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Abstract
We study the existence of nonoscillatory solutions to a class of third-order neutral functional dynamic equations on time

scales. The integral convergence and divergence of the reciprocal of the coefficients in the equations are different. Two examples
are given to demonstrate the results. c©2017 All rights reserved.
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1. Introduction

This paper is concerned with the existence of nonoscillatory solutions to a third-order nonlinear neu-
tral functional dynamic equation(

r1(t)
(
r2(t) (x(t) + p(t)x(g(t)))

∆
)∆)∆

+ f(t, x(h(t))) = 0 (1.1)

on a time scale T satisfying sup T = ∞, where t ∈ [t0,∞)T = [t0,∞) ∩T with t0 ∈ T. Throughout, we
assume that the following conditions are satisfied:

(C1) r1, r2 ∈ Crd([t0,∞)T, (0,∞)) and there exists a constant M0 > 0 such that∫∞
t0

∆t

r1(t)
=∞ and

∫∞
t0

∆t

r2(t)
=M0 <∞;
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(C2) p ∈ Crd([t0,∞)T, R) and limt→∞ p(t) = p0, where |p0| < 1;

(C3) g,h ∈ Crd([t0,∞)T, T), g(t) 6 t, and limt→∞ g(t) = limt→∞ h(t) = ∞; if p0 ∈ (−1, 0], then there
exists a sequence {ck}k>0 such that limk→∞ ck =∞ and g(ck+1) = ck;

(C4) f ∈ C([t0,∞)T ×R, R), f(t, x) is nondecreasing in x, and xf(t, x) > 0 for x 6= 0;

(C5) if ∫∞
t0

∫v
t0

1
r1(s)r2(v)

∆s∆v =∞, (1.2)

then define

R(t) = 1 +

∫t
t0

∫v
t0

1
r1(s)r2(v)

∆s∆v,

which satisfies

lim
t→∞ R(g(t))R(t)

= η ∈ (0, 1].

Definition 1.1. A solution x to (1.1) is said to be eventually positive (or eventually negative) if there exists
a c ∈ T such that x(t) > 0 (or x(t) < 0) for all t > c in T. A solution x is said to be oscillatory if it is
neither eventually positive nor eventually negative; otherwise, it is called nonoscillatory.

The qualitative analysis of dynamic equations on time scales has greatly improved the related results
for differential and difference equations in the last few years; see, e.g., [1–22]. Some results for existence
of oscillatory and nonoscillatory solutions to various classes of neutral functional dynamic equations were
presented in [9, 10, 13–15, 17–22], and some open problems were given in Mathsen et al. [18]. Zhu and
Wang [22] studied the existence of nonoscillatory solutions to a class of first-order dynamic equations.
Gao and Wang [10] considered the same problem of a second-order dynamic equation[

r(t)(x(t) + p(t)x (g(t)))∆
]∆

+ f (t, x (h(t))) = 0 (1.3)

under the condition ∫∞
t0

∆t

r(t)
<∞.

Deng and Wang [9] discussed (1.3) with ∫∞
t0

∆t

r(t)
=∞.

Motivated by [9], Qiu [19] considered (1.1) in the case where∫∞
t0

∆t

r1(t)
=

∫∞
t0

∆t

r2(t)
=∞,

whereas Qiu and Wang [20] investigated (1.1) under the assumptions that∫∞
t0

∆t

r1(t)
<∞ and

∫∞
t0

∆t

r2(t)
<∞.

For the diverse cases of convergence or divergence of the integrals
∫∞
t0

1/r1(t)∆t and
∫∞
t0

1/r2(t)∆t, the
nonoscillatory solutions to (1.1) have different behaviors. In this paper, we shall consider the case under
(C1), which means that the convergence and divergence of the integrals above are different. Finally, two
examples are given to demonstrate the results.
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2. Auxiliary results

For λ = 0, 1, define a Banach space

BCλ[T0,∞)T =

{
x : x ∈ C([T0,∞)T, R) and sup

t∈[T0,∞)T

∣∣∣∣ x(t)R2λ(t)

∣∣∣∣ <∞
}

with the norm

‖x‖λ = sup
t∈[T0,∞)T

∣∣∣∣ x(t)R2λ(t)

∣∣∣∣ ,
where C([T0,∞)T, R) is denoted all continuous functions mapping [T0,∞)T into R.

