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Abstract
We consider a coincidence-point problem in the setting of rectangular cone metric spaces. Using α-admissible mappings and
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1. Introduction

The problem of computing the distance between objects is crucial in the applied sciences. Now, in
dealing with such kind of problem, the theory of metric spaces and their generalizations plays a key role
in defining the distances between two objects (for example, points, functions or sets). Among the gener-
alizations of metric spaces, we recall rectangular metric spaces (Branciari [7]), K-metric spaces (Zabrejko
[27]), cone metric spaces (Huang-Zhang [11]), and rectangular cone metric spaces (Azam-Arshad-Beg [5]),
which are useful concepts to define distances in a more general way.

On the other hand, the fixed-point theory is strongly related to the theory of metric spaces (Banach [6]).
In fact, many fundamental existence and uniqueness fixed-point results are established in metric spaces
and further extended to their generalizations. Fixed-point problems were studied by Abbas-Rakočević-
Iqbal [1, 2], Ahmad-Arshad-Vetro [3], Di Bari-Vetro [10], Kadelburg-Radenović [12, 13], La Rosa-Vetro
[15], Samet [19], Vetro [24]. For other results in the setting of rectangular cone metric spaces see also
Malhotra-Shukla-Sen [16] and Shukla [21].

Based on the above literature, we investigate the existence of coincidence points and common fixed
points for two self-mappings defined on a cone rectangular metric space. Precisely, we use Perov’s ap-
proach (Perov [17], Perov-Kibenko [18]) and other technical hypotheses.

∗Corresponding author
Email addresses: ftchier@ksu.edu.sa (Fairouz Tchier), calogero.vetro@unipa.it (Calogero Vetro),

francesca.vetro@unipa.it (Francesca Vetro)

doi:10.22436/jnsa.010.08.25

Received 2017-03-11

http://dx.doi.org/10.22436/jnsa.010.08.25


F. Tchier, C. Vetro, F. Vetro, J. Nonlinear Sci. Appl., 10 (2017), 4307–4317 4308

2. Preliminaries

Two basic books for this study are Aliprantis-Tourky [4], and Deimling [9]. Let (E, ‖ · ‖) be a real
Banach space, whose null element is denoted by θ. So C ⊂ E is called a cone if the following conditions
are satisfied:

(a) C is closed, non-empty and C 6= {θ};

(b) au+ bv ∈ C for each a,b ∈ R with a,b > 0 and for each u, v ∈ C;

(c) C∩ (−C) = {θ}.

Given a cone C ⊂ E, we define in E a partial order � with respect to C in the following way: u � v if and
only if v− u ∈ C. If C is a solid cone, that is, Int(C) 6= ∅ (where Int(C) is the interior of C), then by u� v

we denote the fact that v− u ∈ IntC. A cone C is said to be normal if there exists a number K > 0 such
that, for all u, v ∈ E, we have

θ � u � v implies ‖u‖ 6 K ‖v‖ .

The least positive number satisfying the above inequality is called the normal constant of C.

Definition 2.1. Let (E, ‖ · ‖) be a real Banach space, C be a cone in E and let X be a non-empty set. A
mapping d : X×X→ C that satisfies the following conditions:

(d1) d(u, v) = θ if and only if u = v;

(d2) d(u, v) = d(v,u) for all u, v ∈ X;

(d3) d(u, v) � d(u, z) + d(z,w) + d(w, v) for all u, v ∈ X and for all distinct points w, z ∈ X \ {u, v};

is called a rectangular cone metric on X and (X,d) is called a rectangular cone metric space over the cone C.

We notice that the concept of rectangular cone metric space is more general than the one of rectangular
metric space.

Definition 2.2. Let (X,d) be a rectangular cone metric space over a solid cone C, {un} be a sequence in X.
Then

(i) {un} is a Cauchy sequence if, for every c ∈ Int(C), there is n(c) ∈ N such that, for all n,m > n(c),
d(un,um)� c;

(ii) {un} is a convergent sequence if, for every c ∈ Int(C), there is n(c) ∈ N such that, for all n > n(c),
d(un,u)� c for some u ∈ X.

