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Abstract

The aim of this paper is to define generalized (α-η)-Θ contraction and to extend the results of Jleli and Samet [M. Jleli,
B. Samet, J. Inequal. Appl., 2014 (2014), 8 pages] by applying a simple condition on the function Θ. We also deduce certain
fixed and periodic point results for orbitally continuous generalized Θ-contractions and certain fixed point results for integral
inequalities are derived. Finally, we provide an example to show the significance of the investigation of this paper. c©2017 All
rights reserved.
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1. Introduction and preliminaries

Banach’s contraction principle [8] is one of the pivotal results of analysis. It establishes that, given a
mapping F on a complete metric space (X,d) into itself and a constant k ∈ (0, 1) such that

d(Fx, Fy) 6 kd(x,y),

holds for all x,y ∈ X. Then F has a unique fixed point in X.
Due to its importance and simplicity, several authors have obtained many interesting extensions and

generalizations of the Banach contraction principle (see [1–13, 17] and references therein). In 2012, Samet
et al. [21] introduced the concepts of α-ψ-contractive and α-admissible mappings and established various
fixed point theorems for such mappings defined on complete metric spaces.

Definition 1.1 ([21]). Let F be a self-mapping on X and α : X× X → [0,+∞) be a function. We say that F
is an α-admissible mapping if

x,y ∈ X, α(x,y) > 1 =⇒ α(Fx, Fy) > 1.
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Afterwards Salimi et al. [20] and Hussain et al. [15, 16] modified the notions of α-admissible mappings
and established certain fixed point theorems.

Definition 1.2 ([20]). Let F be a self-mapping on X and α,η : X× X → [0,+∞) be two functions. We say
that F is an α-admissible mapping with respect to η if

x,y ∈ X, α(x,y) > η(x,y) =⇒ α(Fx, Fy) > η(Fx, Fy).

Note that if we take η(x,y) = 1 then this definition reduces to Definition 1.1. Also, if we take α(x,y) = 1,
then we say that F is an η-subadmissible mapping.

Definition 1.3 ([16]). Let (X,d) be a metric space. Let α,η : X× X → [0,∞) and F : X → X be functions.
We say F is an α-η-continuous mapping on (X,d), if for given x ∈ X and sequence {xn} with

xn → x asn→∞, α(xn, xn+1) > η(xn, xn+1) ∀n ∈N =⇒ Fxn → Fx.

A mapping F : X→X is called orbitally continuous at p∈X if limn→∞ Fnx = p implies that limn→∞ FFnx =
Fp. The mapping F is orbitally continuous on X if F is orbitally continuous for all p ∈ X.

Remark 1.4 ([16]). Let F : X → X be a self-mapping on an orbitally F-complete metric space X. Define
α,η : X×X→ [0,+∞) by

α(x,y) =
{

3, if x,y ∈ O(w),
0, otherwise, and η(x,y) = 1,

where O(w) is an orbit of a point w ∈ X. If F : X → X is an orbitally continuous map on (X,d), then F is
α-η-continuous on (X,d).

Very recently, Jleli and Samet [19] introduced a new type of contraction called Θ-contraction and
established some new fixed point theorems for such contraction in the context of generalized metric
spaces.

Definition 1.5. Let Θ : (0,∞)→ (1,∞) be a function satisfying:

(Θ1) Θ is nondecreasing;

(Θ2) for each sequence {αn} ⊆ R+, limn→∞Θ(αn) = 1 if and only if limn→∞(αn) = 0;

(Θ3) there exist 0 < k < 1 and l ∈ (0,∞] such that limα→0+
Θ(α)−1
αk

= l.

A mapping F : X → X is said to be Θ-contraction if there exist the function Θ satisfying (Θ1)-(Θ3) and
a constant k ∈ (0, 1) such that for all x,y ∈ X,

d(Fx, Fy) 6= 0 =⇒ Θ(d(Fx, Fy)) 6 [Θ(d(x,y))]k.

Theorem 1.6 ([19]). Let (X,d) be a complete metric space and F : X → X be a Θ-contraction, then F has a unique
fixed point.

