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Abstract

In this paper, iterative algorithm for strong vector equilibrium problem (SVEP) is studied. Firstly, an auxiliary problem
for SVEP is introduced and the relationships between the auxiliary problem and SVEP are discussed. Then, based on the
auxiliary problem, a general iterative algorithm for SVEP is proposed. Moreover, analysis of convergence of this general iterative
algorithm is investigated under suitable conditions of cone-continuity and cone-convexity. The main results obtained in this
paper extend and develop the corresponding ones of [A. N. Iusem, W. Sosa, Optimization, 52 (2003), 301–316], [S.-H. Wang,
Q.-Y. Li, Optimization, 64 (2015), 2049–2063], and [B. Cheng, S.-Y. Liu, J. Lanzhou Univ. Nat. Sci., 45 (2009), 105–109]. c©2017 All
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1. Introduction

Let E be a real Hausdorff topological vector space, and X be a nonempty subset of E. Let g : X×X→ R

be a real-valued bifunction. The scalar equilibrium problem (for short, EP) is to find x̄ ∈ X such that

g(x̄,y) > 0, ∀y ∈ X. (EP)

It provides a unifying framework for many important problems, such as, optimization problems, vari-
ational inequality problems, complementary problems, minimax inequality problems and fixed point
problems, and has been widely applied to study the problems arising in economics, mechanics and engi-
neering science (see [1]).

In recent years, EP has been extended to vector case in different ways.
Let Z be another real Hausdorff topological vector space, and C be a convex cone of Z. Let f : X×X→

Z be a vector-valued bifunction. The strong vector equilibrium problem (for short, SVEP) is to find x̄ ∈ X
such that

f(x̄,y) ∈ C, ∀y ∈ X, (SVEP)
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and the weak vector equilibrium problem (for short, WVEP) is to find x̄ ∈ X such that

f(x̄,y) 6∈ −int(C), ∀y ∈ X, (WVEP)

where int(C) denotes the topological interior of C and int(C) 6= ∅.
Obviously, if the cone C is proper (i.e., C 6= Z), then the solution set of SVEP is contained in the

solution set of WVEP.
Existence of solutions is a fundamental problem for vector equilibrium problems. In the past years, it

has been intensively studied by many authors, and a great quantity of existence results of solutions have
been obtained in the literatures. Usually, monotonicity or coerciveness condition on f and compactness
condition on X are necessary. For details, we refer the reader to the monographs [2, 4, 8] and the references
therein.

How to find a solution, i.e., algorithm method, is another important problem for vector equilibrium
problems. Just in the recent past years, methods for finding a solution of vector equilibrium problems have
been explored by some authors. In 2009, by using a scalarization method, Cheng and Liu [3] suggested
a projection iterative algorithm for finding solutions of a weak vector equilibrium problem by solving
a corresponding convex feasibility problem in an n-dimensional Euclidean space. In 2012, by applying
a regularization technique, Li and Wang [15] proposed a viscosity approximation method, which is a
develop of the one of Takahashi and Takahashi [18], for finding a common element of the set of fixed
points of a nonexpansive mapping and of the set of solutions of a strong vector equilibrium problem in a
Hilbert sapce. Shortly afterwards, Shan and Huang [17] extended this viscosity approximation method for
finding a common element of the set of fixed points of an infinite family nonexpansive mappings, of the set
of solutions of a generalized mixed vector equilibrium problem and of the set of solutions of a variational
inequality problem. In 2015, by applying the Gerstewitz nonlinear scalarization function, Wang and Li
[20] presented a projection iterative algorithm for finding solutions of a strong vector equilibrium problem
by solving a corresponding scalar optimization problem.

Summarizing these methods, we can find that scalarization and regularization are the only two ideas
on which algorithms are proposed for solving vector equilibrium problems. The main idea of scalarization
method is to transform vector equilibrium problems to all kinds of scalar problems by using Gerstewitz
nonlinear scalarization function. It is well-known that the Gerstewitz nonlinear scalarization function is
defined through interior elements of a cone C. This means that, in this scalarization method, the cone C
must have a nonempty interior. However, in many cases, the ordering cone has an empty interior. For
example, in the classical Banach spaces `p and Lp(Ω), where 1 < p <∞, the standard ordering cone has
an empty interior (see [13]). The main idea of regularization method is to transform vector equilibrium
problems to fixed points of a uniformly nonexpansive mapping by adding an appropriate disturbing
term to the original vector equilibrium problem. The key of this method is the construction of a proper
disturbing term, which is indeed a technical job.

Inspired and motivated by the works mentioned above, in this paper, we shall study algorithms for
SVEP. For this purpose, we firstly introduce an auxiliary problem for SVEP and discuss the relationships
between the auxiliary problem and SVEP. Then, based on the auxiliary problem, we propose a general
iterative algorithm for SVEP, which does not require that the cone C must have a nonempty interior and
does not need one to construct any disturbing term. We further analyze the convergence of this algorithm
method under some suitable conditions of cone-continuity and cone-convexity. The main results obtained
in this paper extend and develop the corresponding ones of Iusem and Sosa [12], Wang and Li [20], and
Cheng and Liu [3].

2. Preliminaries

In this section, we shall give some definitions and lemmas used in the sequel.
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let K be a nonempty closed

and convex subset of H. For any x ∈ H, there exists a unique nearest point in K, denoted by PK(x), such
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that
‖x− PK(x)‖ 6 ‖x− y‖, ∀y ∈ K.

Such a PK is called the metric projection of H onto K. It is known that y = PK(x) is equivalent to

〈y− z,y− x〉 6 0, ∀ z ∈ K.

