo )T AV < oo (3.1)

i.e., (1.2) is not satisfied. Then we have the following theorem.

Theorem 3.1. Assume that (3.1) holds. Then, (1.1) has an eventually positive solution x with lim¢_, ., x(t) = b if
and only if there exists some constant K > 0 such that

oo v S .‘: K
J J J MK AsAy < oo, (3.2)
to Jtg Jto T1(s)12(V)

where b is a positive constant.

Proof. Suppose that x is an eventually positive solution to (1.1) satisfying lim;_, x(t) = b for some
positive constant b. Then lim¢_, z(t) = (14 po)b, and there exists a Ty € [tg, oo)1 satisfying x(t) > 0,
x(g(t)) > 0, and x(h(t)) > b/2 for t € [Ty, co)r. Integrating (1.1) from Ty to s, s € [o(T;), co), we conclude
that

a (W) (M)A M) 3 fiwx(h(w))Au

T1(s) T1(s)

(r2(s)2%(s)) (3.3)
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Integrating (3.3) from Ty to v, v € [0(Ty), 0o)T, we have

22 () =

m(T)z2(Th) n m1(T1) (rz(TﬂZA(Tl))A Jv 1 1 JV r MALLAS. (3.4)

As —
m2(v) m2(v) T, T1(s) () It )1, T1(s)
Integrating (3.4) from T; to t, t € [0(Ty), co), we obtain

t

t v
2(t) = 2(T) = (T2 M) | —— v () (mzAMm)* | | ———asav
)

o (Tl Tz&( N 1, J7, T1(8)T2(V) (3.5)
_Ll Ll Ll Ti(s)ra(v) SuASAY

Letting t — oo, we get

AuAsAv < oo.

b S e

From (C4), it is clear that

r’ J” r Flwb/2) ) Asav < ro JV r WALLASAV =

1, J1, 71 ()2 (v) 1l mis)nv

which implies that (3.2) holds.
On the other hand, if there exists some constant K > 0 such that (3.2) holds, then we need to consider
two cases: (i) 0 < po < 1 and (ii) —1 < pg < 0, respectively.

Case (i). 0 < po < 1. Choose p; such that pp < p1 < (1+4po)/5 < 1. When pg > 0, in view of (C2) and
(3.2), there exists a Ty € [tg, 0o)r satisfying

-1
p)>0, L <plty<pi<l, te oo,
o rv S —
J J J WK Aiasay < ETPUK (3.6)
To JTo TOTl() 2(V) 8
When pg = 0, choose p; such that [p(t)| < p; < 1/13 for t € [Ty, o). By (C3), there exists a Ty € (Tp, 0o)1
such that g(t) > Tp and h(t) > Ty for t € [Tl, )T-
Define K
0O, = {X € BCy[Ty, o) : 2 <x(t) < K} . (3.7)

It is clear that ), is a bounded, convex, and closed subset of BCy[Ty, co). Define two operators U; and
S1: Q1 — BCy[Tp, o) as follows

(Uix)(Ty), t e [To, )T,

(Urx)(t) = { 3Kp1/4 —p(t)x(g(t)), te [Ty, 00)r,

sty = § S, te Mo, T)r,
1 3K/4+ [ 1, [T, flu, x(m(w)))/(r1(s)r2(v)) AuAsAv, t € [Ty, 00)T.

We can prove that U; and S; satisfy the conditions in Kranoselskii’s fixed point theorem (see [19, Lemma
2.2]). However, the proof is lengthy but similar to the one in [19, Theorem 3.1], so we omit it here.

In view of Kranoselskii’s fixed point theorem, there exists an x € Q; such that (U; + S1)x = x. For
t € [Ty, 00), we have

(3.8)

3(1+p1)K B

1 AuAsAv.

x(t) =
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Since

Y s flu,x(h(u))) v f(u, K)
Jt JTl JTl T1(s)r2(v) AuASAVéL JTl JTI T1(s Tz(V)AuASAV

for t € [T1, c0) and
oo LV S
lim J J J MAuASA\/ =0,
t=oo Jy 1y Jr Ti(s)r2(v)

34K o 314pK
tlLl’l;OZ(t) N 4 and th—>nolox(t) ~ 4(1+7po)

we obtain

> 0.

Case (ii). —1 < po < 0. Choose p; satisfying —po < p1 < (1 —4po)/5 < 1. By (C2) and (3.2), there exists a
To € [to, 0o)T such that (3.6) holds and

5p1 —1 <

4
There also exists a Ty € (Tp, oo) such that g(t) > Tp and h(t) > Ty for t € [Ty, o). Introduce BCy[Ty, co)1
and its subset Q; as in (3.7). Define S as in (3.8) and U on Q; as follows

p(t) <O, —p(t) <p1 <1, te [T o00)r.