They showed that any Banach contraction is a particular case of Θ-contraction while there are Θ-
contractions which are not Banach contractions. To be consistent with Jleli et al. [19], we denote by the Ψ
set of all functions Θ : (0,∞)→ (1,∞) satisfying the above conditions (Θ1)-(Θ3).

Hussain et al. [17] modified and extended the above result and proved the following fixed point
theorem for generalized Θ-contractive condition in the setting of complete metric spaces.

Theorem 1.7 ([17]). Let (X,d) be a complete metric space and F : X→ X be a self-mapping. If there exist a function
Θ ∈ Ψ and positive real numbers α,β,γ, δ with 0 6 α+β+ γ+ 2δ < 1 such that

Θ(d(Fx, Fy)) 6 [Θ(d(x,y))]α · [Θ(d(x, Fx))]β

· [Θ(d(y, Fy))]γ · [Θ((d(x, Fy) + d(y, Fx))]δ

for all x,y ∈ X, then F has a unique fixed point.
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Very recently, Ahmad et al. [2, 7] used the following weaker condition instead of the condition (Θ3) in
Definition 1.5.

(Θ
′
3) Θ is continuous on (0,∞).

Consistent with Ahmad et al. [2], we denote by Ω the set of all functions satisfying the conditions
(Θ1), (Θ2) and (Θ

′
3).

Example 1.8 ([2]). Let Θ1(t) = e
√
t, Θ2(t) = e

√
tet , Θ3(t) = et, Θ4(t) = cosh t, Θ5(t) = 1 + ln(1 + t) and

Θ6(t) = e
tet for all t > 0. Then Θ1,Θ2,Θ3,Θ4,Θ5,Θ6 ∈ Ω.

Example 1.9 ([2]). Note that the conditions Θ3 and Θ
′
3 are independent of each other. Indeed, for p > 1,

Θ(t) = et
p

satisfies the conditions (Θ1) and (Θ2) but it does not satisfy (Θ3), while it satisfies the condition
(Θ
′
3). Therefore Ω 6⊆ Ψ. Again for p > 1, m ∈ (0, 1

p) Θ(t) = 1 + tm(1 + [t]) where [t] denotes the integral
part of t, satisfies the conditions (Θ1) and (Θ2) but it does not satisfy (Θ

′
3), while it satisfies the condition

(Θ3) for any k ∈ ( 1
p , 1). Therefore Ψ 6⊆ Ω. Also, if we take Θ(t) = e

√
t, then Θ ∈ Ψ and Θ ∈ Ω. Therefore

Ψ∩Ω 6= ∅.

In this paper, we apply the same weaker condition (Θ
′
3) to obtain some new fixed point theorems in

the context of complete metric spaces.

2. Main results

In this section, we define α-η-Θ-contraction for a new family of functions Ω and establish certain fixed
point theorems in the context of complete metric spaces.

Definition 2.1. Let (X,d) be a metric space and F be a self-mapping on X. Also suppose that α,η : X×X→
[0,+∞) be two functions. We say that F is α-η-Θ-contraction if for x,y ∈ X with η(x, Fx) 6 α(x,y) and
d(Fx, Fy) > 0, we have

Θ(d(Fx, Fy)) 6
[
Θ(d(x,y))

]k,

where Θ ∈ Ω and k ∈ (0, 1).

Theorem 2.2. Let (X,d) be a complete metric space. Let F : X → X be a self-mapping satisfying the following
assertions:

(i) F is α-admissible mapping with respect to η;

(ii) F is α-η-Θ-contraction;

(iii) there exists x0 ∈ X such that α(x0, Fx0) > η(x0, Fx0);

(iv) F is α-η-continuous.

Then F has a fixed point. Moreover, F has a unique fixed point when α(x,y) > η(x, x) for all x,y ∈ Fix(T).