For the sake of simplicity, define

z(t) = x(t) + p(t)x(g(t)). (2.1)

Then we have the following lemma (its proof is similar to that of [9, Lemma 2.3]).

Lemma 2.1. Suppose that x is an eventually positive solution to (1.1) and limt→∞ z(t)/Rλ(t) = a for λ = 0, 1,
where λ = 1 is only if (1.2) holds.

(i) If a is finite, then

lim
t→∞ x(t)

Rλ(t)
=

a

1 + p0ηλ
.

(ii) If a is infinite, then x/Rλ is unbounded, or

lim sup
t→∞

x(t)

Rλ(t)
=∞.

The following theorem is presented for a classification scheme of eventually positive solutions to (1.1).

Theorem 2.2. If x is an eventually positive solution to (1.1), then there exist four cases for x:

(a1) limt→∞ x(t) = 0;

(a2) limt→∞ x(t) = b for some positive constant b;

(a3) limt→∞ x(t) =∞ and limt→∞ x(t)/R(t) = b, where b is a positive constant;

(a4) x is infinite and limt→∞ x(t)/R(t) = 0.

Proof. Assume that x is an eventually positive solution to (1.1). According to (C2) and (C3), there exist a
t1 ∈ [t0,∞)T and |p0| < p1 < 1 satisfying x(t) > 0, x(g(t)) > 0, x(h(t)) > 0, and |p(t)| 6 p1 for t ∈ [t1,∞)T.
For t ∈ [t1,∞)T, we have (

r1(t)
(
r2(t)z

∆(t)
)∆)∆

= −f(t, x(h(t))) < 0,

which means that r1(t)
(
r2(t)z

∆(t)
)∆ is strictly decreasing on [t1,∞)T. Then there are two cases to be

considered.

Case 1. Suppose first that r1
(
r2z
∆
)∆ and

(
r2z
∆
)∆ are eventually negative. Then

lim
t→∞ r1(t)

(
r2(t)z

∆(t)
)∆

= L2,
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where −∞ 6 L2 < 0, and there exist a constant c < 0 and a t2 ∈ [t1,∞)T such that r1(t)
(
r2(t)z

∆(t)
)∆

6 c
for t ∈ [t2,∞)T, which means that(

r2(t)z
∆(t)

)∆
6

c

r1(t)
, t ∈ [t2,∞)T. (2.2)

Letting t be replaced by s and integrating (2.2) from t2 to t, t ∈ [σ(t2),∞)T, we obtain

r2(t)z
∆(t) − r2(t2)z

∆(t2) 6 c
∫t
t2

∆s

r1(s)
.

Letting t→∞, by virtue of (C1), we have r2(t)z
∆(t)→ −∞, which implies that z∆ is eventually negative

and z is eventually strictly decreasing. Hence, z is either eventually positive or eventually negative. We
claim that

lim
t→∞ z(t) = L0, (2.3)

where 0 6 L0 <∞. Assume that limt→∞ z(t) < 0. Then, by (2.1), we have p0 ∈ (−1, 0] and so there exists
a t3 ∈ [t2,∞)T such that

x(t) < −p(t)x(g(t)) 6 p1x(g(t)), t ∈ [t3,∞)T.

From (C3), there exists a positive integer k0 such that ck ∈ [t3,∞)T for all k > k0. For any k > k0 + 1, we
always have

x(ck) < p1x(g(ck)) = p1x(ck−1) < p
2
1x(g(ck−1)) = p

2
1x(ck−2) < · · · < pk−k0

1 x(g(ck0+1)) = p
k−k0
1 x(ck0),

which means that limk→∞ x(ck) = 0. Hence, we obtain limk→∞ z(ck) = 0, which contradicts

lim
t→∞ z(t) < 0.

So (2.3) holds, and by Lemma 2.1 we have limt→∞ x(t) = 0 or limt→∞ x(t) = b, where b is a positive
constant.