(Ujx)(Ty), t e [To, i),

(Ugx)(t) = { —3Kp1/4—p(t)x(g(t)), te [Ty, o00)T.

Similarly, as in the proof of [19, Theorem 3.1], we can prove that U; and S; satisfy the conditions in
Kranoselskii’s fixed point theorem. Hence, there exists an x € Q; such that (U] +S;)x = x. For t €
[T1, 00)1, we have

3(1—p1)K

Y flw,x(h(w))
x(t) = —p(t)x(g(t —|—J J J —————AuAsAv.
(0 =P ptonton + ||| ST
Letting t — oo, we obtain
. ~3(1—p1)K . _ 3(1—-p1)K
tlg& z(t) = 1 and th_)n(glox(t) = A1+ po) > 0.
The proof is complete. O

Remark 3.2. 1t is obvious that assumption (3.1) in Theorem 3.1 can be deleted in the sufficiency of the
proof. Hence, we have the following corollary.

Corollary 3.3. If there exists some constant K > 0 such that (3.2) holds, then (1.1) has an eventually positive
solution x with lim¢_, x(t) = b, where b is a positive constant.

Secondly, define

Al B) = {x €s: Jim x(t) =, tliné‘og((?) _ B},

where S is the set of all eventually positive solutions of (1.1). We show a condition which means that (1.2)
holds in Lemma 3.4, and then it follows that Theorems 3.5 and 3.6.

Lemma 3.4. If (1.1) has an eventually positive solution x with lim_, x(t) = oo, then (1.2) holds and x belongs
to A(oo,b) or A(oo,0), where b is a positive constant.

Proof. Suppose that x is an eventually positive solution to (1.1) satisfying lim_,, x(t) = oco. If we assume
that lim¢_,, z(t) < oo, then by Lemma 2.1 we have lim_,, x(t) < oo, which will cause a contradiction.
Hence, we obtain lim_, z(t) = oco.

By (3.5), letting t — oo, it follows that (1.2) holds. Define R(t) as in (C5). By virtue of Theorem 2.2, we
deduce that x belongs to A(co, b) for some positive constant b or A(oo,0). The proof is complete. O



Y.-C. Qiu, A. Zada, S. H. Tang, T. X. Li, J. Nonlinear Sci. Appl., 10 (2017), 43524363 4359

Theorem 3.5. Equation (1.1) has an eventually positive solution in A (oo, b) if and only if there exists some constant
K > 0 such that

JOO f(u, KR(h(u)))Au < oo, (3.9)

to

where b is a positive constant.

Proof. Suppose that x is an eventually positive solution to (1.1) in A(oco,b). Then, in view of Lemma 2.1
and Theorem 2.2, we have

tli_)r{}o z(t) = oo, tli_>n(r)1o T1(t) (1“2(‘()7,A(t))A = t1i_>n(r)1o Z((?) = (1+pon)d.

There exists a Ty € [tg, 0o)1 such that x(t) > 0, x(g(t)) > 0, and x(h(t)) > bR(h(t))/2 for t € [Ty, 00)T.
Integrating (1.1) from T; to s, s € [0(Ty), 00)T, we get

ri(s) (ra(s)z2(s))® — () (ra(T))2A (M) = — JT f(w, x(h(w))Au.
Letting s — oo, we arrive at
J f(u, x(h(u)))Au < oco.
T
From (C4), we obtain
J f <u, bR(h(u))) Au < J flu, x(h(uw)))Au < oo.
T 2 T

That is, (3.9) holds.
On the other hand, assume that there exists some constant K > 0 such that (3.9) holds.

Case (i). 0 < po < 1. Take p; as in the proof of Theorem 3.1. When py > 0, there exists a Ty € [tg, 00)T

such that
R(g(t)) > 5p1 _111,
R(t) 4

5p1 —1
p) >0, Lo <p)<pi<1, pt)

1 t € [Tp, oco)T,

ro flu, KR(h(w)))Au < L PIK,
T 8

When py = 0, choose p; such that |p(t)| < p1 < 1/13 for t € [Ty, 00). There also exists a Ty € (Tp, co)1
such that g(t) > Tp and h(t) > Ty for t € [T, 00)T.
Define

Q) = {x € BCq[To, co)T : gR(t) <x(t) < KR(t)} . (3.10)