We mention that by un
c−→ u we denote the convergence of a sequence {un} to a limit u. So a

rectangular cone metric space (X,d) is said to be complete if every Cauchy sequence in X is convergent in
X. If C is a normal solid cone, then un

c−→ u if and only if d(un,u)→ θ as n→ +∞ and {un} is a Cauchy
sequence if and only if d(un,um)→ θ as n,m→ +∞ (see Huang-Zhang [11], Lemmas 1 and 4).

Example 2.3. Let E = R2 and C = {u = (u1,u2) ∈ E : uj > 0 for j = 1, 2}. Clearly, C is a normal solid cone
with normal constant K = 1. If X = N and d(u,u) = (0, 0) for all u ∈ X, d(2, 3) = d(3, 2) = (5, 11) and
d(u, v) = (2, 4) otherwise, then d is a rectangular cone metric on X. Clearly, (X,d) is not a cone metric
space because it lacks the triangle property. In fact, we have

d(2, 3) = (5, 11) � (2, 4) + (2, 4) = d(2, 5) + d(5, 3).

Lemma 2.4. Let (E, ‖ · ‖) be a real Banach space and C ⊂ E be a solid cone. Let v,w, z ∈ E and {an} ⊂ E. Then
we have the following properties:
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(j) if z � w and w� v, then z� v;
(jj) if θ � z� c for each c ∈ Int(C), then z = θ;
(jjj) if c ∈ Int(C) and an → θ as n→ +∞, then there exists n(c) such that for all n > n(c) we have an � c.

Proof. Here, we prove only (jjj). By using Proposition (2.2) at page 20 of [25], we have that [−c, c] =
(C− c) ∩ (c−C) is a neighbourhood of θ and so also Int[−c, c]. Since an → θ as n → +∞, there exists
n(c) such that an ∈ Int[−c, c] = (IntC− c) ∩ (c− IntC) whenever n > n(c). Now, from an ∈ c− Int(C)
(that is, c− an ∈ Int(C)) it follows an � c whenever n > n(c).

Definition 2.5 (Xu-Dolićanin-Radenović [26]). Let (E, ‖ · ‖) be a real Banach space with a solid cone C and
let {un} ⊂ C be a sequence. We say that {un} is a c-sequence if, for every c ∈ Int(C), there exists n(c) ∈N

such that un � c for all n > n(c).

Remark 2.6. Let (X,d) be a rectangular cone metric space over a solid cone C, {un} ⊂ X and u ∈ X. Then

(i) the sequence {un} converges to u if and only if {d(un,u)} is a c-sequence;

(ii) if there exists a c-sequence {vn} such that d(um,un) � vm for all m ∈ N and n > m, then {un} is a
Cauchy sequence.

Remark 2.7. Let C be a solid cone in a real Banach space (E, ‖ · ‖) and {un} be a sequence in C. Then the
following conditions are equivalent

(i) {un} is a c-sequence;

(ii) there exists a sequence {vn} ⊂ Int(C) such that vn → θ as n→ +∞, and for any n ∈N, there exists
k(n) ∈N such that um � vn for each m > k(n).

Proof. (i)⇒ (ii). We choose vn = c/n for all n ∈N, where c ∈ Int(C) is fixed.
(ii)⇒ (i). We use (jjj) of Lemma 2.4.

3. Main results

In this section we prove our main results. We start with some auxiliary notions and results. Let X be
a non-empty set, and f,g : X → X be mappings such that fX ⊂ gX. Let u0 ∈ X be arbitrary and let {f un}
be the sequence defined by gun = fun−1 for all n ∈ N. Moreover, we assume that if fun = fun+p, for
some p ∈ N, then we choose un+p+1 = un+1. This can be done, since fX ⊂ gX. Here, we call {fun} a
f-g-sequence starting at u0 (Vetro [23]). We say that the mapping f is g-continuous if fun

c−→ fu whenever
gun

c−→ gu for all u ∈ X. Also, if ξ = fu = gu for some u ∈ X, then u is a coincidence point of f and g,
and ξ is a point of coincidence of f and g. Moreover, if ξ = fξ = gξ, then ξ is a common fixed point of f
and g. Finally, if fgν = gfν, whenever fν = gν for some ν ∈ X, then f and g are weakly compatible.