Proof. Let x0 ∈ X such that α(x0, Fx0) > η(x0, Fx0). For such x0, we define the sequence {xn} by xn =
Fnx0 = Fxn−1. Now, since F is α-admissible mapping with respect to η, then α(x0, x1) = α(x0, Fx0) >
η(x0, Fx0) = η(x0, x1). By continuing this process we have

η(xn−1, Fxn−1) = η(xn−1, xn) 6 α(xn−1, xn),

for all n ∈ N. If there exists n0 ∈ N such that xn0 = xn0+1, then xn0 is a fixed point of F and we
have nothing to prove. Hence, we assume, xn 6= xn+1 or d(Fxn−1, Fxn) > 0 for all n ∈ N. Since, F is
α-η-Θ-contraction, so we have

1 < Θ(d(xn, xn+1)) = Θ(d(Fxn−1, Fxn)) 6 [Θ(d(xn−1, xn))]k
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= [Θ(d(Fxn−2, Fxn−1))]
k 6 [Θ(d(xn−2, xn−1))]

k2

...

6 [Θ(d(x0, x1))]
kn

for all n ∈N. Since Θ ∈ Ω, so by taking limit as n→∞ in above inequality, we have

lim
n→∞Θ(d(xn, xn+1)) = 1.

By (Θ2), we have
lim
n→∞d(xn, xn+1) = 0. (2.1)

Now, we claim that {xn}
∞
n=1 is a Cauchy sequence. We suppose on the contrary that {xn}

∞
n=1 is not

a Cauchy sequence, then we assume that there exist ε > 0 and sequences {p(n)}∞n=1 and {q(n)}∞n=1 of
natural numbers such that for p(n) > q(n) > n, we have

d(xp(n), xq(n)) > ε.

Then
d(xp(n)−1, xq(n)) < ε (2.2)

for all n ∈N. So, by triangle inequality and (2.2), we have

ε 6 d(xp(n), xq(n)) 6 d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n)) 6 d(xp(n)−1, xp(n)) + ε.

By taking the limit and using inequality (2.2), we get

lim
n→∞d(xp(n), xq(n)) = ε. (2.3)

From (2.1), we can choose a natural number n0 ∈N such that

d(xp(n), xp(n)+1) <
ε

4
and d(xq(n), xq(n)+1) <

ε

4
(2.4)

for all n > n0. Next, we claim that Fxp(n) 6= Fxq(n) for all n > n0, that is

d(xp(n)+1, xq(n)+1) = d(Fxp(n), Fxq(n)) > 0. (2.5)

Arguing by contradiction, there exists N0 > n0 such that d(xp(n)+1, xq(n)+1) = 0. It follows from (2.1),
(2.4), and (2.5) that

ε 6 d(xp(n), xq(n)) 6 d(xp(n), xp(n)+1) + d(xp(n)+1, xq(n)+1) + d(xp(n)+1, xq(n))

6
ε

4
+ 0 +

ε

4
=
ε

2
,

a contradiction. Thus the relation (2.4) holds. Then by the assumption, we get

Θ(d(Fxp(n), Fxq(n))) 6 [Θ(d(xp(n), xq(n)))]
k. (2.6)

By taking limit as n→ +∞ and using (Θ
′
3), (2.3) and (2.6), we get

Θ(ε) 6 [Θ(ε)]k,

which is a contradiction. Thus {xn} is a Cauchy sequence. Completeness of X ensures that there exists
z ∈ X such that xn → z as n→∞. Now, since F is α-η-continuous and η(xn−1, xn) 6 α(xn−1, xn), so

d(z, Fz) = lim
n→∞d(xn, Fxn) = lim

n→∞d(xn, xn+1) = d(z, z) = 0.
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Hence, z is a fixed point of F. Now we show the uniqueness of fixed point. We suppose on the contrary
that there exists another fixed point u of F distinct from z, that is

Fz = z 6= u = Fu that is Fz 6= Fu.

Then from assumption of theorem, we obtain

Θ(d(z,u)) = Θ(d(Fz, Fu)) 6 [Θ(d(z,u))]k,

which is contradiction because k ∈ (0, 1). Thus z is the unique fixed point of F.