Case 2. Suppose now that r1
(
r2z
∆
)∆ and

(
r2z
∆
)∆ are eventually positive. Then

lim
t→∞ r1(t)

(
r2(t)z

∆(t)
)∆

= L2,

where 0 6 L2 <∞. We have the following two cases:

lim
t→∞ r1(t)

(
r2(t)z

∆(t)
)∆

= b > 0 or lim
t→∞ r1(t)

(
r2(t)z

∆(t)
)∆

= 0.

If limt→∞ r1(t)
(
r2(t)z

∆(t)
)∆

= b > 0, then there exists a t2 ∈ [t1,∞)T such that

(
r2(t)z

∆(t)
)∆
>

b

r1(t)
(2.4)

for t ∈ [t2,∞)T. Letting t be replaced by s and integrating (2.4) from t2 to t, t ∈ [σ(t2),∞)T, we obtain

r2(t)z
∆(t) > r2(t2)z

∆(t2) + b

∫t
t2

∆s

r1(s)
.

Letting t → ∞, by (C1) we have r2(t)z
∆(t) → ∞, which implies that z∆ is eventually positive and z is

eventually strictly increasing. Hence, z is either eventually positive or eventually negative. Assume that
limt→∞ z(t) < 0. Then it will cause a similar contradiction to the one as above. So we get

lim
t→∞ z(t) = L0,
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where 0 6 L0 6∞.
If limt→∞ r1(t)

(
r2(t)z

∆(t)
)∆

= 0, then

lim
t→∞ r2(t)z

∆(t) = L1,

where −∞ < L1 6 ∞, since
(
r2z
∆
)∆ is eventually positive. Furthermore, we conclude that r2z

∆ is
eventually strictly increasing, from which it follows that z∆ is either eventually positive or eventually
negative. Hence, z is always monotonic eventually, which implies that z is also either eventually positive
or eventually negative. Similarly as before, we know that limt→∞ z(t) = L0 > 0.

When L1 = ∞, we also have 0 6 L0 6 ∞ similarly as before. When −∞ < L1 < ∞, there exist a
constant d > 0 and a t3 ∈ [t1,∞)T such that r2(t)z

∆(t) 6 d for t ∈ [t3,∞)T, which yields

z∆(t) 6
d

r2(t)
, t ∈ [t3,∞)T. (2.5)

Letting t be replaced by s and integrating (2.5) from t3 to t, t ∈ [σ(t3),∞)T, we obtain

z(t) − z(t3) 6 d
∫t
t3

∆s

r2(s)
< d ·M0,

from which it follows that z is upper bounded by (C1). So we have 0 6 L0 <∞.
If 0 6 L0 <∞, then we see that the case (a1) or (a2) holds in terms of Lemma 2.1. On the other hand,

if L0 = ∞, then by Lemma 2.1 we deduce that x is infinite. Moreover, according to L’Hôpital’s rule (see
[7, Theorem 1.120]), we obtain

lim
t→∞ r1(t)

(
r2(t)z

∆(t)
)∆

= lim
t→∞ z(t)R(t)

= L2,

where 0 6 L2 < ∞. It follows from Lemma 2.1 that 0 6 limt→∞ x(t)/R(t) < ∞. If limt→∞ x(t)/R(t) = b

for some positive constant b, then limt→∞ x(t) =∞. That is, the case (a3) or (a4) holds.
To sum up, we obtain one of the cases (a1)-(a4) holds. The proof is complete.

3. Main results

In this section, we present the existence criteria for each type of eventually positive solutions to (1.1).
Firstly, assume that ∫∞

t0

∫v
t0

1
r1(s)r2(v)

∆s∆v <∞, (3.1)

i.e., (1.2) is not satisfied. Then we have the following theorem.

Theorem 3.1. Assume that (3.1) holds. Then, (1.1) has an eventually positive solution x with limt→∞ x(t) = b if
and only if there exists some constant K > 0 such that∫∞

t0

∫v
t0

∫s
t0

f(u,K)
r1(s)r2(v)

∆u∆s∆v <∞, (3.2)

where b is a positive constant.