Definition 2.1 ([16]). Let E,Z be two real Hausdorff topological vector spaces, X ⊆ E a nonempty subset,
C ⊆ Z a closed convex cone. A mapping g : X→ Z is called

(i) C-lower semicontinuous (for short, C-l.s.c.) (resp. C-upper semicontinuous (for short, C-u.s.c.)) at
x0 ∈ X if, for any neighborhood V of 0 in Z, there exists a neighborhood U of x0 in E such that

g(x) ∈ g(x0) + V +C, ∀x ∈ U∩X (resp. g(x) ∈ g(x0) + V −C, ∀x ∈ U∩X);

(ii) C-l.s.c. (resp. C-u.s.c.) on X if it is C-l.s.c. (resp. C-u.s.c.) at every point x ∈ X;

(iii) C-continuous on X if it is both C-u.s.c. and C-l.s.c. on X.

Remark 2.2. If g : X→ Z is continuous on X, then it is C-continuous on X; conversely, if g is C-continuous
on X, then it is continuous only when the cone C has a closed convex bounded base (see [16, Theorem
5.3, pp. 22-23]).

Definition 2.3 ([16]). A mapping g : X → Z is called lower semicontinuous (for short, l.s.c.) (resp. upper
semicontinuous (for short, u.s.c.)) on X if, for any z ∈ Z, the set

L(z) = {x ∈ X : g(x) ∈ z−C} (resp. L(z) = {x ∈ X : g(x) ∈ z+C})

is closed in X.

Lemma 2.4 ([9]). If g is C-l.s.c. (resp. C-u.s.c.) on X, then it is l.s.c. (resp. u.s.c.) on X.

Definition 2.5 ([6, 16]). Let E,Z be two real Hausdorff topological vector spaces, X ⊆ E a nonempty
convex subset, and C ⊆ Z a convex cone. A mapping h : X→ Z is said to be

(i) C-convex if, for any u1,u2 ∈ X and for any t ∈ [0, 1], one has

h(tu1 + (1 − t)u2) ∈ th(u1) + (1 − t)h(u2) −C;

(ii) C-quasiconvex if, for any z ∈ Z, the set {u ∈ X : h(u) ∈ z−C} is convex;

(iii) properly C-quasiconvex if, for any u1,u2 ∈ X and for any t ∈ [0, 1], one has

either h(tu1 + (1 − t)u2) ∈ h(u1) −C; or h(tu1 + (1 − t)u2) ∈ h(u2) −C;

(iv) properly C-quasiconcave if −h is properly C-quasiconvex.

Remark 2.6. (1) It is obvious that if h is C-convex or properly C-quasiconvex, then h is C-quasiconvex.
(2) The concept of properly C-quasiconvex vector-valued function is important in the study of minimax
theorem for vector-vlalued functions, generalized vector quasiequilibrium problems and vector quasivari-
ational inclusion problems (see [6, 7, 10, 11, 19]).

Lemma 2.7 ([11]). Let E,Z be two real Hausdorff topological vector spaces, X ⊆ E a nonempty convex subset, and
C ⊆ Z a closed convex cone. Assume that h : X → Z is C-u.s.c. and properly C-quasiconcave on X. Then, for any
u1,u2 ∈ X, there exists some t0 ∈ [0, 1] such that

h(u1) ∈ h(t0u1 + (1 − t0)u2) −C and h(u2) ∈ h(t0u1 + (1 − t0)u2) −C.
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Definition 2.8 ([14]). Let Z be a real Hausdorff topological vector space and C ⊆ Z a convex cone. A
nonempty set M ⊆ Z is called upward directed if, for every u1,u2 ∈ M, there exists u ∈ M such that
u1 ∈ u−C and u2 ∈ u−C.

The following theorem is important in the convergence analysis of our algorithm, which says the
existence of maximal points.

Theorem 2.9 ([10]). Let E,Z be two real Hausdorff topological vector spaces, X ⊆ E a nonempty compact subset,
and C ⊆ Z a closed convex cone. Assume that f : X → Z is u.s.c. and f(X) is upward directed. Then, there exists
x̄ ∈ X such that

g(x) ∈ g(x̄) −C, ∀ x ∈ X.

Definition 2.10. Let E,Z be two real Hausdorff topological vector spaces, X ⊆ E a nonempty subset, and
C ⊆ Z a closed convex pointed cone. A vector-valued mapping f : X×X→ Z is said to be

(i) C-monotone if, for any x,y ∈ X, one has

f(x,y) + f(y, x) ∈ −C;

(ii) C-pseudomonotone if, for any x,y ∈ X, one has

f(x,y) ∈ C =⇒ f(y, x) ∈ −C;

(iii) strongly C-pseudomonotone if, for any x,y ∈ X, one has

f(x,y) 6∈ −C =⇒ f(y, x) ∈ −C \ {0}.

Remark 2.11. Clearly, if f is C-monotone or strongly C-pseudomonotone, then it is C-pseudomonotone.
The following theorem gives some sufficient conditions for existence of solutions for SVEP, which is a

special case of Theorem 3.1 of Hou et al. [11].

Theorem 2.12. Let E,Z be two real locally convex Hausdorff topological vector spaces, X ⊆ E a nonempty compact
convex subset, and C ⊆ Z a closed convex cone. Let f : X×X→ Z be a vector-valued bifunction. Suppose that:

(i) f is C-continuous;

(ii) for any x ∈ X, f(x, x) ∈ C;

(iii) for each x ∈ X, f(x,y) is properly C-quasiconvex in y.

Then, there exists x̄ ∈ X such that
f(x̄,y) ∈ C, ∀y ∈ X.

Next, we present an important local property of SVEP, which says that local solutions of SVEP are
indeed global ones.

Theorem 2.13. Let E,Z be two real Hausdorff topological vector spaces, X ⊆ E a nonempty convex subset, and
C ⊆ Z a closed convex cone. Let f : X×X→ Z be a vector-valued bifunction satisfying: for each x ∈ X, f(x, x) = 0
and f(x,y) is C-convex in y. If there exist an open set U ⊆ E and x̄ ∈ X ∩U such that f(x̄,y) ∈ C, for all
y ∈ X∩U, then x̄ solves SVEP.