Let (E, ‖ · ‖) be a real Banach space. We write B(E) for the set of all bounded linear operators on E and
L(E) for the set of all linear operators on E. B(E) is a Banach algebra. If A ∈ B(E), we denote by

ρ(A) = lim ‖An‖1/n = inf ‖An‖1/n

the spectral radius of A. Let us remark that if ρ(A) < 1, the series
∑+∞

n=0A
n is absolutely convergent,

consequently, ‖An‖ → 0 as n→ +∞. Further, I−A is invertible in B(E) and
+∞∑
n=0

An = (I−A)−1.

Moreover, if ‖A‖ < 1 then ρ(A) < 1 and again I−A is invertible and

‖(I−A)−1‖ 6 1
1 − ‖A‖

as well as ρ((I−A)−1) 6
1

1 − ρ(A)
.

Also, we have that (I−A)−1 is nondecreasing if A is nondecreasing.
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Lemma 3.1 (Cvetković-Rakočević [8], Lemma 3.2). Let (E, ‖ · ‖) be a real Banach space, C ⊂ E be a cone and let
A ∈ L(E). The following conditions are equivalent:

(i) A is nondecreasing, that is, u � v implies A(u) � A(v);

(ii) A is positive, that is, A(C) ⊂ C.

Proof. (i)⇒ (ii). If A is nondecreasing, then for each c ∈ C, we have θ = A(θ) � A(c). Thus, A(C) ⊂ C.
(ii)⇒ (i). Let u, v ∈ E such that u � v. This implies v−u ∈ C and soA(v−u) ∈ C, that is, A(u) � A(v).

For the following result see Lemma 2 of Shukla-Balasubramanian-Pavlović [22].

Lemma 3.2. Let (E, ‖ · ‖) be a real Banach space and C ⊂ E be a solid cone. Let A ∈ L(E) be such that A(C) ⊂ C
and ρ (A) < 1. Then the following properties hold:

(i) if a ∈ C is such that a � A(a), then a = θ;

(ii) ρ(Am) < 1 for any fixed m ∈N.

Proof. (i). We notice that (I−A)−1 exists and, further, (I−A)−1 is nondecreasing. Then, from (I−A)(a) �
θ, it follows a = (I−A)−1 (I−A) (a) � (I−A)−1 (θ) = θ. Taking into account that a ∈ C, we have a = θ.

(ii). Since ρ(A) < 1, we have

ρ (Am) = lim
n→+∞ ‖(Am)n‖

1
n = lim

n→+∞ ‖(An)m‖
1
n

6 lim
n→+∞

(
‖An‖

1
n

)m
=

(
lim

n→+∞ ‖An‖
1
n

)m

= (ρ (A))m < 1.

Lemma 3.3. Let (E, ‖ · ‖) be a real Banach space, C ⊂ E be a solid cone, A ∈ B(E) be a nondecreasing operator and
{un} ⊂ C be a c-sequence. Then A(un) is a c-sequence.

Proof. By Remark 2.7, there exists a sequence {vn} ⊂ Int(C) with vn → θ as n→ +∞, and k(n) ∈N such
that um � vn for each m > k(n). Thus A (um) � A (vn) for each m > k(n). Since A (vn)→ θ as n→ +∞,
by (jjj) of Lemma 2.4, it follows that A (vn) is a c-sequence and, consequently, A (un) is a c-sequence.

Lemma 3.4. Let (X,d) be a rectangular cone metric space and {un} ⊂ X be a sequence such that

(i) {d(un,un+1)} is a c-sequence;

(ii) un 6= um whenever n 6= m;

(ii) u, v /∈ {un : n ∈N}.

If {un} converges to both u and v, then u = v.

Proof. From
d(u, v) � d(u,un) + d(un,un+1) + d(un+1, v),

taking into account that {d(u,un) + d(un,un+1) + d(un+1, v)} is a c-sequence, by using (jj) of Lemma 2.4,
we deduce d(u, v) = θ, that is, u = v.

Now, we give the definition of g-contraction of Perov type in the framework of rectangular cone metric
spaces over solid cone.