Proof. Suppose that x is an eventually positive solution to (1.1) satisfying limt→∞ x(t) = b for some
positive constant b. Then limt→∞ z(t) = (1 + p0)b, and there exists a T1 ∈ [t0,∞)T satisfying x(t) > 0,
x(g(t)) > 0, and x(h(t)) > b/2 for t ∈ [T1,∞)T. Integrating (1.1) from T1 to s, s ∈ [σ(T1),∞)T, we conclude
that (

r2(s)z
∆(s)

)∆
=
r1(T1)

(
r2(T1)z

∆(T1)
)∆

r1(s)
−

∫s
T1
f(u, x(h(u)))∆u

r1(s)
. (3.3)
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Integrating (3.3) from T1 to v, v ∈ [σ(T1),∞)T, we have

z∆(v) =
r2(T1)z

∆(T1)

r2(v)
+
r1(T1)

(
r2(T1)z

∆(T1)
)∆

r2(v)

∫v
T1

1
r1(s)

∆s−
1

r2(v)

∫v
T1

∫s
T1

f(u, x(h(u)))
r1(s)

∆u∆s. (3.4)

Integrating (3.4) from T1 to t, t ∈ [σ(T1),∞)T, we obtain

z(t) − z(T1) = r2(T1)z
∆(T1)

∫t
T1

1
r2(v)

∆v+ r1(T1)
(
r2(T1)z

∆(T1)
)∆ ∫t

T1

∫v
T1

1
r1(s)r2(v)

∆s∆v

−

∫t
T1

∫v
T1

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.
(3.5)

Letting t→∞, we get ∫∞
T1

∫v
T1

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v <∞.

From (C4), it is clear that∫∞
T1

∫v
T1

∫s
T1

f (u,b/2)
r1(s)r2(v)

∆u∆s∆v 6
∫∞
T1

∫v
T1

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v <∞,

which implies that (3.2) holds.
On the other hand, if there exists some constant K > 0 such that (3.2) holds, then we need to consider

two cases: (i) 0 6 p0 < 1 and (ii) −1 < p0 < 0, respectively.

Case (i). 0 6 p0 < 1. Choose p1 such that p0 < p1 < (1 + 4p0)/5 < 1. When p0 > 0, in view of (C2) and
(3.2), there exists a T0 ∈ [t0,∞)T satisfying

p(t) > 0,
5p1 − 1

4
6 p(t) 6 p1 < 1, t ∈ [T0,∞)T,∫∞

T0

∫v
T0

∫s
T0

f(u,K)
r1(s)r2(v)

∆u∆s∆v 6
(1 − p1)K

8
. (3.6)

When p0 = 0, choose p1 such that |p(t)| 6 p1 6 1/13 for t ∈ [T0,∞)T. By (C3), there exists a T1 ∈ (T0,∞)T

such that g(t) > T0 and h(t) > T0 for t ∈ [T1,∞)T.
Define

Ω1 =

{
x ∈ BC0[T0,∞)T :

K

2
6 x(t) 6 K

}
. (3.7)

It is clear that Ω1 is a bounded, convex, and closed subset of BC0[T0,∞)T. Define two operators U1 and
S1: Ω1 → BC0[T0,∞)T as follows

(U1x)(t) =

{
(U1x)(T1), t ∈ [T0, T1)T,
3Kp1/4 − p(t)x(g(t)), t ∈ [T1,∞)T,

(S1x)(t) =

{
(S1x)(T1), t ∈ [T0, T1)T,
3K/4 +

∫∞
t

∫v
T1

∫s
T1
f(u, x(h(u)))/(r1(s)r2(v))∆u∆s∆v, t ∈ [T1,∞)T. (3.8)

We can prove that U1 and S1 satisfy the conditions in Kranoselskii’s fixed point theorem (see [19, Lemma
2.2]). However, the proof is lengthy but similar to the one in [19, Theorem 3.1], so we omit it here.

In view of Kranoselskii’s fixed point theorem, there exists an x ∈ Ω1 such that (U1 + S1)x = x. For
t ∈ [T1,∞)T, we have

x(t) =
3(1 + p1)K

4
− p(t)x(g(t)) +

∫∞
t

∫v
T1

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.
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Since ∫∞
t

∫v
T1

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v 6
∫∞
t

∫v
T1

∫s
T1

f(u,K)
r1(s)r2(v)

∆u∆s∆v

for t ∈ [T1,∞)T and

lim
t→∞

∫∞
t

∫v
T1

∫s
T1

f(u,K)
r1(s)r2(v)

∆u∆s∆v = 0,

we obtain

lim
t→∞ z(t) = 3(1 + p1)K

4
and lim

t→∞ x(t) = 3(1 + p1)K

4(1 + p0)
> 0.