Proof. Suppose that there exist an open set U ⊆ E and x̄ ∈ X∩U such that

f(x̄,y) ∈ C, ∀y ∈ X∩U.

For each y ∈ X, since x̄ ∈ U and U is open, there exists some t ∈ (0, 1) small enough such that xt =
ty+ (1 − t)x̄ ∈ U. As X is convex, we have xt ∈ X. Thus xt ∈ X ∩U, and so f(x̄, xt) ∈ C. On the other
hand, since f(x̄,y) is C-convex in y, we get

tf(x̄,y) + (1 − t)f(x̄, x̄) ∈ f(x̄, xt) +C ⊆ C+C ⊆ C.

This, together with the fact that f(x̄, x̄) = 0, implies that tf(x̄,y) ∈ C. As C is a cone, we have f(x̄,y) ∈ C.
This indicates that x̄ solves SVEP.
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Lemma 2.14 ([5, FKKM Theorem]). Let X be a nonempty subset of a Hausdorff topological vector space E. For
each x ∈ X, consider a closed subset G(x) of E. If the following two conditions are satisfied:

(i) the convex hull of any finite subset {x1, · · · , xn} of X is contained in ∪ni=1G(xi),

(ii) G(x) is compact for at least one x ∈ X,

then ∩x∈XG(x) 6= ∅.

We need in the sequel the following lemma, which is an infinite-dimensional version of Lemma 2.3 of
Iusem and Sosa [12].

Lemma 2.15. Let X be a nonempty subset of a Hausdorff topological vector space E. For each x ∈ X, consider a
closed subset G(x) of E. If the following two conditions are satisfied:

(i) the convex hull of any finite subset {x1, · · · , xn} of X is contained in ∪ni=1G(xi),

(ii) the closure coX of the convex hull of X is compact,

then ∩x∈XG(x) 6= ∅.

Proof. For each x ∈ X, let M(x) = coX ∩ G(x). Then M(x) is closed in E. Consider any finite subset
{x1, · · · , xn} of X. Obviously, co{x1, · · · , xn} ⊆ coX. Furthermore, by condition (i), we can derive that
co{x1, · · · , xn} ⊆ ∪ni=1G(xi). Thus, we have

co{x1, · · · , xn} ⊆ coX∩ [∪ni=1G(xi)],

implying
co{x1, · · · , xn} ⊆ ∪ni=1[coX∩G(xi)] = ∪ni=1M(xi).

On the other hand, by condition (ii), we know that M(x) is compact for each x ∈ X. Hence, by Lemma
2.14, we have ∩x∈XM(x) 6= ∅, implying ∩x∈XG(x) 6= ∅.

3. Auxiliary problem

In this section, we shall introduce an auxiliary problem for SVEP and discuss the relationships between
the auxiliary problem and SVEP. Furthermore, we shall give some sufficient conditions for existence of
solutions for auxiliary problem. All of these will help us to propose algorithms for SVEP.

From now on, unless otherwise specified, we shall use the following notations and assumptions.
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let X be a nonempty compact

convex subset of H. Let Z be a real locally convex Hausdorff topological vector space, C be a closed convex
pointed cone of Z and e ∈ C\{0} be any given point. Let f : X× X → Z be a vector-valued bifunction
satisfying the following assumptions:

(P1) f is C-continuous;

(P2) ∀ x ∈ X, f(x, x) = 0;

(P3) ∀ x ∈ X, f(x,y) is C-convex in y;

(P4) for any given y ∈ X, for every x1, x2 ∈ X, there exists x ∈ X : ‖x‖ 6 max{‖x1‖, ‖x2‖}, such that

f(x1,y) ∈ f(x,y) −C and f(x2,y) ∈ f(x,y) −C.

The next proposition shows that, under some suitable conditions of cone-continuity and cone-conve-
xity, the assumption (P4) can be satisfied.
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Proposition 3.1. If, for each y ∈ X, f(·,y) is C-u.s.c. and properly C-quasiconcave on X, then the assumption (P4)
is satisfied.

Proof. For any fixed y ∈ X, since f(·,y) is C-u.s.c. and properly C-quasiconcave on X, then, we can derive
from Lemma 2.7 that, for every x1, x2 ∈ X, there exists t0 ∈ [0, 1] such that

f(x1,y) ∈ f(t0x1 + (1 − t0)x2,y) −C and f(x2,y) ∈ f(t0x1 + (1 − t0)x2,y) −C.

Let x = t0x1 + (1 − t0)x2. Then x ∈ X as X is convex and

‖x‖ = ‖t0x1 + (1 − t0)x2‖ 6 t0‖x1‖+ (1 − t0)‖x2‖ 6 max{‖x1‖, ‖x2‖}

and
f(x1,y) ∈ f(x,y) −C and f(x2,y) ∈ f(x,y) −C.

Also, we have the following result.

Proposition 3.2. Let H be a normed vector space with norm ‖ · ‖, and X be a nonempty compact subset of H. Let
Z = R,C = R+ = [0,+∞), e = 1 ∈ C \ {0}. If, for each y ∈ X, the real-valued function f(·,y) is continuous on X,
then the assumption (P4) is also satisfied.

Proof. For any given x1, x2 ∈ X, let ρ = max{‖x1‖, ‖x2‖} and let B(ρ) be the closed ball centered at 0 with
radius ρ in H. Since X is compact, the subset X ∩ B(ρ) is also compact. Then, for any fixed y ∈ X, the
real-valued continuous function f(·,y) can attains its maximum on the compact set X ∩ B(ρ), i.e., there
exists some x̄ ∈ X∩B(ρ) such that

f(x̄,y) > f(x,y), ∀ x ∈ X∩B(ρ).