Definition 3.5. Let (X,d) be a rectangular cone metric space and let f,g : X → X be two mappings. f is
called a g-contraction of Perov type if there exists A ∈ B (E) with ρ (A) < 1 such that

d (fu, fv) � A (d(gu,gv)) for all u, v ∈ X. (3.1)
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Theorem 3.6. Let (X,d) be a rectangular cone metric space over a solid cone C and let f,g : X → X be such that
fX ⊂ gX. If f is a g-contraction of Perov type with A (C) ⊂ C and at least one of fX or gX is a complete subset of
X, then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then they have
a unique common fixed point.

Proof. Let u0 ∈ X and {fun} be a f-g-sequence starting at u0. If fuk−1 = fuk for some k ∈ N, from fuk =
fuk−1 = guk, we get that fuk is a point of coincidence of f and g. Therefore, we can suppose fun−1 6= fun
for all n ∈N. First, we prove that fun 6= fum for all n,m ∈N with n 6= m. Proceeding by contradiction,
suppose that there exist n,p ∈N such that fun = fun+p with p > 2. Then fun+1 = fun+p+1. Now, using
(3.1), we obtain

d(fun, fun+1) = d(fun+p, fun+p+1) � A(d(gun+p,gun+p+1)) = A(d(fun+p−1, fun+p)).

From the previous inequality, we get

d(fun, fun+1) � Ap(d(fun, fun+1)).

Further, using Lemma 3.2, we get d(fun, fun+1) = θ which is a contradiction since fun 6= fun+1. Thus
fun 6= fum for all n,m ∈N with n 6= m.

Now, we show that {fun} is a Cauchy sequence. Using (3.1), with u = un and v = un+1, we get

d(fun, fun+1) � A(d(gun,gun+1)) = A(d(fun−1, fun)) for all n ∈N.

Again, using (3.1) with u = un and v = un+2, we have

d(fun, fun+2) � A(d(gun,gun+2)) = A(d(fun−1, fun+1)) for all n ∈N.

Since A is nondecreasing, from the previous inequalities, we obtain

d(fun, fun+1) � An(d(fu0, fu1)) and d(fun, fun+2) � An(d(fu0, fu2)) for all n ∈N.

Let n,m ∈N with n > m. If n−m is odd, by using the rectangular inequality, we get

d(fum, fun) � d(fum, fum+1) + d(fum+1, fum+2) + · · ·+ d(fun−1, fun)

� (Am +Am+1 + · · ·+An−1)(d(fu0, fu1))

� Am(I−A)−1(d(fu0, fu1)).

From ‖Am(I−A)−1(d(fu0, fu1))‖ 6 ‖Am‖‖(I−A)−1(d(fu0, fu1))‖ → 0 for m → +∞, we deduce that
Am((I−A)−1(d(fu0, fu1)))→ θ as m→ +∞. Therefore, by (jjj) of Lemma 2.4, we have that the sequence
{Am((I−A)−1(d(fu0, fu1)))} is a c-sequence and so, by (ii) of Remark 2.6, we conclude that {fun} is a
Cauchy sequence.

If n−m is even, by the rectangular inequality, we have

d(fum, fun) � d(fum, fum+1) + · · ·+ d(fun−3, fun−2) + d(fun−2, fun)

� (Am +Am+1 + · · ·+An−3)(d(fu0, fu1)) +A
n−2(d(fu0, fu2))

� Am(I−A)−1(d(fu0, fu1)) +A
n−2(d(fu0, fu2)).

Consequently, we get that {fun} is a Cauchy sequence. Taking into account that fX ⊂ gX and one between
fX and gX is complete, we deduce that the sequence {fun} converges to a point ξ = gζ ∈ gX. Now we
show that fζ = ξ. If fζ 6= ξ, from fun 6= fum whenever n 6= m, we get that there exists n(ξ) ∈ N such
that

ξ 6= fun 6= fun+1 6= fζ for all n > n(ξ).
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Thus, for all n > n(ξ), we have

d(ξ, fζ) � d(ξ, fun) + d(fun, fun+1) + d(fun+1, fζ) (3.2)
� d(ξ, fun) + d(fun, fun+1) +A(d(gun+1,gζ)).