Case (ii). −1 < p0 < 0. Choose p1 satisfying −p0 < p1 < (1 − 4p0)/5 < 1. By (C2) and (3.2), there exists a
T0 ∈ [t0,∞)T such that (3.6) holds and

p(t) < 0,
5p1 − 1

4
6 −p(t) 6 p1 < 1, t ∈ [T0,∞)T.

There also exists a T1 ∈ (T0,∞)T such that g(t) > T0 and h(t) > T0 for t ∈ [T1,∞)T. Introduce BC0[T0,∞)T

and its subset Ω1 as in (3.7). Define S1 as in (3.8) and U ′1 on Ω1 as follows

(U ′1x)(t) =

{
(U ′1x)(T1), t ∈ [T0, T1)T,
−3Kp1/4 − p(t)x(g(t)), t ∈ [T1,∞)T.

Similarly, as in the proof of [19, Theorem 3.1], we can prove that U ′1 and S1 satisfy the conditions in
Kranoselskii’s fixed point theorem. Hence, there exists an x ∈ Ω1 such that (U ′1 + S1)x = x. For t ∈
[T1,∞)T, we have

x(t) =
3(1 − p1)K

4
− p(t)x(g(t)) +

∫∞
t

∫v
T1

∫s
T1

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.

Letting t→∞, we obtain

lim
t→∞ z(t) = 3(1 − p1)K

4
and lim

t→∞ x(t) = 3(1 − p1)K

4(1 + p0)
> 0.

The proof is complete.

Remark 3.2. It is obvious that assumption (3.1) in Theorem 3.1 can be deleted in the sufficiency of the
proof. Hence, we have the following corollary.

Corollary 3.3. If there exists some constant K > 0 such that (3.2) holds, then (1.1) has an eventually positive
solution x with limt→∞ x(t) = b, where b is a positive constant.

Secondly, define

A(α,β) =
{
x ∈ S : lim

t→∞ x(t) = α, lim
t→∞ x(t)R(t)

= β

}
,

where S is the set of all eventually positive solutions of (1.1). We show a condition which means that (1.2)
holds in Lemma 3.4, and then it follows that Theorems 3.5 and 3.6.

Lemma 3.4. If (1.1) has an eventually positive solution x with limt→∞ x(t) =∞, then (1.2) holds and x belongs
to A(∞,b) or A(∞, 0), where b is a positive constant.

Proof. Suppose that x is an eventually positive solution to (1.1) satisfying limt→∞ x(t) =∞. If we assume
that limt→∞ z(t) < ∞, then by Lemma 2.1 we have limt→∞ x(t) < ∞, which will cause a contradiction.
Hence, we obtain limt→∞ z(t) =∞.

By (3.5), letting t→∞, it follows that (1.2) holds. Define R(t) as in (C5). By virtue of Theorem 2.2, we
deduce that x belongs to A(∞,b) for some positive constant b or A(∞, 0). The proof is complete.
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Theorem 3.5. Equation (1.1) has an eventually positive solution inA(∞,b) if and only if there exists some constant
K > 0 such that ∫∞

t0

f(u,KR(h(u)))∆u <∞, (3.9)

where b is a positive constant.

Proof. Suppose that x is an eventually positive solution to (1.1) in A(∞,b). Then, in view of Lemma 2.1
and Theorem 2.2, we have

lim
t→∞ z(t) =∞, lim

t→∞ r1(t)
(
r2(t)z

∆(t)
)∆

= lim
t→∞ z(t)R(t)

= (1 + p0η)b.