Similarly, O, is a bounded, convex, and closed subset of BC1[Ty, co). Define two operators U, and
Sz: Qz — Bcl[T(),OO)T as follows

ety — { KPR /4= PTG (TRI/R(TY), € [T Ti),
T sKpmR(1)/4—p(t)x(g(t)), t € [Ty, 00)7,
3KR(t)/4, t € [To, 1)1,
(Sx)(1) = { BKR(E)/4+ [5 [3 [ flu, x(h(w)/(r(s)ra(v))AuAsAv,  t € [Ty, 00}, (3.11)

The proof that U, and S; satisfy the conditions in Kranoselskii’s fixed point theorem is similar to that
of [19, Theorem 3.1] and so is omitted. Therefore, there exists an x € Q, such that (U, + S;)x = x. For
t € [Ty, 00), we have

3(1+pim)K

1 AuAsAv.

x(t) = J mex(h(um

1, Js  T1(s)M2(v

R(t) — p(t)x(g(t)) +J

T
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Letting t — oo, we obtain

. z(t)  3(1+pm)K . x(t)  3(1+pm)K
lm i = 4 and  lim oy = 40+ pon)

>0,

which means that lim_,, x(t) = oo.

Case (ii). —1 < pg < 0. Introduce BC1[Ty, co)t and its subset Q; as in (3.10). Define S as in (3.11) and U}
on O, as follows

—3KpinR(t)/4 —p(T)x(g(T))R(t)/R(T1), t e [To, Ti)r,

g = { SR A pianig o) te M co)r.

Similarly, U} and S, also satisfy the conditions in Kranoselskii’s fixed point theorem. There exists an
x € Oy such that (U) + Sp)x = x. For t € [Ty, co)t, we have

¢ JV J‘X’ flu, x(h(u)))

1ds  T1(s)T2(V)

3(1—pim)K

1 AuAsAv.

x(t) = R(t) — p(t)x(g(t)) +J

T

Similarly, we obtain

z(t) _ 3(1—pmK x(t) _ 3(1—pm)K

S O and im0 = S apon) Y
It is obvious that lim_, x(t) = co. The proof is complete. O
Theorem 3.6. If (1.1) has an eventually positive solution in A(oo,0Q), then
(o0} o rVv (o)
J f (u, 3> Au < 00, J J J MAUASA\) = o0. (3.12)
to 4 to Jtp Js T1 (S)TZ (V)
If there exists a constant M > 0 such that [p(t)R(t)| < M for t € [tg, oo)T, and
(o0} oo LV o0
J f(u, R(h(u)))Au < oo, J J J wAuAsAv = 00, (3.13)
to to Jtp Js T1 (S)TZ (V)

then (1.1) has an eventually positive solution in A (oo, 0).

Proof. Suppose that x is an eventually positive solution to (1.1) in A(oo,0). Similarly, we have

lim z(t) = oo, lim r1(t) (rZ(t)zA(t))A = lim 2y

t—oo t—o0 t—oo R(t)

=0.

There exist a Ty € [to,00)T and a Ty € (Tp, oo) such that 3/4 < x(t) < R(t) for t € [Ty, 00)T, g(t) = Tp and
h(t) > Tp for t € [Ty, 00)r. Integrating (1.1) from T; to s, s € [0(Ty), 00), it follows that

ri(s) (ra(s)22(s)) " = 11(Ty) (ra(Ty) 22 " fu ))Au.

Letting s — oo, we obtain

(1) (a(T)2 (1) = [ st x(nw) (3.14)
which means that . -
J f <u, 3) Au < J f(u, x(h(u)))Au < co.
T 4 T
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Replacing T; with s in (3.14), we conclude that

A [ flux(h(w))Au
(r2(s)z2(s)) " = e ) (3.15)
Integrating (3.15) from Ty to v, v € [0(Ty), co)T, we get
Ay T2(T)z2(T) T (Y [* flu,x(h(u)))
V=T TR JT] J, e s (316

Integrating (3.16) from T; to t, t € [0(Ty), co), we have

Ty = aqo [ L S flwx(h(w)
o0 —=(T) =t | ave | [ TSRS

AUuAsAv.
T, T2(V)

Letting t — oo, we deduce that

Y flu, x(h(u))) B
Ll Ll J Ti(s)ra(y) CuAsAY =0
Therefore,
o ro JV ro i RMW)) 4 Asay > ro r ro fluxthW)) o AsAv = oo
T dmls  Tils)r(v “n s ms)n(v '

That is, (3.12) holds.
On the other hand, if there exists a constant M > 0 such that [p(t)R(t)| < M for t € [tg, co)T, and (3.13)
holds, then lim_, p(t) = po = 0. Choose a Ty € [tg, co)T and 0 < p; < 1 satisfying
3 1

ro flw, R(h(w)))Au < ~—PL.
T 8

There exists a Ty € (Tp, oo) such that g(t) > Tp and h(t) > Ty for t € [Ty, co)T.
Define

4

Then Q3 is a bounded, convex, and closed subset of BC;[Ty, co)r. Define two operators Uz and
S3: Q3 — BCq[Tp, oo) as follows

Q3 = {XG BC1[Ty, co) : M-i-é <x(t) € R(t)}.