Noting that x1, x2 ∈ X∩B(ρ), we have

f(x̄,y) > f(x1,y) and f(x̄,y) > f(x2,y).

That is,
f(x1,y) ∈ f(x̄,y) −C and f(x2,y) ∈ f(x̄,y) −C.

Moreover,
‖x̄‖ 6 ρ = max{‖x1‖, ‖x2‖}.

Remark 3.3. In Proposition 3.2, if H is in particular a finite-dimensional Euclidean space, then the com-
pactness condition of X can be replaced by a closedness one. In fact, if H is a finite-dimensional Euclidean
space and X is a nonempty closed subset, then the bounded closed ball B(ρ) defined in the proof of
Proposition 3.2 is clearly compact. And so the subset X ∩ B(ρ) is also compact. Then, by proceeding the
rest arguments as that in the proof of Proposition 3.2, we know that the assumption (P4) is satisfied.

Now we consider the following Auxiliary Problem (for short, AP).

Find x̄ ∈ X such that x̄ ∈ ∩y∈XLf(y), (AP)

where Lf(y) is defined by
Lf(y) = {x ∈ X : f(y, x) ∈ −C}, ∀y ∈ X.

For each y ∈ X, by (P2), y ∈ Lf(y), and so Lf(y) is nonempty. Also, by (P1) and Lemma 2.4, Lf(y) is
closed. Moreover, by (P3) and Remark 2.6, Lf(y) is convex.

The AP is also called Convex Feasibility Problem (CFP) (see [12]). Its relevance lies in the fact that the
solution set of AP contains in the solution set of SVEP.
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Theorem 3.4. The solution set of AP is a subset of the solution set of SVEP.

Proof. Let x ∈ X be a solution of AP. Then

f(y, x) ∈ −C, ∀y ∈ X. (3.1)

For each y ∈ X and t ∈ (0, 1), let xt = ty+ (1 − t)x. Then xt ∈ X as X is convex. And so, by (3.1), we have
f(xt, x) ∈ −C. On the other hand, since f(xt, ·) is C-convex, we can get

tf(xt,y) + (1 − t)f(xt, x) ∈ f(xt, xt) +C = 0 +C = C.

Noting that C is a convex cone, we have

tf(xt,y) ∈ −(1 − t)f(xt, x) +C ⊆ C+C ⊆ C.

Thus f(xt,y) ∈ C as C is a cone. Furthermore, since f is C-continuous, it is C-u.s.c.. Then, by Lemma 2.4,
we know that f is u.s.c.. And so, we can get f(x,y) ∈ C, which implies that x is a solution of SVEP.

The following theorem shows that the converse of Theorem 3.4 is also true when f is equipped with
suitable condition of monotonicity.

Theorem 3.5. If the mapping f is C-pseudomonotone, then the solution set of SVEP is a subset of the solution set
of AP.

Proof. Suppose that x ∈ X is a solution of SVEP. Then, for each y ∈ X, one has f(x,y) ∈ C. As f is
C-pseudomonotone, we have f(y, x) ∈ −C. This indicates that x is solution of AP.

As a consequence of Theorems 2.12, 3.4, and 3.5, we can obtain the following existence result of
solutions for AP.

Theorem 3.6. Suppose that the mapping f satisfies (P1)-(P2) and the following conditions:

(i) f is C-pseudomonotone;

(ii) for each x ∈ X, f(x,y) is properly C-quasiconvex in y.

Then, AP has at least one solution in X.

Proof. By Theorem 2.12, we know that SVEP has at least one solution in X. On the other hand, by
Theorems 3.4 and 3.5, we know that the solution set of SVEP coincides with the solution set of AP. Thus,
AP has at least one solution in X.

We also have the following result.

Theorem 3.7. If the mapping f is strongly C-pseudomonotone, then, for any sequence {ym} ⊆ X, one has
∩∞m=1Lf(ym) 6= ∅.

Proof. For any given sequence {ym} ⊆ X, let D = {ym} and P(y) = Lf(y) for all y ∈ D. Then D ⊆ X and
for each y ∈ D, P(y) is nonempty closed and convex. Noting that X is a compact convex subset of H, we
know that coD ⊆ X is compact. On the other hand, for any finite subset {ym1 , · · · ,ymp} ⊆ D, we claim
that

co{ym1 , · · · ,ymp} ⊆ ∪
p
i=1P(ymi

).

In fact, suppose to the contrary that there exists some ȳ =
∑p

i=1 λiymi
with

∑p
i=1 λi = 1 and λi > 0 (i =

1, · · · ,p) such that ȳ 6∈ ∪pi=1P(ymi
). It follows that f(ymi

, ȳ) 6∈ −C, i = 1, · · · ,p. Then, by strongly
C-pseudomonotonicity of f, we have

f(ȳ,ymi
) ∈ −C \ {0}, i = 1, · · · ,p.
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As f(ȳ, ·) is C-convex, we can get

0 = f(ȳ, ȳ) ∈
p∑

i=1

λif(ȳ,ymi
) −C ⊆ −C \ {0}−C ⊆ −C \ {0}.

This is impossible, and so the assertion holds. Then, by applying Lemma 2.15, we can obtain that
∩∞m=1P(ym) 6= ∅, i.e., ∩∞m=1Lf(ym) 6= ∅.

4. Algorithm and its convergence

In this section, we shall propose an algorithm for solving SVEP and analyze its convergence.
Based on AP, we can propose a general iterative algorithm for SVEP.

Algorithm 4.1.

Step 0 (initial step). Choose initial x0 ∈ X and let ρ0 = ‖x0‖. Set m = 0.