Theorem 2.3. Let (X,d) be a complete metric space. Let F : X → X be a self-mapping satisfying the following
assertions:

(i) F is an α-admissible mapping with respect to η;

(ii) F is α-η-Θ-contraction;

(iii) there exists x0 ∈ X such that α(x0, Fx0) > η(x0, Fx0);

(iv) if {xn} is a sequence in X such that α(xn, xn+1) > η(xn, xn+1) with xn → x as n→∞, then either

η(Fxn, F2xn) 6 α(Fxn, x), or η(F2xn, F3xn) 6 α(F
2xn, x),

holds for all n ∈N.

Then F has a fixed point. Moreover, F has a unique fixed point whenever α(x,y) > η(x, x) for all x,y ∈ Fix(T).

Proof. Let x0 ∈ X such that α(x0, Fx0) > η(x0, Fx0). As in proof of Theorem 2.2 we can conclude that

α(xn, xn+1) > η(xn, xn+1) and xn → x∗ as n→∞,

where, xn+1 = Txn. So, from (iv), either

η(Fxn, F2xn) 6 α(Fxn, x∗) or η(F2xn, F3xn) 6 α(F
2xn, x∗),

holds for all n ∈N. This implies

η(xn+1, xn+2) 6 α(xn+1, x) or η(xn+2, xn+3) 6 α(xn+2, x),

holds for all n ∈N. Equivalently, there exists a subsequence {xnk} of {xn} such that

η(xnk , Fxnk) = η(xnk , xnk+1) 6 α(xnk , x∗), (2.7)

and so from (2.7) we deduce that

Θ(d(Fxnk , Fx∗)) 6 [Θ(d(xnk , x∗))]λ < Θ(d(xnk , x∗)).

From (Θ1) we have
d(xnk+1, Fx∗) < d(xnk , x∗).

By taking limit as k→∞ in the above inequality we get d(x∗, Fx∗) = 0, i.e., x∗ = Fx∗. Uniqueness follows
similarly as in Theorem 2.2.

Taking α(x,y) = η(x,y) = 1 for all x,y ∈ X, then we deduce the following result as corollary.
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Corollary 2.4. Let (X,d) be a complete metric space and F : X → X be a self-mapping. If for all x,y ∈ X with
d(Fx, Fy) > 0, we have

Θ
(
d(Fx, Fy)

)
6 [Θ

(
d(x,y)

)
]k,

where F ∈ Ω. Then F has a fixed point.

Recall that a self-mapping T is said to have the property P, if Fix(Tn) = F(T) for every n ∈N.

Theorem 2.5. Let (X,d) be a complete metric space and F : X→ X be an α-continuous self-mapping. Assume that
there exists some k ∈ (0, 1) such that

Θ
(
d(Fx, F2x)

)
6 [Θ

(
d(x, Fx)

)
]k, (2.8)

holds for all x ∈ X with d(Fx, F2x) > 0 where Θ ∈ Ω. If F is an α-admissible mapping and there exists x0 ∈ X such
that α(x0, Fx0) > 1, then F has the property P.

Proof. Let x0 ∈ X such that α(x0, Fx0) > 1. For such x0, we define the sequence {xn} by xn = Fnx0 = Fxn−1.
Now, since F is α-admissible mapping, so α(x1, x2) = α(Fx0, Fx1) > 1. By continuing this process, we have

α(xn−1, xn) > 1

for all n ∈ N. If there exists n0 ∈ N such that xn0 = xn0+1 = Fxn0 , then xn0 is fixed point of F and we
have nothing to prove. Hence, we assume, xn 6= xn+1 or d(Fxn−1, F2xn−1) > 0 for all n ∈ N ∪ {0}. From
(2.8) we have

1 < Θ
(
d(Fxn−1, F2xn−1)

)
6 [Θ

(
d(xn−1, Fxn−1)

)
]k,

which implies
1 < Θ

(
d(xn, xn+1)

)
6 [Θ

(
d(xn−1, xn)

)
]k,

and so
1 < Θ

(
d(xn, xn+1)

)
6 [Θ

(
d(xn−1, xn)

)
]k.