Taking into account that, by Lemma 3.3, d(ξ, fun) + d(fun, fun+1) +A(d(gun+1,gζ) is a c-sequence, by
(3.2) we deduce that d(ξ, fζ) = θ, that is, ξ = fζ and hence ξ is a point of coincidence of f and g.

Now, we must only prove that f and g have a unique point of coincidence in X. We suppose that ν 6= ξ
is another point of coincidence. This implies that there is ω ∈ X with fω = gω = ν. Hence, we have

d(ξ,ν) = d(fζ, fω) � A(d(gξ,gω)) = A(d(ξ,ν)).

Using (i) of Lemma 3.2, we deduce that ξ = ν, that is, f and g have a unique point of coincidence.
Taking into account that ξ is the unique point of coincidence of f and g and, further, f and g are weakly
compatible that implies fξ is a point of coincidence, since fξ = fgζ = gfζ = gξ, we get ξ = fξ = gξ. Thus
ξ is the unique common fixed point of f and g.

4. α-contraction of Perov type

In this section, we consider α-admissible mappings (see Kumam-Vetro-Vetro [14], Samet-Vetro-Vetro
[20]) and introduce the notion of α-g-contraction of Perov type in the setting of rectangular cone metric
spaces. For this class of contractions, we give again results of existence and uniqueness of points of
coincidence and common fixed points. In the sequel (E, ‖ · ‖) is a real Banach space.

Definition 4.1. Let (X,d) be a rectangular cone metric space and let f,g : X → X be two mappings. f is
called an α-g-contraction of Perov type if there exist a function α : X× X → [0,+∞) and A ∈ B (E) with
ρ (A) < 1 such that

d (fu, fv) � A (d(gu,gv)) (4.1)

for all u, v ∈ X with α(gu,gv) > 1.

Remark 4.2. Let f,g : X → X be two mappings. If f : X → X is a g-contraction of Perov type, then f is an
α-g-contraction of Perov type where α(u, v) = 1 for all u, v ∈ X.

Definition 4.3. Let f,g : X→ X and α : X×X→ [0,+∞). We say that f is α-g-admissible if

for u, v ∈ X with gu 6= gv, α(gu,gv) > 1 implies α(fu, fv) > 1.

Example 4.4. Let X = (0,+∞). Define f,g : X→ X and α : X×X→ [0,+∞) as follows

fu = eu + lnu, gu = 2u for all u ∈ X,

and, for u, v ∈ X,

α(u, v) =

{
3, if u > v,
0, if u < v.

Then, f is α-g-admissible.

Our first result is the following theorem for a g-continuous mapping.

Theorem 4.5. Let (X,d) be a rectangular cone metric space over a solid cone C and let f,g : X → X be such that
fX ⊂ gX and at least one of fX or gX is a complete subset of X. Suppose that f is an α-g-contraction of Perov type
with respect to one function α : X×X→ [0,+∞) and A(C) ⊂ C. Assume that the following conditions hold:

(i) there exists u0 ∈ X such that α(gu0, fu0) > 1;
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(ii) f is α-g-admissible;

(iii) if {un} ⊂ X is a sequence such that α(gun,gun+1) > 1 for all n ∈ N, then α(gun,gun+2) > 1 for all
n ∈N;

(iv) f is g-continuous.

Then f and g have a point of coincidence in X.

Proof. Let u0 ∈ X be such that α(gu0, fu0) > 1 (see (i)) and let {fun} be a f-g-sequence starting at u0. If
fuk−1 = fuk for some k ∈N, from fuk = fuk−1 = guk, we get that fuk is a point of coincidence of f and
g. Therefore, we can suppose fun−1 6= fun for all n ∈ N. It is important to note that conditions (i) and
(ii) ensure that

α(gun,gun+1) > 1 for all n ∈N. (4.2)

First, proceeding as in the proof of Theorem 3.6, using (4.2), we deduce that fun 6= fum for all n,m ∈ N

with n 6= m. Next, using (4.1) with u = un and v = un+1, we get

d(fun, fun+1) � A(d(gun,gun+1)) = A(d(fun−1, fun)) for all n ∈N. (4.3)