There exists a T1 ∈ [t0,∞)T such that x(t) > 0, x(g(t)) > 0, and x(h(t)) > bR(h(t))/2 for t ∈ [T1,∞)T.
Integrating (1.1) from T1 to s, s ∈ [σ(T1),∞)T, we get

r1(s)
(
r2(s)z

∆(s)
)∆

− r1(T1)
(
r2(T1)z

∆(T1)
)∆

= −

∫s
T1

f(u, x(h(u)))∆u.

Letting s→∞, we arrive at ∫∞
T1

f(u, x(h(u)))∆u <∞.

From (C4), we obtain ∫∞
T1

f

(
u,
b

2
R(h(u))

)
∆u 6

∫∞
T1

f(u, x(h(u)))∆u <∞.

That is, (3.9) holds.
On the other hand, assume that there exists some constant K > 0 such that (3.9) holds.

Case (i). 0 6 p0 < 1. Take p1 as in the proof of Theorem 3.1. When p0 > 0, there exists a T0 ∈ [t0,∞)T

such that

p(t) > 0,
5p1 − 1

4
6 p(t) 6 p1 < 1, p(t)

R(g(t))

R(t)
>

5p1 − 1
4

η, t ∈ [T0,∞)T,∫∞
T0

f(u,KR(h(u)))∆u 6
(1 − p1η)K

8
.

When p0 = 0, choose p1 such that |p(t)| 6 p1 6 1/13 for t ∈ [T0,∞)T. There also exists a T1 ∈ (T0,∞)T

such that g(t) > T0 and h(t) > T0 for t ∈ [T1,∞)T.
Define

Ω2 =

{
x ∈ BC1[T0,∞)T :

K

2
R(t) 6 x(t) 6 KR(t)

}
. (3.10)

Similarly, Ω2 is a bounded, convex, and closed subset of BC1[T0,∞)T. Define two operators U2 and
S2: Ω2 → BC1[T0,∞)T as follows

(U2x)(t) =

{
3Kp1ηR(t)/4 − p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,
3Kp1ηR(t)/4 − p(t)x(g(t)), t ∈ [T1,∞)T,

(S2x)(t) =

{
3KR(t)/4, t ∈ [T0, T1)T,
3KR(t)/4 +

∫t
T1

∫v
T1

∫∞
s f(u, x(h(u)))/(r1(s)r2(v))∆u∆s∆v, t ∈ [T1,∞)T.

(3.11)

The proof that U2 and S2 satisfy the conditions in Kranoselskii’s fixed point theorem is similar to that
of [19, Theorem 3.1] and so is omitted. Therefore, there exists an x ∈ Ω2 such that (U2 + S2)x = x. For
t ∈ [T1,∞)T, we have

x(t) =
3(1 + p1η)K

4
R(t) − p(t)x(g(t)) +

∫t
T1

∫v
T1

∫∞
s

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.
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Letting t→∞, we obtain

lim
t→∞ z(t)R(t)

=
3(1 + p1η)K

4
and lim

t→∞ x(t)R(t)
=

3(1 + p1η)K

4(1 + p0η)
> 0,

which means that limt→∞ x(t) =∞.

Case (ii). −1 < p0 < 0. Introduce BC1[T0,∞)T and its subset Ω2 as in (3.10). Define S2 as in (3.11) and U ′2
on Ω2 as follows

(U ′2x)(t) =

{
−3Kp1ηR(t)/4 − p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,
−3Kp1ηR(t)/4 − p(t)x(g(t)), t ∈ [T1,∞)T.

Similarly, U ′2 and S2 also satisfy the conditions in Kranoselskii’s fixed point theorem. There exists an
x ∈ Ω2 such that (U ′2 + S2)x = x. For t ∈ [T1,∞)T, we have

x(t) =
3(1 − p1η)K

4
R(t) − p(t)x(g(t)) +

∫t
T1

∫v
T1

∫∞
s

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.

Similarly, we obtain

lim
t→∞ z(t)R(t)

=
3(1 − p1η)K

4
and lim

t→∞ x(t)R(t)
=

3(1 − p1η)K

4(1 + p0η)
> 0.

It is obvious that limt→∞ x(t) =∞. The proof is complete.