Therefore,

1 < Θ
(
d(xn, xn+1)

)
6 [Θ

(
d(xn−1, xn)

)
]k 6 [Θ

(
d(xn−2, xn−1)

)
]k

2
6 · · · 6 [Θ(d(x0, x1))]

kn .

By taking limit as n → ∞ in above inequality, we have limn→∞Θ(d(xn, xn+1)
)
= 1, and since Θ ∈ Ω we

obtain
lim
n→∞d(xn, xn+1) = 0. (2.9)

Now, we claim that {xn}
∞
n=1 is a Cauchy sequence. We suppose on the contrary that {xn}

∞
n=1 is not

Cauchy then we assume there exist ε > 0 and sequences {p(n)}∞n=1 and {q(n)}∞n=1 of natural numbers
such that for p(n) > q(n) > n, we have

d(xp(n), Fxq(n)−1) = d(xp(n), xq(n)) > ε. (2.10)

Then
d(xp(n)−1, Fxq(n)−1) < ε

for all n ∈N. So, by triangle inequality and (2.10), we have

ε 6 d(xp(n), Fxq(n)−1) 6 d(xp(n), xp(n)−1) + d(xp(n)−1, Fxq(n)−1) 6 d(xp(n), xp(n)−1) + ε.

By taking the limit and using inequality (2.9), we get

lim
n→∞d(xp(n), Fxq(n)−1) = ε.
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On the other hand, from (2.9) there exists a natural number n0 ∈N such that

d(xp(n), xp(n)+1) <
ε

4
and d(xq(n), xq(n)+1) <

ε

4
(2.11)

for all n > n0. Next, we claim that

d(Fxp(n), F
2xq(n)−1) = d(xp(n)+1, Fxq(n)) > 0 (2.12)

for all n > n0. We suppose on the contrary that there exists m > n0 such that

d(Fxp(m), F
2xq(m)−1) = d(xp(m)+1, Fxq(m)) = 0. (2.13)

Then from (2.11), (2.12) and (2.13), we have

ε 6 d(xp(m), Fxq(m)−1) 6 d(xp(m), xp(m)+1) + d(xp(m)+1, Fxq(m)−1)

6 d(xp(m), xp(m)+1) + d(xp(m)+1, xq(m)+1) + d(xq(m)+1, Fxq(m)−1)

= d(xp(m), xp(m)+1) + d(xp(m)+1, Fxq(m)) + d(xq(m)+1, xq(m))

<
ε

4
+ 0 +

ε

4
=
ε

2
,

which is a contradiction. Thus

d(Fxp(n), F
2xq(n)−1) = d(xp(n)+1, Fxq(n)) > 0,

Θ
(
d(Fxp(n), F2xq(n)−1)

)
6 [Θ

(
d(xp(n), Fxq(n)−1)

)
]k, (2.14)

is established which further implies that

Θ
(
d(xp(n)+1, xq(n)+1)

)
6 [Θ

(
d(xp(n), xq(n))

)
]k.

From (Θ3), (2.10) and (2.14), we get
Θ(ε) 6 [Θ(ε)]k,

which is a contradiction because k ∈ (0, 1). Thus we proved that {xn} is a Cauchy sequence. Completeness
of X ensures that there exists x∗ ∈ X such that xn → x∗ as n → ∞. Now, since F is α-continuous and
α(xn−1, xn) > 1 then, xn+1 = Fxn → Fx∗ as n → ∞. That is, x∗ = Fx∗. Thus F has a fixed point and
F(Fn) = F(F) for n = 1. Let n > 1. Assume contrarily that w ∈ F(Fn) and w /∈ F(F). Then, d(w, Fw) > 0.
Now we have

1 < Θ(d(w, Fw)) = Θ(d(F(Fn−1w)), F2(Fn−1w)))

6 [Θ(d(Fn−1w, Fnw))]k

6 [Θ(d(Fn−2w, Fn−1w))]k
2
6 · · ·

6 [Θ(d(w, Fw))]k
n

.

By taking limit as n → ∞ in the above inequality we have Θ(d(w, Fw)) = 1. Hence, by (Θ2) we get,
d(w, Fw) = 0 which is a contradiction. Therefore, F(Fn) = F(F) for all n ∈N.