(Usx) (1) = M +3/4—p(T)x(g(T1))R(t)/R(Ty), te€ [To, Ti)T,

3 M +3/4—p(t)x(g(t)), t € [Ty, 00)T,
s | M+3/4, t e [To, )T,
(Ssx)(t) = M+3/4+ 5 [ [ f(u,x(h(w))/(r1(s)r2(v)) AuAsAv,  t € [Ty, 00)T.

The proof that Uz and S3 satisfy the conditions in Kranoselskii’s fixed point theorem is similar to that
of [19, Theorem 3.1] and is also omitted here. Then, there exists an x € Q3 such that (Us + S3)x = x. For
t € [T1, 00), we have

EY (% flu, x(h(w))
J J AuAsAv.

x(t) :2M+3P(t)x(9(t))+J . r1(s)ra(v

2 T
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It is easy to deduce that
z(t)

tlingo z(t) = oo, tlggl(} RO =0.
Since |p(t)x(g(t))| < [p(t)R(t)] < M, by virtue of Lemma 2.1, we obtain
: _ . ox(t)
thﬁ\r{:o x(t) = oo, tlg{)lo @ =0.
The proof is complete. O

4. Examples

The following examples illustrate applications of theoretical results presented in the previous section.

Example 4.1. Let T = |J7_;[4n — 3,4n]. For t € [5,00), consider

. A\ A A
(t <t4 <x(t) — t+2s'tmtx(t—4)> ) ) + XJS) +03(t) = 0. 4.1)

Here, 11(t) = t, 12(t) = t*, p(t) = —(t +sint)/(2t), g(t) =t —4, h(t) = t, and f(t,x) = x/t> + tx>. It is easy
to see that conditions (C1)-(C4) and (3.1) are satisfied. Therefore,

e N e N N

5 Js Js T1(s)m2(v) 5 Js)s s-vi 5 )55 seovd
Vs 1 (Y o(s)+s 1(*1
—AsAv < — AsSA — —A .
[ s L[ S [ B

Using Theorem 3.1 (or Corollary 3.3), we conclude that (4.1) has an eventually positive solution x with
lim¢_,o x(t) = b, where b is a positive constant.

Example 4.2. For any time scale T which satisfies that t/3, Vt e T for any t € [tg, co)T with tp > 1 and
f’:) t MAt < oo for A > 1, consider

A
1 1)\ x4V
(t (tz (05 (3)) ) ) om0 42
Here, 71(t) = 1/t, p(t) = t%, p(t) = 1/(8t), g(t) = t/3, h(t) = V1, and f(t,x) = x/t”/%. All conditions
(C1)-(Cb) are satisfied. In view of (C5), we have

t v S t vl t
R(t):1+J J 2AsAv<1+J J AsAv<1+J Av <1+t <2t

to Jto A% to Jto v to
Hence,
1
Ip(t)R(H)] < v
o0 o0 2 o0
J f (1, R(h(u)) Au < J gAu = ZJ u4Au < oo,
to to u / to
and
00 [V 0O 1/4 4 oo v (oo, —7/4 . 0o (Vv —3/4y .
J J J flw1/4+3/ )AuAsAv :J J J u72sAuAsAv :J J LZ)SASA\)
to Jtp Js rl(S)TZ (V) to Jtp Js v to Jto A%
o Vv 1/4 00 5/4 00
:J J 0(52 )ASA\):J O(v2 )Av:J O(v3HAv = 0.
to Jto v to v to

Therefore, (4.2) has eventually positive solutions x; € A(co,b) for some positive constant b and x, €
A(00,0) due to Theorems 3.5 and 3.6, respectively.