By (iii) and (4.2), we deduce that α(gun,gun+2) > 1 for all n ∈ N. Thus, using (4.1) with u = un and
v = un+2, we obtain

d(fun, fun+2) � A(d(gun,gun+2)) = A(d(fun−1, fun+1)) for all n ∈N. (4.4)

Proceeding as in the proof of Theorem 3.6, using (4.3) and (4.4), we deduce that {fun} is a Cauchy
sequence. Taking into account that fX ⊂ gX and one between fX and gX is complete, we obtain that the
sequence {fun}, or equivalently, {gun} converges to a point ξ = gζ ∈ gX. Now, we show that fζ = ξ.
Assume that fζ 6= ξ. Since f is g-continuous and gun

c−→ gζ, then fun
c−→ fζ. By Lemma 3.4, from

fun
c−→ fζ and fun

c−→ ξ,

we obtain ξ = fζ, which is a contradiction, and so ξ is a point of coincidence of f and g.

In the next theorem, we omit the g-continuity hypothesis of f.

Theorem 4.6. Let (X,d) be a rectangular cone metric space over a solid cone C and let f,g : X → X be such that
fX ⊂ gX and at least one of fX or gX is a complete subset of X. Suppose that f is an α-g-contraction of Perov type
with respect to one function α : X×X→ [0,+∞) and A(C) ⊂ C. Assume that the following conditions hold:

(i) there exists u0 ∈ X such that α(gu0, fu0) > 1;

(ii) f is α-g-admissible;

(iii) if {un} ⊂ X is a sequence such that α(gun,gun+1) > 1 for all n ∈ N, then α(gun,gun+2) > 1 for all
n ∈N;

(iv) if {un} is a sequence in X such that α(gun,gun+1) > 1 for all n ∈ N and gun
c−→ gu ∈ X as n → +∞,

then α(gun,gu) > 1 for all n ∈N.

Then f and g have a point of coincidence in X.

Proof. Let u0 ∈ X be such that α(gu0, fu0) > 1 (see (i)) and let {fun} be a f-g-sequence starting at u0. If
fuk−1 = fuk for some k ∈N, from fuk = fuk−1 = guk, we get that fuk is a point of coincidence of f and
g. Therefore, we suppose fun−1 6= fun for all n ∈N. By conditions (i) and (ii) we have

α(gun,gun+1) > 1 for all n ∈N. (4.5)
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First, proceeding as in the proof of Theorem 3.6, using (4.5), we deduce that fun 6= fum for all n,m ∈ N

with n 6= m. Next, using (4.1) with u = un and v = un+1, we get

d(fun, fun+1) � A(d(gun,gun+1)) = A(d(fun−1, fun)) for all n ∈N. (4.6)

By (iii) and (4.5), we deduce that α(gun,gun+2) > 1 for all n ∈ N. Then, using (4.1) with u = un and
v = un+2, we obtain

d(fun, fun+2) � A(d(gun,gun+2)) = A(d(fun−1, fun+1)) for all n ∈N. (4.7)

Proceeding as in the proof of Theorem 3.6, using (4.6) and (4.7), we deduce that {fun} is a Cauchy
sequence. Taking into account that fX ⊂ gX and one between fX and gX is complete, we deduce that
the sequence {fun}, or equivalently, {gun} converges to a point ξ = gζ ∈ gX. Now, we show that fζ = ξ.
Assume that fζ 6= ξ. The hypothesis (iv) ensures that α(gun,gζ) > 1 for all n ∈ N. Using (4.1) with
u = un and v = ζ, we obtain

d(fun, fζ) � A(d(gun,gζ)) for all n ∈N.

Since {d(gun,gζ)} is a c-sequence, we deduce that {d(fun, fζ)} is a c-sequence, that is, fun
c−→ fζ. By

Lemma 3.4, from
fun

c−→ fζ and fun
c−→ ξ,

we obtain ξ = fζ, which is a contradiction, and hence ξ is a point of coincidence of f and g.

In order to assure the uniqueness of the point of coincidence, we will consider the following hypoth-
esis.