Let (X,d,�) be a partially ordered metric space. Recall that F : X → X is nondecreasing if for all
x,y ∈ X, x � y implies F(x) � F(y) and ordered Θ-contraction if for x,y ∈ X with x � y and d(Fx, Fy) > 0,
we have

Θ
(
d(Fx, Fy)

)
6 [Θ

(
d(x,y)

)
]k,

where Θ ∈ Ω. Fixed point theorems for monotone operators in ordered metric spaces are widely in-
vestigated and have found various applications in differential and integral equations (see [1, 14, 16, 18]
and references therein). From Theorems 2.2-2.5, we derive the following new results in partially ordered
metric spaces.
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Theorem 2.6. Let (X,d,�) be a complete partially ordered metric space. Assume that the following assertions hold
true:

(i) F is nondecreasing and ordered Θ-contraction;

(ii) there exists x0 ∈ X such that x0 � Fx0;

(iii) either for a given x ∈ X and sequence {xn}

xn → x as n→∞ and xn � xn+1, ∀n ∈N we have Fxn → Fx,

or if {xn} is a sequence such that xn � xn+1 with xn → x as n→∞, then either

Fxn � x, or F2xn � x,

holds for all n ∈N.

Then F has a fixed point.

Theorem 2.7. Let (X,d,�) be a complete partially ordered metric space. Assume that the following assertions hold
true:

(i) F is nondecreasing and satisfies (2.8) for all x ∈ X with d(Fx, F2x) > 0 where Θ ∈ Ω and τ > 0;

(ii) there exists x0 ∈ X such that x0 � Fx0;

(iii) for a given x ∈ X and sequence {xn}

xn → x as n→∞ and xn � xn+1 for alln ∈N we have Fxn → Fx.

Then F has a property P.

As an application of our results proved above, we deduce certain Suzuki-Samet type fixed point
theorems.

Theorem 2.8. Let (X,d) be a complete metric space and F be a continuous self-mapping on X. If for x,y ∈ X with
1
2d(x, Fx) 6 d(x,y) and d(Fx, Fy) > 0 we have

Θ
(
d(Fx, Fy)

)
6 [Θ

(
d(x,y)

)
]k,

where Θ ∈ Ω. Then F has a unique fixed point.

Proof. Define, α,η : X×X→ [0,∞) by

α(x,y) = d(x,y) and η(x,y) =
1
2
d(x,y)

for all x,y ∈ X. Now, since 1
2d(x,y) 6 d(x,y) for all x,y ∈ X, so η(x,y) 6 α(x,y) for all x,y ∈ X. That

is, conditions (i) and (iii) of Theorem 2.2 hold true. Since F is continuous, so F is α-η-continuous. Let
η(x, Fx) 6 α(x,y) with d(Fx, Fy) > 0. Equivalently, if 1

2d(x, Fx) 6 d(x,y) with d(Fx, Fy) > 0, then we have

Θ
(
d(Fx, Fy)

)
6 [Θ

(
d(x,y)

)
]k.

That is, F is α-η-Θ-contraction mapping. Hence, all conditions of Theorem 2.2 hold and F has a unique
fixed point.
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Theorem 2.9. Let (X,d) be a complete metric space and F be a self-mapping on X. Assume that there exists some
k ∈ (0, 1) such that

1
2(1 + τ)

d(x, Fx) 6 d(x,y) implies Θ
(
d(Fx, Fy)

)
6 [Θ

(
d(x,y)

)
]k (2.15)

for x,y ∈ X with d(Fx, Fy) > 0 where Θ ∈ Ω. Then F has a unique fixed point.