Step 1. Define
Xm = {x ∈ X : ‖x‖ 6 ρm + 1}. (4.1)

Step 2. Find ym ∈ Xm satisfying

f(y, xm) ∈ f(ym, xm) + εme−C, ∀y ∈ Xm. (4.2)

Step 3. Compute xm+1 as
xm+1 = xm + λm[PLf(ym)(xm) − xm]. (4.3)

Step 4. Calculate ρm+1 as
ρm+1 = max{ρm, ‖xm+1‖}.

Step 5. Set m = m+ 1 and return to Step 1.
where PLf(ym)(·) denotes the metric projection onto Lf(ym) = {x ∈ X : f(ym, x) ∈ −C}, {εm} and {λm} are
two sequence of R, satisfying εm > 0 and lim

m→∞ εm = 0 and {λm} ⊆ [α, 1] for some α ∈ (0, 1).

We start now the convergence analysis of Algorithm 4.1.

Lemma 4.2. Algorithm 4.1 is well-defined.

Proof. Clearly, ρm = max{‖x0‖, ‖x1‖, · · · , ‖xm‖}, and so the sequence {ρm} is nondecreasing. This indicates
that Xm ⊆ Xm+1 for all m. As x0 belongs to X0, all the sets Xm are nonempty and trivially closed. Notice
that Xm ⊆ X and X is compact. All the sets Xm are compact. For any given xm ∈ Xm, by (P4), we know
that the set f(Xm, xm) = {f(y, xm) : y ∈ Xm} is upward directed. Moreover, by (P1), we know that the
vector-valued mapping f(·, xm) is C-u.s.c. and so is u.s.c.. Thus, it follows from Theorem 2.9 that there
exists some ym ∈ Xm such that

f(y, xm) ∈ f(ym, xm) −C, ∀y ∈ Xm.

This, together with εm > 0 and e ∈ C\{0}, implies that ym satisfies (4.2). In addition, since Lf(ym) is
nonempty closed and convex, the metric projection of xm onto Lf(ym) is existing and unique. And so
xm+1 is uniquely defined by (4.3).

Lemma 4.3. Let {xm} and {ym} be the sequences generated by Algorithm 4.1.

(i) For each x̄ ∈ ∩∞m=1Lf(ym), it holds that

‖xm+1 − x̄‖2 6 ‖xm − x̄‖2 − λm(2 − λm)‖xm − PLf(ym)(xm)‖2 6 ‖xm − x̄‖2; (4.4)
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(ii) {‖xm − x̄‖} is convergent for all x̄ ∈ ∩∞m=1Lf(ym).

Proof.

(i) For each x̄ ∈ ∩∞m=1Lf(ym), by (4.3), we have

‖xm+1 − x̄‖2 = ‖xm − x̄‖2 + λ2
m‖xm − PLf(ym)(xm)‖2 + 2λm〈xm − x̄,PLf(ym)(xm) − xm〉

= ‖xm − x̄‖2 + λ2
m‖xm − PLf(ym)(xm)‖2 − 2λm‖xm − PLf(ym)(xm)‖2

+ 2λm〈PLf(ym)(xm) − x̄,PLf(ym)(xm) − xm〉
= ‖xm − x̄‖2 − λm(2 − λm)‖xm − PLf(ym)(xm)‖2

+ 2λm〈PLf(ym)(xm) − x̄,PLf(ym)(xm) − xm〉.

(4.5)

Noting that x̄ ∈ Lf(ym), by the well-known property of metric projection, we have

〈PLf(ym)(xm) − x̄,PLf(ym)(xm) − xm〉 6 0.

In addition, we can get λm(2 − λm) > 0 as 0 < α 6 λm 6 1. Thus, by (4.5), we obtain

‖xm+1 − x̄‖2 6 ‖xm − x̄‖2 − λm(2 − λm)‖xm − PLf(ym)(xm)‖2 6 ‖xm − x̄‖2.

(ii) For each x̄ ∈ ∩∞m=1Lf(ym), by (4.4), we can get ‖xm+1 − x̄‖ 6 ‖xm − x̄‖ for all m. This indicates that
the nonnegative sequence {‖xm − x̄‖} is nonincreasing, and hence, it is convergent.

The following theorem gives convergence properties of Algorithm 4.1.

Theorem 4.4. Let {xm} and {ym} be the sequences generated by Algorithm 4.1.

(i) If ∩∞m=1Lf(ym) 6= ∅, then {xm} converges to a solution of SVEP.

(ii) If SVEP has no solution, then {xm} does not converge.

Proof.

(i) As the sequence {xm} is contained in the compact set X, it has a convergent subsequence {xmk
} of {xm}

such that xmk
→ x∗ ∈ X as k→∞. Similarly, since the sequence {ymk

} is contained in the compact set X,
it also has a convergent subsequence. Without loss of generality, we may assume that ymk

→ y∗ for some
y∗ ∈ X as k→∞,

Next, we shall show that x∗ is a solution of SVEP and xm → x∗ as m→∞. The proof is divided into
three steps.

(I) f(y∗, x∗) = 0.
In fact, we can take any x̄ ∈ ∩∞m=1Lf(ym) and let x̄ be fixed. Then, by rewriting (4.4) and using the

conditions on {λm}, we can get

α(2 −α)‖xm − PLf(ym)(xm)‖2 6 λm(2 − λm)‖xm − PLf(ym)(xm)‖2 6 ‖xm − x̄‖2 − ‖xm+1 − x̄‖2. (4.6)

Note that α(2 −α) > 0. Then, by (4.6) and Lemma 4.3 (ii), we have

lim
m→∞(xm − PLf(ym)(xm)) = 0.

It follows that
lim
k→∞PLf(ymk

)(xmk
) = x∗.