Y.-C. Qiu, A. Zada, S. H. Tang, T. X. Li, J. Nonlinear Sci. Appl., 10 (2017), 43524363 4363

Acknowledgment

This project was supported by the National Natural Science Foundation of P. R. China (Grant Nos.
11671406, 61503171, and 61403061), China Postdoctoral Science Foundation (Grant No. 2015M582091),
Program of Cultivation for Outstanding Young Scholars Sponsored by Guangdong Province (Grant No.
7X03240302), Natural Science Foundation of Shandong Province (Grant No. ZR2016JL021), Program of
Cultivation for Young Scholars Sponsored by Shunde Polytechnic (Grant No. 2015-KJZX080), Doctoral
Scientific Research Foundation of Linyi University (Grant No. LYDX2015BS001), and Applied Mathemat-
ics Enhancement Program of Linyi University.

References

[1] R.P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3-22. 1
[2] R. P. Agarwal, M. Bohner, T.-X. Li, C.-H. Zhang, Hille and Nehari type criteria for third-order delay dynamic equations,
J. Difference Equ. Appl., 19 (2013), 1563-1579.
[3] R. P. Agarwal, M. Bohner, T-X. Li, C.-H. Zhang, A Philos-type theorem for third-order nonlinear retarded dynamic
equations, Appl. Math. Comput., 249 (2014), 527-531.
[4] R. P. Agarwal, M. Bohner, D. O’'Regan, A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl.
Math., 141 (2002), 1-26.
[5] R.P. Agarwal, M. Bohner, S.-H. Tang, T.-X. Li, C.-H. Zhang, Oscillation and asymptotic behavior of third-order nonlinear
retarded dynamic equations, Appl. Math. Comput., 219 (2012), 3600-3609.
[6] M. Bohner, T.-X. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl.
Math. Lett., 37 (2014), 72-76.
[7] M. Bohner, A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhduser Boston, Inc.,
Boston, MA, (2001). 2
[8] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhduser Boston, Inc., Boston, MA, (2003).
[9] X.-H. Deng, Q.-R. Wang, Nonoscillatory solutions to second-order neutral functional dynamic equations on time scales,
Commun. Appl. Anal., 18 (2014), 261-280. 1, 1, 2
[10] J. Gao, Q.-R. Wang, Existence of nonoscillatory solutions to second-order nonlinear neutral dynamic equations on time
scales, Rocky Mountain J. Math., 43 (2013), 1521-1535. 1
[11] S. Hilger, Ein Mafkettenkalkiil mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universitit Wiirzburg,
Wiirzburg, Germany, (1988).
[12] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math., 18 (1990),
18-56.
[13] B. Karpuz, Sufficient conditions for the oscillation and asymptotic behaviour of higher-order dynamic equations of neutral
type, Appl. Math. Comput., 221 (2013), 453—462. 1
[14] B. Karpuz, O. Ocalan, Necessary and sufficient conditions on asymptotic behaviour of solutions of forced neutral delay
dynamic equations, Nonlinear Anal., 71 (2009), 3063-3071.
[15] T-X. Li, Z.-L. Han, S.-R. Sun, D.-W. Yang, Existence of nonoscillatory solutions to second-order neutral delay dynamic
equations on time scales, Adv. Difference Equ., 2009 (2009), 10 pages. 1
[16] T.-X.Li, Z.-L. Han, S.-R. Sun, Y.-G. Zhao, Oscillation results for third order nonlinear delay dynamic equations on time
scales, Bull. Malays. Math. Sci. Soc. (2), 34 (2011), 639-648.
[17] T-X. Li, S. H. Saker, A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales,
Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4185-4188. 1
[18] R. M. Mathsen, Q.-R. Wang, H.-W. Wu, Oscillation for neutral dynamic functional equations on time scales, J. Difference
Equ. Appl., 10 (2004), 651-659. 1
[19] Y.-C. Qiu, Nonoscillatory solutions to third-order neutral dynamic equations on time scales, Adv. Difference Equ., 2014
(2014), 25 pages. 1, 3, 3,3
[20] Y.-C. Qiu, Q.-R. Wang, Existence of nonoscillatory solutions to higher-order nonlinear neutral dynamic equations on time
scales, Bull. Malays. Math. Sci. Soc. (2), 2016 (2016), 18 pages. 1
[21] C.-H. Zhang, R. P. Agarwal, M. Bohner, T.-X. Li, Oscillation of second-order nonlinear neutral dynamic equations with
noncanonical operators, Bull. Malays. Math. Sci. Soc. (2), 38 (2015), 761-778.
[22] Z.-Q. Zhu, Q.-R. Wang, Existence of nonoscillatory solutions to neutral dynamic equations on time scales, . Math. Anal.
Appl., 335 (2007), 751-762. 1



	Introduction
	Auxiliary results
	Main results
	Examples