Proof. Define α,η : X×X→ [0,∞) by

α(x,y) = d(x,y) and η(x,y) =
1

2(1 + τ)
d(x,y)

for all x,y ∈ X where τ > 0. Now, since, 1
2(1+τ)d(x,y) 6 d(x,y) for all x,y ∈ X, so η(x,y) 6 α(x,y)

for all x,y ∈ X. That is, conditions (i) and (iii) of Theorem 2.3 hold true. Let {xn} be a sequence with
xn → x as n → ∞. Assume that d(Fxn, F2xn) = 0 for some n. Then Fxn = F2xn. That is Fxn is a
fixed point of F and we have nothing to prove. Hence we assume, Fxn 6= F2xn for all n ∈ N. Since

1
2(1+τ)d(Fxn, F2xn) 6 d(Fxn, F2xn) for all n ∈N, then from (2.15) we get

Θ
(
d(F2xn, F3xn)

)
6 [Θ

(
d(Fxn, F2xn)

)
]k < Θ

(
d(Fxn, F2xn)),

and so from (Θ1) we get,
d(F2xn, F3xn) < d(Fxn, F2xn). (2.16)

Assume there exists n0 ∈N such that

η(Fxn0 , F2xn0) > α(Fxn0 , x) and η(F2xn0 , F3xn0) > α(F
2xn0 , x),

then
1

2(1 + τ)
d(Fxn0 , F2xn0) > d(Fxn0 , x) and

1
2(1 + τ)

d(F2xn0 , F3xn0) > d(F
2xn0 , x),

so by (2.16) we have,

d(Fxn0 , F2xn0) 6 d(Fxn0 , x) + d(F2xn0 , x)

<
1

2(1 + τ)
d(Fxn0 , F2xn0) +

1
2(1 + τ)

d(F2xn0 , F3xn0)

<
1

2(1 + τ)
d(Fxn0 , F2xn0) +

1
2(1 + τ)

d(Fxn0 , F2xn0)

=
2

2(1 + τ)
d(Fxn0 , F2xn0) 6 d(Fxn0 , F2xn0),

which is a contradiction. Hence, either

η(Fxn, F2xn) 6 α(Fxn, x) or η(F2xn, F3xn) 6 α(F
2xn, x),

holds for all n ∈N. That is condition (iv) of Theorem 2.3 holds. Let η(x, Fx) 6 α(x,y). So, 1
2(1+τ)d(x, Fx) 6

d(x,y). Then from (2.15) we get Θ
(
d(Fx, Fy)

)
6 [Θ

(
d(x,y)

)
]k. Hence, all conditions of Theorem 2.3 hold

and F has a unique fixed point.

3. Applications

Theorem 3.1. Let (X,d) be a complete metric space and F : X → X be a self-mapping satisfying the following
assertions:

(i) for x,y ∈ O(w) with d(Fx, Fy) > 0 we have

Θ
(
d(Fx, Fy)

)
6 [Θ

(
d(x,y)

)
]k,

where Θ ∈ Ω and k ∈ (0, 1);



N. Hussain, A. E. Al-Mazrooei, J. Ahmad, J. Nonlinear Sci. Appl., 10 (2017), 4197–4208 4206

(ii) F is an orbitally continuous function.

Then F has a fixed point. Moreover, F has a unique fixed point when Fix(F) ⊆ O(w).

Proof. Define α,η : X×X→ [0,+∞) by

α(x,y) =
{

3, if x,y ∈ O(w),
0, otherwise, and η(x,y) = 1,

where O(w) is an orbit of a point w ∈ X. From Remark 1.4 we know that F is an α-η-continuous mapping.
Let α(x,y) > η(x,y), then x,y ∈ O(w). So Fx, Fy ∈ O(w). That is, α(Fx, Fy) > η(Fx, Fy). Therefore,
F is an α-admissible mapping with respect to η. Since w, Fw ∈ O(w), then α(w, Fw) > η(w, Fw). Let
α(x,y) > η(x, Fx) and d(Fx, Fy) > 0. Then, x,y ∈ O(w) and d(Fx, Fy) > 0. Therefore from (i) we have

Θ
(
d(Fx, Fy)

)
6 [Θ

(
d(x,y)

)
]k,

which implies F is α-η-Θ-contraction mapping. Hence, all conditions of Theorem 2.2 hold true and F has
a fixed point. If Fix(F) ⊆ O(w), then, α(x,y) > η(x,y) for all x,y ∈ Fix(F) and so from Theorem 2.2 F has
a unique fixed point.