Theorem 3.6. If (1.1) has an eventually positive solution in A(∞, 0), then∫∞
t0

f

(
u,

3
4

)
∆u <∞,

∫∞
t0

∫v
t0

∫∞
s

f(u,R(h(u)))
r1(s)r2(v)

∆u∆s∆v =∞. (3.12)

If there exists a constant M > 0 such that |p(t)R(t)| 6M for t ∈ [t0,∞)T, and∫∞
t0

f(u,R(h(u)))∆u <∞,
∫∞
t0

∫v
t0

∫∞
s

f (u,M+ 3/4)
r1(s)r2(v)

∆u∆s∆v =∞, (3.13)

then (1.1) has an eventually positive solution in A(∞, 0).

Proof. Suppose that x is an eventually positive solution to (1.1) in A(∞, 0). Similarly, we have

lim
t→∞ z(t) =∞, lim

t→∞ r1(t)
(
r2(t)z

∆(t)
)∆

= lim
t→∞ z(t)R(t)

= 0.

There exist a T0 ∈ [t0,∞)T and a T1 ∈ (T0,∞)T such that 3/4 6 x(t) 6 R(t) for t ∈ [T0,∞)T, g(t) > T0 and
h(t) > T0 for t ∈ [T1,∞)T. Integrating (1.1) from T1 to s, s ∈ [σ(T1),∞)T, it follows that

r1(s)
(
r2(s)z

∆(s)
)∆

− r1(T1)
(
r2(T1)z

∆(T1)
)∆

= −

∫s
T1

f(u, x(h(u)))∆u.

Letting s→∞, we obtain

r1(T1)
(
r2(T1)z

∆(T1)
)∆

=

∫∞
T1

f(u, x(h(u)))∆u, (3.14)

which means that ∫∞
T1

f

(
u,

3
4

)
∆u 6

∫∞
T1

f(u, x(h(u)))∆u <∞.
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Replacing T1 with s in (3.14), we conclude that

(
r2(s)z

∆(s)
)∆

=

∫∞
s f(u, x(h(u)))∆u

r1(s)
. (3.15)

Integrating (3.15) from T1 to v, v ∈ [σ(T1),∞)T, we get

z∆(v) =
r2(T1)z

∆(T1)

r2(v)
+

1
r2(v)

∫v
T1

∫∞
s

f(u, x(h(u)))
r1(s)

∆u∆s. (3.16)

Integrating (3.16) from T1 to t, t ∈ [σ(T1),∞)T, we have

z(t) − z(T1) = r2(T1)z
∆(T1)

∫t
T1

1
r2(v)

∆v+

∫t
T1

∫v
T1

∫∞
s

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.

Letting t→∞, we deduce that ∫∞
T1

∫v
T1

∫∞
s

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v =∞.

Therefore, ∫∞
T1

∫v
T1

∫∞
s

f(u,R(h(u)))
r1(s)r2(v)

∆u∆s∆v >
∫∞
T1

∫v
T1

∫∞
s

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v =∞.

That is, (3.12) holds.
On the other hand, if there exists a constant M > 0 such that |p(t)R(t)| 6M for t ∈ [t0,∞)T, and (3.13)

holds, then limt→∞ p(t) = p0 = 0. Choose a T0 ∈ [t0,∞)T and 0 < p1 < 1 satisfying

|p(t)| 6 p1 < 1, 2M+
3
2
6

1
4
R(t), t ∈ [T0,∞)T,∫∞

T0

f(u,R(h(u)))∆u 6
1 − p1

8
.

There exists a T1 ∈ (T0,∞)T such that g(t) > T0 and h(t) > T0 for t ∈ [T1,∞)T.
Define

Ω3 =

{
x ∈ BC1[T0,∞)T :M+

3
4
6 x(t) 6 R(t)

}
.

Then Ω3 is a bounded, convex, and closed subset of BC1[T0,∞)T. Define two operators U3 and
S3: Ω3 → BC1[T0,∞)T as follows

(U3x)(t) =

{
M+ 3/4 − p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,
M+ 3/4 − p(t)x(g(t)), t ∈ [T1,∞)T,

(S3x)(t) =

{
M+ 3/4, t ∈ [T0, T1)T,
M+ 3/4 +

∫t
T1

∫v
T1

∫∞
s f(u, x(h(u)))/(r1(s)r2(v))∆u∆s∆v, t ∈ [T1,∞)T.