In addition, by the definition of Lf(ymk
) and the fact PLf(ymk

)(xmk
) belongs to Lf(ymk

), we can get

f(ymk
,PLf(ymk

)(xmk
)) ∈ −C.
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Since f is C-l.s.c., it is l.s.c.. Thus, we have

f(y∗, x∗) ∈ −C. (4.7)

On the other hand, it is clear that ρm = max{‖x0‖, ‖x1‖, · · · , ‖xm‖}, and so, by (4.1), we know that
xm ∈ Xm for all m. Thus, by (P2) and (4.2), we have, for each m,

0 = f(xm, xm) ∈ f(ym, xm) + εme−C,

implying
f(ym, xm) + εme ∈ C. (4.8)

Since εm → 0 (m→∞) and f is C-u.s.c., we can prove that

f(y∗, x∗) ∈ C. (4.9)

Then, by combining (4.7) with (4.9), we obtain

f(y∗, x∗) = 0.

Thus, there remains to prove that (4.9) is true. In fact, suppose to the contrary that (4.9) is not true, i.e.,

f(y∗, x∗) 6∈ C.

Since C is closed, there exists some neighborhood V0 of 0 in Z such that

[f(y∗, x∗) + V0]∩C = ∅.

Noting that C is a convex cone, we can get

[f(y∗, x∗) + V0 −C]∩C = ∅. (4.10)

For the above neighborhood V0 of 0 in Z, since Z is a topological vector space, there exists a balanced
neighborhood V1 of 0 in Z such that V1 +V1 ⊆ V0. Since f is C-u.s.c., there exist neighborhoods U(x∗) and
U(y∗) of x∗ and y∗, respectively, such that

f(y, x) ∈ f(y∗, x∗) + V1 −C, ∀ (y, x) ∈ (U(y∗)∩X)× (U(x∗)∩X). (4.11)

Observe that {(ymk
, xmk

)} ⊆ X× X and (ymk
, xmk

) → (y∗, x∗) ∈ X× X. There must exist some k0 such
that, for any k > k0,

(ymk
, xmk

) ∈ (U(y∗)∩X)× (U(x∗)∩X).

Then, it follows from (4.11) that

f(ymk
, xmk

) ∈ f(y∗, x∗) + V1 −C, ∀ k > k0.

Also, since εmk
→ 0 (k → ∞), there exists some k1 such that, for any k > k1, εmk

e ∈ V1. Take k̄ =
max{k0,k1}. Then, for any k > k̄,

f(ymk
, xmk

) + εmk
e ∈ f(y∗, x∗) + V1 −C+ V1 ⊆ f(y∗, x∗) + V0 −C.

Thus, by (4.10), we obtain
f(ymk

, xmk
) + εmk

e 6∈ C,

which contradicts (4.8). Therefore f(y∗, x∗) ∈ C.
(II) x∗ solves SVEP.



J. X. Huang, S. H. Wang, J. Y. Mao, J. Nonlinear Sci. Appl., 10 (2017), 4337–4351 4347

Indeed, since the set X is compact, it is bounded. And so, the sequence {xm} is bounded as it is
contained in X. Then, by noting that ρm = max{‖x0‖, ‖x1‖, · · · , ‖xm‖}, we know the sequence {ρm} is also
bounded. Let ρ∗ = sup{ρm}. Take any δ ∈ (0, 1) and let B(δ) be the open ball centered at 0 with radius
ρ∗ + 1 − δ. Then, we have

‖xm‖ 6 ρm 6 ρ∗ < ρ∗ + 1 − δ, ∀m.

It follows that x∗ belongs to the interior of B(δ). We claim that

f(y, x∗) ∈ −C, ∀y ∈ X∩B(δ). (4.12)

This means that x∗ solves AP on X∩B(δ). Then, by invoking Theorems 3.4 and 2.13, we conclude that x∗

solves SVEP on X.
Hence, there remains to show that (4.12) holds. Indeed, we can choose an m0 satisfying ρm0 > ρ

∗ − δ.
Then, by observing that {ρm} is nondecreasing, we have ρm + 1 > ρ∗ + 1 − δ for all m > m0. Thus
X ∩ B(δ) ⊆ Xm for all m > m0. Therefore, for each y ∈ X ∩ B(δ), we have y ∈ Xm for all m > m0. And
then, by (4.2), we know that, for each m > m0, there exists some ym ∈ Xm such that

f(y, xm) ∈ f(ym, xm) + εme−C. (4.13)

Then, by the C-continuity of f, we can conclude that

f(y, x∗) ∈ f(y∗, x∗) −C. (4.14)

In fact, suppose to the contrary that (4.14) is not true, i.e.,

f(y, x∗) − f(y∗, x∗) 6∈ −C.

Note that C is closed. There exists some neighborhood V of 0 in Z such that

[f(y, x∗) − f(y∗, x∗) + V]∩ (−C) = ∅.

As C is a convex cone, we can further get

[f(y, x∗) − f(y∗, x∗) + V +C]∩ (−C) = ∅. (4.15)

For the above neighborhood V of 0 in Z, since Z is a topological vector space, there exists a balanced
neighborhood V ′ of 0 in Z such that V ′ + V ′ + V ′ ⊆ V . For the balanced neighborhood V ′, since f is
C-u.s.c., there exist neighborhoods U(y∗) and U1(x

∗) of y∗ and x∗, respectively, such that

f(u, x) ∈ f(y∗, x∗) + V ′ −C, ∀ (u, x) ∈ (U(y∗)∩X)× (U1(x
∗)∩X). (4.16)

Observe that {(ymk
, xmk

)} ⊆ X×X and (ymk
, xmk

)→ (y∗, x∗) ∈ X×X. There exists some k0 such that, for
every k > k1, (ymk

, xmk
) ∈ (U(y∗)∩X)× (U1(x

∗)∩X). Then, it follows from (4.16) that

f(ymk
, xmk

) ∈ f(y∗, x∗) + V ′ −C, ∀ k > k1. (4.17)