Theorem 3.2. Let (X,d) be a complete metric space and F : X → X be a self-mapping satisfying the following
assertions:

(i) for x ∈ X with d(Fx, F2x) > 0 we have,

Θ
(
d(Fx, F2x)

)
6 [Θ

(
d(x, Fx)

)
]k,

where Θ ∈ Ω and k ∈ (0, 1);

(ii) F is an orbitally continuous function.

Then F has the property P.

Proof. Define α : X×X→ [0,+∞) by

α(x,y) =
{

1, if x ∈ O(w),
0, otherwise,

where w ∈ X. Let α(x,y) > 1, then x,y ∈ O(w). So Fx, Fy ∈ O(w). That is, α(Fx, Fy) > 1. Therefore, F
is α-admissible mapping. Since w, Fw ∈ O(w), so α(w, Fw) > 1. By Remark 1.4 we conclude that F is
α-continuous mapping. If x ∈ X with d(Fx, F2x) > 0, then, from (i) we have

Θ
(
d(Fx, F2x)

)
6 [Θ

(
d(x, Fx)

)
]k.

Thus all conditions of Theorem 2.5 hold true and F has the property P.

We can easily deduce following results involving integral inequalities.

Theorem 3.3. Let (X,d) be a complete metric space and F be a continuous self-mapping on X. If for x,y ∈ X with∫d(x, Fx)

0
ρ(t)dt 6

∫d(x,y)

0
ρ(t)dt and

∫d(Fx, Fy)

0
ρ(t)dt > 0,

we have

Θ
( ∫d(Fx, Fy)

0 ρ(t)dt
)
6 [Θ

( ∫d(x,y)
0 ρ(t)dt

)
]k,

where Θ ∈ Ω, k ∈ (0, 1) and ρ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping satisfying
∫ε

0 ρ(t)dt > 0 for
ε > 0. Then F has a unique fixed point.
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Theorem 3.4. Let (X,d) be a complete metric space and F be a self-mapping on X. Assume that there exists some
k ∈ (0, 1) such that

1
2(1+τ)

∫d(x, Fx)
0 ρ(t)dt 6

∫d(x,y)
0 ρ(t)dt ⇒ Θ

( ∫d(Fx, Fy)
0 ρ(t)dt

)
6

[
Θ
( ∫d(x,y)

0 ρ(t)dt
)]k

for x,y ∈ X with
∫d(Fx, Fy)

0 ρ(t)dt > 0 where Θ ∈ Ω and ρ : [0,∞) → [0,∞) is a Lebesgue-integrable mapping
satisfying

∫ε
0 ρ(t)dt > 0 for ε > 0. Then F has a unique fixed point.

Theorem 3.5. Let (X,d) be a complete metric space and F : X → X be a self-mapping satisfying the following
assertions:

(i) for x,y ∈ O(w) with
∫d(Fx, Fy)

0 ρ(t)dt > 0 we have

Θ
( ∫d(Fx, Fy)

0 ρ(t)dt
)
6

[
Θ
( ∫d(x,y)

0 ρ(t)dt
)]k,

where Θ ∈ Ω, k ∈ (0, 1) and ρ : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping satisfying
∫ε

0 ρ(t)dt > 0
for ε > 0;

(ii) F is an orbitally continuous function.

Then F has a fixed point. Moreover, F has a unique fixed point when Fix(F) ⊆ O(w).

Theorem 3.6. Let (X,d) be a complete metric space and F : X → X be a self-mapping satisfying the following
assertions:

(i) for x ∈ X with
∫d(Fx, F2x)

0 ρ(t)dt > 0 we have

Θ
( ∫d(Fx, F2x)

0 ρ(t)dt
)
6

[
Θ
( ∫d(x, Fx)

0 ρ(t)dt
)]k,

where Θ ∈ Ω, k ∈ (0, 1) and ρ : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping satisfying
∫ε

0 ρ(t)dt > 0
for ε > 0;

(ii) F is an orbitally continuous function.

Then F has the property P.
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