(H): For all u, v ∈ X with gu 6= gv, there exists z ∈ X such that α(gu,gz) > 1, α(gv,gz) > 1, and
α(gz, fz) > 1.

Theorem 4.7. Adding condition (H) to the hypotheses of Theorem 4.5 (resp. Theorem 4.6) we obtain the uniqueness
of the point of coincidence of f and g. Moreover, if f and g are weakly compatible, then they have a unique common
fixed point.

Proof. Suppose that ξ and ζ are two points of coincidence of f and g with ξ 6= ζ. Then there exist
u, v ∈ X, with gu 6= gv, such that ξ = fu = gu and ζ = fv = gv. From (H) there exists z ∈ X such that
α(gu,gz) > 1 and α(gv,gz) > 1. Let {fzn} be a f-g-sequence starting at z0 = z. From α(gu,gz0) > 1
and α(gv,gz0) > 1, using that f is α-g-admissible, we have respectively α(fu, fz0) = α(gu,gz1) > 1 and
α(fv, fz0) = α(gv,gz1) > 1. Iterating this process, we obtain

α(gu,gzn) > 1 and α(gv,gzn) > 1 for all n ∈N.

Using (4.1) with v = zn, we get

d(fu, fzn) � A(d(gu,gzn)) = A(d(fu, fzn−1)) for all n ∈N. (4.8)

d(fv, fzn) � A(d(gv,gzn)) = A(d(fv, fzn−1)) for all n ∈N. (4.9)

If fzm−1 = fzm for some m ∈N, by (4.8) and (4.9), we have

d(fu, fzm−1) = d(fu, fzm) � A(d(fu, fzm−1))

and
d(fv, fzm−1) = d(fv, fzm) � A(d(fv, fzm−1)),



F. Tchier, C. Vetro, F. Vetro, J. Nonlinear Sci. Appl., 10 (2017), 4307–4317 4315

which imply fu = fzm−1 = fv ((i) of Lemma 3.2). This is a contradiction, since fu 6= fv. Consequently,
fzn−1 6= fzn for all n ∈ N. Moreover, fu 6= fzn−1 for all n ∈ N. In fact, if fu = fzn−1 = gzn, from
α(gv, fu) = α(gv,gzn) > 1, using (4.1), we obtain

d(fv, fu) � A(d(gv,gu)) = A(d(fv, fu)).
This implies fv = fu that is a contradiction. Then fzn 6= fu, fv for all n ∈N. Since A is nondecreasing, by
(4.8) and (4.9), we obtain

d(fu, fzn) � An(d(fu, fz0)) and d(fv, fzn) � An(d(fv, fz0)) for all n ∈N.

The previous inequalities ensure that {d(fu, fzn)} and {d(fv, fzn)} are c-sequences. Since z satisfies the
condition α(gz, fz) > 1, we have that {d(fzn, fzn+1)} is a c-sequence. Thus from

d(fu, fv) � d(fu, fzn) + d(fzn, fzn+1) + d(fzn+1, fv),

we obtain fu = fv that is a contradiction. It follows that ξ is the unique point of coincidence of f and g.
Now, suppose that the mappings f and g are weakly compatible. Taking into account that ξ = fζ = gζ

is the unique point of coincidence of f and g and, further, f and g are weakly compatible that implies fξ
is a point of coincidence of f and g, since fξ = fgζ = gfζ = gξ, we get ξ = fξ = gξ. Thus ξ is the unique
common fixed point of f and g.

5. Applications

In this section we give two examples of functions α with the properties involved in Theorems 4.5-4.7.

5.1. Ordered rectangular cone metric space
Let (X,d) be a rectangular cone metric space over a solid cone C ⊂ E, where (E, ‖ · ‖) is a real Banach

space, and let f,g : X→ X be such that fX ⊂ gX. If X is equipped with a partial order -, then (X,d,-) is
an ordered rectangular cone metric space. In this case we consider a function α : X×X→ [0,+∞) defined
by

α(u, v) =

{
1, if u - v,
0, otherwise.