Furthermore, since f(y, ·) is C-l.s.c., there exists some neighborhood U2(x
∗) of x∗, such that

f(y, x) ∈ f(y, x∗) + V ′ +C, ∀ x ∈ (U2(x
∗)∩X). (4.18)

As {xmk
} ⊆ X and xmk

→ x∗ ∈ X, there exists k2 such that, for every k > k2, xmk
∈ (U2(x

∗) ∩ X). And
then, by (4.18), we have

f(y, xmk
) ∈ f(y, x∗) + V ′ +C, ∀ k > k2. (4.19)

In addition, since εmk
→ 0(k→∞), there exists k3 such that, for any k > k3,

εmk
e ∈ V ′, ∀ k > k3. (4.20)
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Take k̄ = max{k1,k2,k3}. Then, for each k > k̄, (4.17), (4.19), and (4.20) hold at the same time. Noting that
V ′ is balanced and C is a convex cone, we can get, for every k > k̄,

f(y, xmk
) − [f(ymk

, xmk
) + εmk

e] ∈ f(y, x∗) + V ′ +C− f(y∗, x∗) − V ′ +C− V ′

= f(y, x∗) − f(y∗, x∗) + V ′ + V ′ + V ′ +C+C

⊆ f(y, x∗) − f(y∗, x∗) + V +C.

Combining with (4.15), we can get

f(y, xmk
) − [f(ymk

, xmk
) + εmk

e] 6∈ −C.

That is
f(y, xmk

) 6∈ f(ymk
, xmk

) + εmk
e−C,

which contradicts (4.13). Hence f(y, x∗) ∈ f(y∗, x∗) −C.
(III) xm → x∗ as m→∞.
In fact, by (4.12), we can get, for any δ ∈ (0, 1),

f(y, x∗) ∈ −C, ∀y ∈ X, ‖y‖ < ρ∗ + 1 − δ.

As δ can be chosen as any point in (0, 1), we conclude that

f(y, x∗) ∈ −C, ∀y ∈ X, ‖y‖ < ρ∗ + 1. (4.21)

Since f(·, x∗) is C-l.s.c., it is l.s.c.. Then, by (4.21), we can further obtain

f(y, x∗) ∈ −C, ∀y ∈ X, ‖y‖ 6 ρ∗ + 1.

Observe that ym ∈ Xm, and so ‖ym‖ 6 ρm + 1 6 ρ∗ + 1. Thus,

f(ym, x∗) ∈ −C, ∀m.

This means x∗ ∈ ∩∞m=1Lf(ym). Then, by Lemma 4.3 (i), we conclude that {‖xm − x∗‖} is nonincreasing.
Obviously, the sequence {‖xm − x∗‖} is nonnegative, and so it is convergent. Furthermore, since the
sequence {‖xm − x∗‖} has a subsequence {‖xmk

− x∗‖}, which converges to 0. It follows that the whole
sequence {‖xm − x∗‖} converges to 0, i.e., xm → x∗ as m→∞.

(ii) Assume that the sequence {xm} converges to some point x∗∈X. Note that the hypothesis ∩∞m=1Lf(ym)
6=∅ (missing in this item) was used in the proof of item (i) only to establish that lim

m→∞(xm−PLf(ym)(xm)) =

0. When {xm} converges, we can prove that this fact occurs. And then, by proceeding the arguments as
that in the proof of item (i), we can show that x∗ is a solution of SVEP, contradicting the hypothesis of
this item. Therefore {xm} does not converge.

So, it remains to show that, when {xm} converges, lim
m→∞(xm − PLf(ym)(xm)) = 0. In fact, if {xm}

converges, then, by (4.3) and the assumptions on {λm}, we have

‖ xm+1 − xm ‖= λm ‖ PLf(ym)(xm) − xm ‖> α ‖ PLf(ym)(xm) − xm ‖ .

As α > 0 and {xm} converges, we know that ‖ PLf(ym)(xm) − xm ‖→ 0 as m → ∞, i.e., lim
m→∞(xm −

PLf(ym)(xm)) = 0.

Remark 4.5. From the proof of Theorem 4.4 (ii), we know that if {xm} is convergent, then the limit of {xm}

must be a solution of SVEP.

Remark 4.6. Theorem 4.4 extends and develops the corresponding results of Wang and Li [20] and Cheng
and Liu [3]. More precisely,
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(i) Theorem 4.4 extends the main result (Theorem 4.1) of Wang and Li [20] mainly in the following aspects:
(a) the space H is generalized from an n-dimensional Euclidean space to a Hilbert space; (b) the condition
that C has a nonempty interior is canceled, and the condition that e ∈ int(C) is weakened to e ∈ C \ {0};
(c) the methods constructing the iterative sequence {xm} and analyzing its convergence are both different.
In [20], by using the Gerstewitz nonlinear scalarization function, Wang and Li transformed the vector
equilibrium problem to a scalar problem called convex feasibility problem for constructing the iterative
sequence {xm} and analyzed its convergence, where the Gerstewitz nonlinear scalarization function, which
has many superior properties, played a significant role; while, in Theorem 4.4 of this paper, we constructed
the iterative sequence {xm} directly based on a vector auxiliary problem and analyzed its convergence.

(ii) Theorem 4.4 develops the main results (Theorems 3 and 4) of Cheng and Liu [3] in the aspects (a)-
(c) listed in item (i) and the following ones: (d) the studied problem is enhanced from weak vector
equilibrium problem to strong one; (e) the requirement of continuity on the mapping f is weakened. In
fact, in Theorems 3 and 4 of Cheng and Liu [3], the mapping f needs to be continuous; but, in Theorem
4.4 of this paper, the mapping f just needs to be C-continuous.

Corollary 4.7. If AP has solutions, then the sequence {xm} generated by Algorithm 4.1 converges to a solution of
SVEP.