The proof that U3 and S3 satisfy the conditions in Kranoselskii’s fixed point theorem is similar to that
of [19, Theorem 3.1] and is also omitted here. Then, there exists an x ∈ Ω3 such that (U3 + S3)x = x. For
t ∈ [T1,∞)T, we have

x(t) = 2M+
3
2
− p(t)x(g(t)) +

∫t
T1

∫v
T1

∫∞
s

f(u, x(h(u)))
r1(s)r2(v)

∆u∆s∆v.
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It is easy to deduce that

lim
t→∞ z(t) =∞, lim

t→∞ z(t)R(t)
= 0.

Since |p(t)x(g(t))| 6 |p(t)R(t)| 6M, by virtue of Lemma 2.1, we obtain

lim
t→∞ x(t) =∞, lim

t→∞ x(t)R(t)
= 0.

The proof is complete.

4. Examples

The following examples illustrate applications of theoretical results presented in the previous section.

Example 4.1. Let T =
⋃∞
n=1[4n− 3, 4n]. For t ∈ [5,∞)T, considert(t4

(
x(t) −

t+ sin t
2t

x(t− 4)
)∆)∆∆ +

x(t)

t2 + tx3(t) = 0. (4.1)

Here, r1(t) = t, r2(t) = t
4, p(t) = −(t+ sin t)/(2t), g(t) = t− 4, h(t) = t, and f(t, x) = x/t2 + tx3. It is easy

to see that conditions (C1)-(C4) and (3.1) are satisfied. Therefore,∫∞
5

∫v
5

∫s
5

f(u, 1)
r1(s)r2(v)

∆u∆s∆v =

∫∞
5

∫v
5

∫s
5

1/u2 + u

s · v4 ∆u∆s∆v <

∫∞
5

∫v
5

∫s
5

σ(u) + u

s · v4 ∆u∆s∆v

<

∫∞
5

∫v
5

s

v4∆s∆v 6
1
2

∫∞
5

∫v
5

σ(s) + s

v4 ∆s∆v <
1
2

∫∞
5

1
v2∆v <∞.

Using Theorem 3.1 (or Corollary 3.3), we conclude that (4.1) has an eventually positive solution x with
limt→∞ x(t) = b, where b is a positive constant.

Example 4.2. For any time scale T which satisfies that t/3,
√
t ∈ T for any t ∈ [t0,∞)T with t0 > 1 and∫∞

t0
t−λ∆t <∞ for λ > 1, consider1

t

(
t2
(
x(t) +

1
8t
x

(
t

3

))∆)∆∆ +
x(
√
t)

t7/4 = 0. (4.2)

Here, r1(t) = 1/t, r2(t) = t2, p(t) = 1/(8t), g(t) = t/3, h(t) =
√
t, and f(t, x) = x/t7/4. All conditions

(C1)-(C5) are satisfied. In view of (C5), we have

R(t) = 1 +

∫t
t0

∫v
t0

s

v2∆s∆v < 1 +

∫t
t0

∫v
t0

1
v
∆s∆v < 1 +

∫t
t0

∆v < 1 + t 6 2t.

Hence,

|p(t)R(t)| 6
1
4

,∫∞
t0

f (u,R(h(u)))∆u <
∫∞
t0

2
√
u

u7/4∆u = 2
∫∞
t0

u−5/4∆u <∞,

and ∫∞
t0

∫v
t0

∫∞
s

f (u, 1/4 + 3/4)
r1(s)r2(v)

∆u∆s∆v =

∫∞
t0

∫v
t0

∫∞
s

u−7/4 · s
v2 ∆u∆s∆v =

∫∞
t0

∫v
t0

O(s−3/4) · s
v2 ∆s∆v

=

∫∞
t0

∫v
t0

O(s1/4)

v2 ∆s∆v =

∫∞
t0

O(v5/4)

v2 ∆v =

∫∞
t0

O(v−3/4)∆v =∞.

Therefore, (4.2) has eventually positive solutions x1 ∈ A(∞,b) for some positive constant b and x2 ∈
A(∞, 0) due to Theorems 3.5 and 3.6, respectively.
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