(5.1)

Now, we consider the following conditions:

(a) there exists u0 ∈ X such that gu0 - fu0;

(b) f is g-nondecreasing, that is, fu - fv whenever gu - gv for all u, v ∈ X;

(c) if {un} is a sequence in X such that gun - gun+1 for all n and gun
c−→ gu ∈ X as n → +∞, then

gun - gu for all n ∈N.

If condition (a) holds, then the function α given by (5.1) has the property (i) of Theorem 4.6. If (b) holds,
then α has the property (ii) of Theorem 4.6. If (c) holds, then α has the property (iv) of Theorem 4.6.
Clearly, α always satisfies the property (iii) of Theorem 4.6. Moreover, the function α satisfies condition
(H) if the partial order - has the following property:

(H(-)): for all u, v ∈ X with gu 6= gv, there exists z ∈ X such that gu - gz, gv - gz and gz - fz.

Using Theorems 4.6-4.7, we give the following result in the setting of ordered rectangular cone metric
spaces.

Theorem 5.1. Let (X,d,-) be an ordered rectangular cone metric space over a solid cone C and let f,g : X → X

be such that fX ⊂ gX and at least one of fX or gX is a complete subset of X. Suppose that there exists an operator
A ∈ B (E) with ρ (A) < 1 and A(C) ⊂ C such that

d (fu, fv) � A (d(gu,gv)) for all u, v ∈ X with gu - gv.

If conditions (a)-(c) hold, then f and g have a point of coincidence in X. If also (H(-)) holds the point of coincidence
is unique. Moreover, if f and g are weakly compatible, then they have a unique common fixed point.
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5.2. Graph rectangular cone metric space
Definition 5.2. A graph G is an ordered pair (V ,E), where V is a set and E ⊂ V × V is a binary relation.
We say that V is the vertex set and E is the edge set.

Definition 5.3. Let G = (V ,E) be a graph, D be a subset of V , and f,g : V → V be two mappings. We say
that D is G-directed with respect to f and g if for every u, v ∈ D with gu 6= gv, there exists z ∈ V such
that (gu,gz), (gv,gz), (gz, fz) ∈ E.

Definition 5.4. Le f,g : V → V be two mappings. We say that f is g-G-monotone if (gu,gv) ∈ E implies
(fu, fv) ∈ E for all u, v ∈ X with gu 6= gv.

If X is equipped with a graph G = (X,E), then (X,d,G) is a graph rectangular cone metric space. In
this case we consider a function α : X×X→ [0,+∞) defined by

α(u, v) =

{
1, if (u, v) ∈ E,
0, otherwise.

(5.2)

Now, we consider the following conditions:

(a) there exists u0 ∈ X such that (gu0, fu0) ∈ E;

(b) f is g-G-monotone;

(c) if {un} ⊂ X is a sequence such that (gun,gun+1) ∈ E for all n ∈ N, then (gun,gun+2) ∈ E for all
n ∈N;

(d) if {un} ⊂ X is a sequence such that (gun,gun+1) ∈ E for all n ∈N and gun
c−→ gu ∈ X as n→ +∞,

then (gun,gu) ∈ E for all n ∈N.

If condition (a) holds, then the function α given by (5.2) has the property (i) of Theorem 4.6. If (b) holds,
then α has the property (ii) of Theorem 4.6. If (c) holds, then α has the property (iii) of Theorem 4.6.
Clearly, α has the property (iv) whenever (d) holds. Moreover, the function α satisfies condition (H) if X
is G-directed with respect to f and g.

Using Theorems 4.6-4.7, we deduce the following result in the setting of graph rectangular cone metric
spaces.

Theorem 5.5. Let (X,d,G) be a graph rectangular cone metric space over a solid cone C and let f,g : X → X be
such that fX ⊂ gX and at least one of fX or gX is a complete subset of X. Suppose that there exists an operator
A ∈ B (E) with ρ (A) < 1 and A(C) ⊂ C such that

d (fu, fv) � A (d(gu,gv)) for all u, v ∈ X with (gu,gv) ∈ E.

If conditions (a)-(d) hold, then f and g have a point of coincidence in X. If also X is G-directed with respect to f
and g, then the point of coincidence is unique. Moreover, if f and g are weakly compatible, then they have a unique
common fixed point.
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