Proof. If AP has solutions, then ∩∞m=1Lf(ym) 6= ∅. And so the conclusion follows immediately from
Theorem 4.4 (i).

Corollary 4.8. Let {xm} and {ym} be the sequences generated by Algorithm 4.1. If f is strongly C-pseudomonotone,
then {xm} converges to a solution of SVEP.

Proof. If f is strongly C-pseudomonotone, then, by Theorem 3.7, we have ∩∞m=1Lf(ym) 6= ∅. And so the
conclusion follows immediately from Theorem 4.4 (i).

As a consequence of Theorem 3.6 and Corollary 4.7, we have the following result of convergence.

Theorem 4.9. Suppose that the vector-valued mapping f satisfies (P1)-(P4) and the following conditions:

(i) f is C-pseudomonotone;

(iii) for each x ∈ X, f(x,y) is properly C-quasiconvex in y.

Then, the sequence {xm} generated by Algorithm 4.1 converges to a solution of SVEP.

Proof. By Theorem 3.6, AP has at least one solution in X. And so, by Corollary 4.7, the sequence {xm}

generated by Algorithm 4.1 converges to a solution of SVEP.

In Theorem 4.4, if E is a finite-dimensional Euclidean space Rn, then the compactness of X can be
replaced by closedness.

Theorem 4.10. Let E be an n-dimensional Euclidean space Rn, and X be a nonempty closed convex subset of E.
Suppose that {xm} and {ym} are the sequences generated by Algorithm 4.1.

(i) If ∩∞m=1Lf(ym) 6= ∅, then {xm} converges to a solution of SVEP.

(ii) If SVEP has no solution, then {xm} does not converge.

Proof. First of all, Algorithm 4.1 is well-defined. In fact, the compactness condition of X is only used in the
proof of Lemma 4.2 to obtain the compactness of the subsets Xm,m ∈ N+. When E is an n-dimensional
Euclidean space Rn and X is a closed subset of E, Xm,m ∈N+ are trivially compact as they are nonempty
bounded and closed subsets of X. And then, by proceeding the arguments as that in the proof of Lemma
4.2, we can show that Algorithm 4.1 is well-defined.

Next, we shall prove the conclusions are true.

(i) Suppose that ∩∞m=1Lf(ym) 6= ∅, then, by Lemma 4.3 (ii), we know that, for any x̄ ∈ ∩∞m=1Lf(ym),
the sequence {‖xm − x̄‖} is convergent. And so {xm} is bounded, i.e., there exists some r > 0 such that
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‖xm‖ 6 r for all m ∈N+. And thus,

ρm = max{‖x0‖, ‖x1‖, · · · , ‖xm‖} 6 r, for all m ∈N+.

This means that the set Xm is contained in the closed ball centered at 0 with radius r+ 1. And so, for each
m ∈N+, ‖ym‖ 6 r+ 1 as ym ∈ Xm. That is to say {ym} is also bounded. Let x∗ be a cluster point of {xm}.
Then, there exists a subsequence {xmk

} of {xm} such that xmk
→ x∗ as k → ∞. As X is closed, we have

x∗ ∈ X. Moreover, since {ymk
} ⊆ X is bounded, without loss of generality, we may assume that ymk

→ y∗

for some y∗ ∈ X as k→∞. Then, by proceeding the rest of arguments as that in the proof of Theorem 4.4
(i), we can show that x∗ is a solution of SVEP and xm → x∗ as m→∞.

(ii) Assume that the sequence {xm} converges to some point x∗ ∈ X. Note that the hypothesis ∩∞m=1Lf(ym)
6= ∅ (missing in this item) was used in the proof of item (i) only to establish that {xm} is bounded and,
as a consequence, lim

m→∞(xm − PLf(ym)(xm)) = 0. When {xm} converges, we can prove that these two facts
occur. And then, by proceeding the arguments as that in the proof of (i), we can show that x∗ is a solution
of SVEP, contradicting the hypothesis of this item. Therefore {xm} does not converge.

So, it remains to show that, when {xm} converges, {xm} is bounded and lim
m→∞(xm − PLf(ym)(xm)) = 0.

In fact, if {xm} converges, then it is clearly bounded. Furthermore, by (4.3) and the assumptions on {λm},
we have

‖ xm+1 − xm ‖= λm ‖ PLf(ym)(xm) − xm ‖> α ‖ PLf(ym)(xm) − xm ‖ .

As α > 0 and {xm} converges, we know that ‖ PLf(ym)(xm) − xm ‖→ 0 as m → ∞, i.e., lim
m→∞(xm −

PLf(ym)(xm)) = 0.

Remark 4.11. In Theorem 4.10, the subset X may be unbounded.
Remark 4.12. In Theorem 4.10, if Z = R,C = R+ = [0,+∞), e = 1 ∈ C \ {0}, then, the condition (P4) can
be removed, and so Theorem 4.10 reduces to Theorem 3.3 of Iusem and Sosa [12]. In fact, the condition
(P4) is only used as one of conditions for guaranteeing the existence of maximal point ym in (4.2). When
Z = R,C = R+ = [0,+∞), e = 1 ∈ C \ {0}, we can also prove the existence of maximal point ym in (4.2)
without assumption (P4). Indeed, when Z = R,C = R+ = [0,+∞), e = 1 ∈ C \ {0}, the C-continuity of
f coincides with the usual continuity of function. Moreover, for each m ∈ N+, Xm is clearly compact.
Thus, the real-valued function f(·, xm) can attain its maximum value on Xm, i.e., there exists some point
ym ∈ Xm such that

f(y, xm) 6 f(ym, xm) for all y ∈ Xm.

That is,
f(y, xm) ∈ f(ym, xm) −C for all y ∈ Xm.

From this, it is easy to see that ym satisfies (4.2).
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